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Motivated by recent low-temperature magnetoresistance measurements in twisted bilayer graphene aligned
with hexagonal boron nitride substrate, we perform a systematic study of possible symmetry breaking orders in
this device at a filling of two electrons per moiré unit cell. We find that the surprising nonmonotonic dependence
of the resistance on an out-of-plane magnetic field is difficult to reconcile with particle-hole charge carriers from
the low-energy bands in symmetry broken phases. We invoke the nonzero Chern numbers of the twisted bilayer
graphene flat bands to argue that skyrmion textures provide an alternative for the dominant charge carriers. Via
an effective field theory for the spin degrees of freedom, we show that the effect of spin Zeeman splitting on
the skyrmion excitations provides a possible explanation for the nonmonotonic magnetoresistance. We suggest
several experimental tests, including the functional dependence of the activation gap on the magnetic field, for
our proposed correlated insulating states at different integer fillings. We also discuss possible exotic phases and
quantum phase transitions that can arise via skyrmion pairing on doping such an insulator.
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I. INTRODUCTION

A series of recent experimental breakthroughs has uncov-
ered surprising and fascinating correlated electron phenomena
in two-dimensional van der Waals moiré materials. Trans-
port experiments on twisted bilayer graphene [1–3], ABC
trilayer graphene on hexagonal boron-nitride (hBN) [4,5],
and twisted double bilayer graphene [6–8] show evidence of
insulating states around charge neutrality at electron fillings
for which no single-particle band gap is expected. To make the
story even more interesting, superconducting domes flanking
some of these insulating states were observed [2,3,6,8,9]. In
Refs. [10–12], spatially resolved properties of the insulat-
ing states were studied using scanning tunneling microscopy
(STM) experiments. Recently, transport experiments were
also performed at larger temperatures, and revealed an in-
teresting broad temperature range with a large and linearly
increasing resistivity [13,14].

The origin of the insulating and superconducting states
can be traced back to the presence of bands with vanishing
bandwidth in the mini- or moiré Brillouin zone. In twisted
bilayer graphene (tBLG), such flat minibands were predicted
to occur at special “magic” twist angles between the top
and bottom graphene layer [15]; an exact flat band criterion
was later obtained in Ref. [16] for a chiral approximation
of the tBLG continuum model [15,17,18]. In ABC trilayer
graphene on hBN and twisted double bilayer graphene, similar
flat minibands around charge neutrality can be obtained by
applying a suitable displacement field [4,19,20]. Interestingly,
the flat bands often also have nontrivial topological properties.
For instance in tBLG, the flat bands have nontrivial fragile
topology protected by the space group symmetries [21–24].
In devices which have isolated flat bands, one generally finds
broad parameter regimes where these bands have nonzero
Chern number [19,20,25–28].

In this work, we focus on flat bands which have a gap at the
charge neutrality point (CNP). This is motivated by the experi-
ments of Refs. [29,30], where the Dirac cones in the tBLG flat
bands are gapped by the C2v symmetry breaking AB-sublattice
splitting induced by the hBN substrate. Although we focus
on the case where the band gap at charge neutrality has a
trivial single-particle origin, most of our results can also be
applied to mean-field band structures where the gap at the
CNP results from spontaneous symmetry breaking induced by
electron interactions. In tBLG, C2vT symmetry (with T being
time-reversal) needs to be spontaneously broken in order to
generate a mean-field gap at charge neutrality. Self-consistent
Hartree-Fock studies have found that this indeed happens
for certain interaction strengths and twist angles [3,26,31]. It
was found that the C2vT symmetry breaking self-consistent
Hartree-Fock solutions are very susceptible to C3v breaking
strain [31], an observation which agrees with the STM and
transport experiments [32].

Our main focus is tBLG with a single-particle gap at charge
neutrality at electron filling ν = 2, i.e., at a doping of two
electrons per moiré unit cell with respect to charge neutrality.
Based on a phenomenological mean-field analysis, we argue
that the magnetoresistance measurements of Ref. [29] impose
very nontrivial constraints on the state that is realized at ν = 2.
We analyze the different possible symmetry breaking orders
and find that (almost) all of them are hard to reconcile with the
transport measurements of Ref. [29], given that we assume the
charge carriers to be conventional particle-hole excitations.
However, because of the nontrivial topology of the flat bands,
skyrmions textures in a spin-polarized flat band carry electric
charge [33]. We study the potential role of skyrmions as the
dominant charge carriers and find that they provide a natural
explanation of the experimental data of Refs. [29,30]. We
therefore posit that skyrmions contribute to transport in tBLG,
and we provide experimentally falsifiable predictions for the
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activation gap as a function of out-of-plane magnetic field
for insulators at ν = 2, 3 to test our assertion. Towards the
end of the manuscript, we speculate on skyrmion pairing and
possible connections to superconductivity.

II. MAGIC-ANGLE TWISTED BILAYER GRAPHENE
ALIGNED WITH HBN

We consider tBLG at the first magic angle θ ≈ 1.05◦ [15],
encapsulated on both sides by a hBN substrate. If hBN is
sufficiently aligned with graphene, it induces a non-negligible
sublattice splitting �σ z, which results in a C2T breaking
mass term at the Dirac points [34–37]. Further, because of
the mismatch in lattice constant between graphene and hBN,
a second moiré pattern arises [38]. As the rotation angle
between graphene and hBN decreases, both the induced Dirac
mass term and the strength of the second moiré pattern
increase. There is a regime where the hBN induced moiré
pattern can be neglected, while there is nonetheless a sizable
Dirac mass. Here, we consider the situation where the top
graphene layer and hBN substrate are in this regime, while the
bottom graphene layer is sufficiently unaligned with hBN and
is therefore not affected by the substrate. We will often use a
hBN induced sublattice splitting of 15 meV, which is expected
to be a good estimate based on the findings of Ref. [39]. We
refer to Appendix A for a detailed discussion of the moiré
Hamiltonian used in this work.

In Refs. [27,28], it was found that a nonzero sublattice
splitting on one side of magic-angle tBLG gaps out all Dirac
cones of the moiré Hamiltonian. Because the two Dirac cones
in a single-valley moiré Hamiltonian, shown in Fig. 1(a),
originate from the two different graphene layers, this is a con-
sequence of the interlayer coupling. Ignoring spin, the single-
valley moiré Hamiltonian with sublattice splitting on one layer
has two isolated flat bands, as shown in Fig. 1(b). The Chern
numbers of these bands were calculated in Refs. [27,28], and
found to be C = ±1. Note that once we know the Chern
number C of one band, all the other Chern numbers are fixed.
This is because the total Chern number in one valley always
adds up to zero (as long as the sublattice splitting is not strong
enough to mix the flat bands with the dispersive bands), and
because the two valleys are interchanged by time-reversal
symmetry, which changes the sign of the Chern number. With
positive sublattice splitting � on one of the graphene layers,
the band above charge neutrality in valley +, i.e., the valley
at the K points of the monolayer graphene Brillouin zone, has
C = −1.

In Refs. [29,30], spontaneous time-reversal symmetry
breaking at ν = 3 was observed in a magic-angle tBLG device
where one of the graphene layers is nearly aligned with hBN.
In particular, Ref. [29] reported a rotational mismatch between
the top graphene layer and the hBN substrate of ≈0.83◦. In
both experiments, the spontaneous time-reversal breaking is
accompanied by a nonzero anomalous Hall effect. On top
of this, Ref. [30] observed insulating behavior at ν = 3, and
a corresponding quantized Hall conductance σxy = ±e2/h.
Because of the nonzero Chern numbers of the flat bands with
hBN alignment, these experimental observations at ν = 3 can
be naturally explained if the Coulomb interactions cause the
electrons to spontaneously polarize into one valley [27,28];

(a) (b)

(c)

FIG. 1. (a) Band spectrum around charge neutrality of the single-
valley tBLG moiré Hamiltonian at the first magic angle θ ≈ 1.05◦.
At the K points in the mini-Brillouin zones, Dirac cones protected by
C2vT are present. (b) With a sublattice splitting �t of 15 meV on the
top graphene layer, induced by alignment with the hBN substrate,
the Dirac cones acquire a mass. The resulting isolated valence and
conduction bands carry nonzero Chern number |C| = 1. (c) The
effect on the flat band density of states (DOS) of a potential energy
difference �U between top and bottom graphene layers as a result
of nonzero displacement field, for �t = 15 meV. AM is the area of
the moiré unit cell. The valence (conduction) band DOS is strongly
affected by positive (negative) �U .

complete spin polarization in addition to valley polarization
can lead to an insulator with quantized σxy. In this work, we
focus on the experimental findings for the same devices at
filling ν = 2. At this filling, no anomalous Hall effect was
observed, but a clear resistance peak is nevertheless present
[29,30]. Although an activation gap is yet to be observed at
ν = 2 in transport measurements, this resistance peak hints
at the possibility of a true insulating state at zero temperature.
Here we assume that such an insulating state is indeed realized
at lower temperatures.

Before going into the interaction effects that stabilize the
putative insulator at ν = 2, we first discuss one last single-
particle effect. In Ref. [29], it was observed that applying
a displacement field along one direction destroys the resis-
tance peak at ν = 2, while this peak is almost insensitive
to a displacement field applied in the other direction. To
understand this behavior, we studied the effect of a nonzero
potential energy difference between top and bottom graphene
layers on the flat bands. In Fig. 1(c), we show the density of
states (DOS) of the flat bands with a sublattice splitting �t =
15 meV, and a potential energy difference �U = Ut − Ub of
0, 50, and −50 meV. We see that for �U = 50 meV, there is
only a small change in the conduction band DOS as compared
to the case when �U = −50 meV. Fig. 1 clearly shows that
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for negative �U , the conduction band DOS decreases more,
and spreads over a larger energy window as function of |�U |.
At the very least, this dependence of the DOS on displacement
field, and in particular on the sign of �U , is consistent with
the scenario that the resistance peak at ν = 2 is attributed
to a correlated insulator, because a lower DOS and a larger
bandwidth reduce the effect of electron interactions.

III. POSSIBLE SYMMETRY BREAKING ORDERS AT ν = 2

To address the nature of the correlated insulator observed at
ν = 2, we follow the phenomenological approach of Ref. [28]
and identify the symmetry breaking orders that are compatible
with the experimental observations (for simplicity, we neglect
spatial symmetry breaking on the moiré scale). We note that
recently a similar phenomenological approach was used to
distinguish different pairing order parameters in tBLG and
twisted double bilayer graphene [40,41]. The dominant terms
in the Hamiltonian are U(2)+ × U(2)− symmetric, where
the ± subscript refers to the valley quantum number. The
U(2)+ × U(2)− symmetry consists of overall charge conser-
vation, valley-charge conservation, and independent SU(2)
spin rotations in each valley. We write its corresponding Lie
algebra as 1, τ z, s, and τ zs, where τ i and si are the Pauli
matrices acting respectively on the valley and spin indices.
The total Hamiltonian also contains terms that break the
SU(2)+ × SU(2)− subgroup down to the physical SU(2) spin
rotation group, but they operate at much lower energy scales.
We will ignore these terms for now, and discuss them in
more detail in the next section. We can organize the fifteen
order parameters τ is j into three different multiplets under
U(2)+ × U(2)− [28]: (1) τ z, (2) (τ x/y, τ x/ys), and (3): (s, τ zs).

The order parameter τ z corresponds to a spin singlet,
valley-polarized insulator where all electrons occupy the same
valley. This possibility can readily be excluded, since in this
case the system would be an anomalous Hall insulator with
σxy = ±2e2/h. However, no sign of nonzero Hall conductivity
at zero magnetic field was observed at ν = 2 [29].

The second possibility is that the ground state corresponds
to an intervalley coherent (IVC) state, with order parameter
multiplet (τ x/y, τ x/ys). Let us pick the τ x, τ y order param-
eters, and write the mean-field Hamiltonian for the four
bands above charge neutrality (including spin) as HMF =∑

k c†k,τ,s[hk]τ,s;τ ′,s′ck,τ ′,s′ , where k lies in the mini-Brillouin
zone (MBZ). For the IVC state, restricting to an out-of-plane
magnetic field (B‖ = 0),

hk = (ε+,k − ε−,k )

2
τ z ⊗ s0 + Mx(k)τ x ⊗ s0 + My(k)τ y ⊗ s0

−μBgv (k)B⊥
2

τ z ⊗ s0 − μBgsB⊥
2

τ 0 ⊗ sz , (1)

where ετ,k is the band energy in valley τ . Note that we
have dropped an unimportant term proportional to the iden-
tity. The first term on the second line in Eq. (1) is the
valley Zeeman term, with μB the Bohr magneton, which
describes the coupling between an out-of-plane magnetic
field B⊥ and the orbital magnetic moment of the electrons
[42–44]. The last term is the conventional spin-Zeeman term.
Time reversal acts on the Hamiltonian in Eq. (1) as τ xK ,
where K means complex conjugation. Let us first analyze this

K+

Γ

K−

mK+

mK− = −mK+

(a)

µ

−|mK| |mK|

1
−1

0
0 1

−1

(b)

FIG. 2. (a) Mini-Brillouin zone with the Dirac cones at the K+
and K− points coming from the IVC insulator order parameter
Mx (k)τ x + My(k)τ y. Both Dirac cones have the same chirality. The
mass terms at K+ and K−, which have opposite signs, come from
the flat band dispersion: mK± = ±(ε+,K+ − ε+,K− )/2. (b) Effect of
a fictitious term μτ z on the IVC insulator mean-field Hamiltonian.
Tuning μ from minus infinity to plus infinity induces two Chern
number changing transitions, where the Chern number of the valence
(conduction) band changes from 1 (−1) to 0, and from 0 to −1 (1)
(for positive �t ). In the figure, above the μ axis, we schematically
show the valence and conduction bands with their respective Chern
number.

mean-field Hamiltonian for B⊥ = 0. Because the flat bands
above charge neutrality have Chern number C = ±1, we
know that M(k) = Mx(k) + iMy(k) has at least two nodes in
the mini-Brillouin zone with the same phase winding [27,45]
(see also Ref. [46]). Assuming the minimal scenario with
only two nodes is realized, C3v and time-reversal symmetry
dictate that these nodes are located either at the K+ and K−
points of the mini-Brillouin zone, or both at the � point. Since
the IVC mass M set by the Coulomb scale (≈20 meV) is
expected to be much larger than the noninteracting bandwidth
(≈3 meV), the minimum band gap corresponds to the nodes
of M(k) in the MBZ. Therefore, when the nodes are at the
K points, the band gap of the mean-field Hamiltonian is
given by |ε+,K+ − ε−,K+| = |ε+,K+ − ε+,K−|, where we have
used ε−,k = ε+,−k as follows from time-reversal symmetry.
We will refer to this possibility as the IVC insulator. If the
nodes are both at �, then the mean-field Hamiltonian is a
semimetal, which we will refer to as the IVC semimetal.
Let us first elaborate on the topological properties of the
gapped bands of the IVC insulator. Because the nodes of
�(k) have the same winding, the resulting Dirac cones in
the mean-field Hamiltonian have the same chirality. The mass
terms mK+τ z and mK−τ z at the K+ and K− points coming
from the flat-band dispersion have opposite sign, as can easily
be seen from mK+ = (ε+,K+ − ε−,K+ )/2 = (ε+,K+ − ε+,K− )/2
and mK− = (ε+,K− − ε−,K− )/2 = (ε+,K− − ε+,K+ )/2. So we
conclude that the bands of the IVC insulator mean-field
Hamiltonian have zero Chern number. This can also be seen
by adding a fictitious term μτ z to the Hamiltonian in Eq. (1).
Tuning μ from minus infinity to plus infinity induces two
Chern number changing transitions, where at each transition
the Chern number changes by one at a Dirac cone located
at one of the nodes of M(k). This is shown schematically in
Fig. 2(b).

Now we investigate the consequences of turning on a
nonzero out-of-plane magnetic field. We first consider the
IVC insulator. For nonzero B⊥, the valley-Zeeman term starts
to compete with the mass terms mK+τ z and mK−τ z. Since
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FIG. 3. Schematic charge gap �c as a function of B⊥ for the IVC-
I state, neglecting the small spin Zeeman effect. �c would increase
for uniform nonzero MIVC(k). This is not allowed by the opposite
Chern numbers of the two valleys and hence �c decreases at one
node of MIVC(k).

mK+ = −mK− , the valley Zeeman effect must decrease the
gap at either K+ or K− (and increase the gap at the other
point, see Fig. 3), regardless of the sign of the perpendicular
magnetic field. At the twist angle used in Ref. [29] and with
�t = 15 meV, the magnitude of gv (k) is approximately 15
at the mini-Brillouin zone K points [28]. Because of this, we
can safely ignore the spin-Zeeman term. From the mean-field
Hamiltonian (1), we see that the band gap of the IVC insulator
is given by

�IVC-I(B⊥) = 2|mK | − μB|gv (K)B⊥|. (2)

Irrespective of the sign of B⊥, the band gap �IVC-I closes when
μB|g(K)B⊥|/2 = |mK |, where |mK | = |mK+| = |mK−|. Given
that |mK | ≈ 1.5 meV, we find that the bandgap of the IVC
insulator closes when B⊥ ≈ 3–4 T. However, this behavior,
schematically depicted in Fig. 3, is difficult to reconcile with
the experimental findings of Ref. [29] as the magnetoresis-
tance measurements show an increase in resistivity at ν = 2
as a function of out-of-plane magnetic field, with a resistance
peak around 6 T.

For the IVC semimetal, the valley-Zeeman term will gen-
erate a mass term at �. The spin-Zeeman term lifts the
spin degeneracy, which makes the valence and conduction
bands overlap around �. The net effect of the out-of-plane
magnetic field depends on the sign of gs − gv (0), where gv (0)
is the orbital g factor at �. As we show in Fig. 4, if the
spin-Zeeman splitting �SZ(B⊥) = |gsμBB⊥| is bigger than the
valley-Zeeman splitting �VZ(B⊥) = |gv (0)μBB⊥|, a Fermi
surface appears around �. If �VZ(B⊥) > �SZ(B⊥), then the
IVC semimetal develops an energy gap at �. We find that
gv (0) depends sensitively on twist angle, lattice relaxation and
sublattice splitting. However, generically gv (0) > gs, such
that an out-of-plane magnetic field creates a nonzero energy
gap. The IVC semimetal is thus consistent with the magne-
toresistance measurements of Ref. [29]. However, we expect
such a phase to be energetically unfavorable for two reasons.
First, the Fermi surface is not entirely gapped out at B⊥ = 0,
which means that the fermions gain less correlation energy
compared to other order parameters that lead to a fully gapped
spectrum. Second, a double vortex in M(k) costs twice the

↑, ↓

↑, ↓

(a)

↑

↓

↑

↓

ΔV ZΔSZ

(b)

↑
↓

↑
↓

ΔV Z

ΔSZ

(c)

FIG. 4. Band spectrum around � of the IVC semimetal mean-
field Hamiltonian, corresponding to Eq. (1) with both nodes of M(k)
located at �. (a) Band spectrum at B⊥ = 0. (b) With nonzero B⊥, the
band spectrum develops a Fermi surface if the spin-Zeeman splitting
�SZ = |gsμBB⊥| is greater than the valley-Zeeman splitting �VZ =
|gv (0)μBB⊥|. (c) The opposite case compared to (b). Now the valley-
Zeeman splitting is larger than the spin-Zeeman splitting, resulting
in a gapped band spectrum.

energy of two single vortices from a symmetry allowed term
of the form

∫
k |∇kM(k)|2 in the effective action, as the latter

endows a vortex with an energy cost proportional to the square
of its winding number. Therefore below we will focus on the
possibility of an insulating state at ν = 2.

Let us also briefly comment on the possibility that C3v

and/or time-reversal are spontaneously broken. In that case,
the nodes of M(k) appear at generic positions in the mini-
Brillouin zone, and will be gapped out by the mass terms
(ε+,k − ε−,k )τ z/2 at the locations of the nodes. For nonzero
B⊥, both the valley-Zeeman and the spin-Zeeman terms will
compete with these mass terms, similar to the case when the
nodes are at the K points, as long as time reversal is preserved
and hence the gap decreases for either direction of B⊥. How-
ever, if M(k) spontaneously breaks time reversal and C3v , it
is possible for both mass terms to have the same sign at the
location of the nodes. In this case, the band gap will decrease
for one direction of B⊥, but increase for the other direction. So
this scenario could in principle explain the magnetoresistance
measurements of Ref. [29], but it requires strong breaking of
valley-U(1), C3v , and time reversal. It can readily be identified
in experiments by doing magnetoresistance measurements for
both directions of B⊥ and observing opposite behavior of
Rxx(B⊥).

The third and final possibility is that the insulator has an
order parameter in the multiplet (s, τ zs), in which case the
electrons fill one spin-polarized band in each valley. Let us
assume the order parameter is sz and write down a correspond-
ing mean-field Hamiltonian:

hk = (ε+,k − ε−,k )

2
τ z ⊗ s0 + MS τ 0 ⊗ sz

−μBgv (k)B⊥
2

τ z ⊗ s0 − μBgsB⊥
2

τ 0 ⊗ sz. (3)

In this case, the valley-Zeeman term competes with the order
parameter mass term MS sz, and the mean-field band gap is
given by

�VI ≈ 2|MS| − μB|gv,maxB⊥| , (4)

where gv,max is the maximal value of gv (k) in the mini-
Brillouin zone. Note that we have assumed that MS is much
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larger than the bandwidth of the flat bands, although our
conclusions below will also be valid without this assumption
(as long as MS is bigger than the bandwidth). We have also
ignored the spin-Zeeman term because the maximal orbital
g factor is much larger than the spin g factor. The band
gap �VI again decreases with an out-of-plane magnetic field.
So at first sight, also this insulator seems incompatible [28]
with the experimental findings of Ref. [29]. However, in
contrast to the IVC insulator, now the bands of the mean-field
Hamiltonian in Eq. (3) have Chern number C = ±1. It is
well-known in the context of quantum Hall ferromagnetism
[33,47,48] that skyrmion textures in a spin-polarized Landau
level carry electric charge [33]. This is also true for Chern
insulators, which means that there is another candidate for
the lowest-energy charged excitations. If skyrmions are in-
deed the lowest-energy charge carriers, then the resistivity
increase with out-of-plane magnetic field in the transport
measurements of Ref. [29] would result from the spin-Zeeman
term, which increases the energy of a skyrmion. In the next
sections, we examine this possibility in more detail. We note
that skyrmions in general flat moiré bands with nonzero Chern
number were also discussed in Ref. [19]. While Ref. [19]
focuses on the possibility of skyrmionic superconductivity for
bosonic skyrmions in C = 2 Chern bands, in our work, we
mainly focus on fermionic skyrmions in C = 1 bands and their
implication on the gap.

IV. SU(2)+ × SU(2)− SYMMETRY BREAKING EFFECTS

In the previous section, we have argued that if the resis-
tance peak observed in Ref. [29] at ν = 2 can be attributed
to an insulating state, then this insulator has a symme-
try breaking order parameter in the multiplet (s, τ zs), and
skyrmions as lowest-energy charge carriers. Before discussing
the skyrmion excitations in more detail, we first study the
SU(2)+ × SU(2)− symmetry breaking terms in the Hamilto-
nian, which distinguish between the s and τ s order parameters.
We want to know what order parameter gives the lowest
energy, i.e., whether the SU(2)+ × SU(2)− breaking terms
favor spin alignment or antialignment between the different
valleys. If the spins are aligned in the two valleys (order pa-
rameter s), the insulator is a time-reversal symmetry breaking
ferromagnet with a nonzero local spin moment. If the spins in
the valleys are antialigned (order parameter τ zs), the insulator
is time-reversal symmetric which implies there is no local spin
moment. Because the electron spin in this state is locked to the
valley quantum number (sz = τ

2 or sz = − τ
2 ), we will refer

to it as the “spin-valley locked state.” In a nonzero external
magnetic field, the spins in the spin-valley locked insulator
will cant in the direction of the magnetic field, similar to
the canted antiferromagnet (CAF) [49–51]. The canted spin-
valley locked state which appears in this manuscript is similar
to the CAF occuring in the ν = 0 graphene Landau levels
[52–55].

A first microscopic SU(2)+ × SU(2)− breaking term
comes from the Coulomb interaction, which takes the form

HC = 1

2A

∑
q

∑
l,l ′

Vll ′ (q) : ρl (q)ρl ′ (−q) : , (5)

where l = t, b is a layer index and A is the area of the
monolayer graphene unit cell. From now on, we will always
implicitly assume normal ordering. For the interaction poten-
tial, we use a dual-gate screened Coulomb potential, which in
momentum space takes the form

Vtt (q) = Vbb(q) = e2

2εrε0|q| tanh(D|q|), (6)

Vtb(q) = Vbt (q) = e2

2εrε0|q|
(

e−d|q| − 2e−2D|q|

1 + e−2D|q|

)
, (7)

where D is the distance from the tBLG to the metallic gates,
which we take to be three moiré lattice constants. Equation
(7) holds when the interlayer distance d , of the order of
one graphene lattice constant, is much smaller than the gate
distance D. Based on the findings of Ref. [56], we take the
hBN dielectric constant to be εr = 6.6. The layer resolved
density operator ρl (q) is given by

ρl (q) = 1√
N

′∑
k

∑
σ,s

ψ
†
k+q,l,σ,sψk,l,σ,s , (8)

where N is the number of graphene unit cells and σ and s
are respectively sublattice and spin indices. We use primed
momentum sums to denote sums that run over the monolayer
graphene Brillouin zone. A few remarks are in order before
we proceed with our analysis. We have used the expression
V (q) = ∫

d2r V (r)eiq·r for the interaction potential in Fourier
space. This approximation is valid for a|q| 	 1, with a the
graphene lattice constant. However, the intervalley scattering
terms we are interested in involve large momentum transfers
between electrons and are therefore not in the regime where
a|q| 	 1 holds. Although V (q) does not accurately describe
lattice-scale interactions, we nevertheless still expect it to
give a reliable estimate for the energy scale of the intervalley
scattering, and to provide the correct physical picture of the
SU(2)+ × SU(2)− symmetry breaking effects.

We now project the density operators in the flat bands
above charge neutrality, which gives

ρ̃l,g(q) = 1√
N

∑
τ,τ ′

∑
k

λτ,τ ′
l,g (q, k)c†k+q,τ

ck,τ ′ . (9)

In this expression, both q and k lie in the mini-Brillouin zone,
and g is a moiré reciprocal lattice vector. The operators ck,τ =
(ck,τ,↑, ck,τ,↓)T annihilate an electron with momentum k in the
miniband of valley τ . Note that since we are only considering
one band per valley, we can use the valley index τ to label
the minibands. The form factors are defined using the moiré
Hamiltonian Bloch states |uτ (k)〉 as

λτ,τ ′
l,g (q, k) = 〈uτ (k + q)|SgPl |uτ ′ (k)〉 , (10)

where Pl projects onto layer l and Sg is a matrix with entrees
[Sg]gi,g j = δgi,g+g j , where g, gi and g j are moiré reciprocal
lattice vectors. Using the projected density operators, we write
the Coulomb Hamiltonian as the sum of an intravalley and an
intervalley parts

H̃C = HV + HIV , (11)
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where HV is U(2)+ × U(2)− symmetric. Here we are only
interested in the intervalley part, which takes the form

HIV = 1

2NA

∑
q,k,k′

∑
τ

V C
τ (q, k, k′)c†k+q,−τ

ck,τ c†k′−q,τ
ck′,−τ ,

(12)
where the flat-band projected interaction potential, defined to
include the form factors, is given by

V C
τ (q, k, k′) =

∑
l,l ′,g

Vll ′ (q + g + 2X)

×λτ,−τ
l,g (q, k)λ−τ,τ

l ′,−g(−q, k′). (13)

In the above expression, we use X to denote the position
of the center of the mini-Brillouin zone at the monolayer
K valleys (see Appendix A for additional details). Using
a standard Fierz identity we can write HIV as the sum of
an intervalley density-density interaction and an intervalley
Heisenberg or Hund’s coupling [19]. We focus only on the
SU(2)+ × SU(2)− breaking term, i.e., the intervalley Heisen-
berg term. From Eq. (12), we see that it is of the form

HC,J = − 1

NA

∑
q,k,k′

∑
τ

V C
τ (q + k′ − k, k, k′)

×
∑

i

(
c†k′+q,−τ

si

2
ck′,−τ

)(
c†k−q,τ

si

2
ck,τ

)
, (14)

where si are the Pauli matrices acting on spin indices. To see
whether the Hamiltonian in Eq. (14) prefers ferro- or antifer-
romagnetically aligned spins in different valleys, we define
the four Slater determinants |τ, s〉 = (NM!)−1/2 ∏

k c†k,τ,s|0〉,
where NM is the number of moiré unit cells. The relevant
matrix element determining the intervalley spin splitting in
first order perturbation theory is given in terms of these Slater
determinants as

〈+,↑; −,↑ |HC,J |+,↑; −,↑〉

= − 1

4NA

∑
k,k′

∑
τ

V C
τ (k′ − k, k, k′). (15)

We have calculated this matrix element numerically, and
found that to a very good approximation it can be written as a
function of the interlayer distance d as

1

NM
〈+,↑; −,↑ |HC,J |+,↑; −,↑〉

≈ −(0.20 − 0.16 e− 4π
3

d
a ) meV , (16)

So the intervalley Heisenberg coupling arising from Coulomb
interaction is ferromagnetic, and its magnitude increases as
a function of the interlayer distance. This is a consequence
of the phase structure of the flat band wave functions, which
leads to the minus sign in front of the exponential factor.

Next to the Coulomb interaction, there is a second source
of SU(2)+ × SU(2)− symmetry breaking, which comes from
lattice-scale phonons near the K points of the graphene Bril-
louin zone. As discussed in detail in Appendix B, the phonon-

induced intervalley coupling projected into the flat bands is

HPH = −gph

N

∑
q,k,k′

∑
τ

V PH
τ (q, k, k′)

×c†k+q,−τ
ck,τ c†k′−q,τ

ck′,−τ , (17)

where the phonon interaction strength is approximately gph ≈
630 meV. The phonon mediated interaction potential is ex-
pressed in terms of the form factors f τ

l,g(q, k) = 〈u−τ (k +
q)|σ xSgPl |uτ (k)〉 as

V PH
τ (q, k, k′) =

∑
l,g

f τ
l,g(q, k) f −τ

l,−g(−q, k′) . (18)

As before, we can use a Fierz identity to isolate the SU(2)+ ×
SU(2)− symmetry breaking part of the Hamiltonian in
Eq. (17). We find

HPH,J = 2gph

N

∑
q,k,k′

∑
τ

V PH
τ (q + k′ − k, k, k′)

×
∑

i

(
c†k′+q,−τ

si

2
ck′,−τ

)(
c†k−q,τ

si

2
ck,τ

)
. (19)

The relevant matrix element for the phonon induced interval-
ley coupling Hamiltonian is

〈+,↑; −,↑ |HPH,J |+,↑; −,↑〉
= gph

2N

∑
k,k′

∑
τ

V PH
τ (k′ − k, k, k′). (20)

Evaluating this matrix element numerically, we find

1

NM
〈+,↑; −,↑ |HPH,J |+,↑; −,↑〉 ≈ 0.075 meV. (21)

We see that the phonon induced intervalley Heisenberg cou-
pling is antiferromagnetic. Note that it is a significant fraction
of the Coulomb intervalley Heisenberg coupling in Eq. (17)
for d ≈ a, so it cannot be neglected. In fact, if one would
not take a finite layer separation into account in the Coulomb
potential, the phonon contribution would dominate. We con-
clude that although the system at ν = 2 will most likely be
ferromagnetic (FM) and spontaneously break time-reversal
symmetry, we can not rule out the spin-valley locked state
(SVL) where the electron spins are antialigned in different val-
leys (〈τ zs〉 �= 0). The ferromagnetic state with order parameter
s was also recently found to describe the ν = 2 insulator
observed in twisted double bilayer graphene [6–8,20]. The
possibility of magnetic order in magic-angle tBLG was also
previously discussed in Refs. [26,57–64].

V. CHARGED SKYRMION EXCITATIONS

As mentioned previously, a skyrmion texture described by
a unit vector field n(r) in a spin polarized Chern band carries
electric charge, as follows from the following general relation
between the excess charge density ρ(r) and Pontryagin den-
sity [33]:

ρ(r) = − C

4π
n(r) · (∂xn(r) × ∂yn(r)) , (22)
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where C is the Chern number. In order to identify skyrmions
as the dominant charge carriers, we have to study their ener-
getics, which is what we turn to next.

A. Skyrmion energy with SU(2)+ × SU(2)− symmetry

For temperatures larger than the intervalley Heisenberg
coupling (T � 1 K), the spins from opposite valleys are
decoupled via thermal fluctuations, while they remain ferro-
magnetically correlated within each valley due to the large
Coulomb scale (as exemplified by the spin stiffness ρs cal-
culated below). Therefore let us first ignore the intervalley
Heisenberg coupling and assume that the Hamiltonian is
SU(2)+ × SU(2)− symmetric. In that case, the lowest-energy
skyrmions are skyrmions with topological charge ±1 in a
single valley. Because the flat bands have Chern number
±1, these skyrmions have electric charge ±1 according to
Eq. (22). The energy of such a skyrmion is given by Esk =
4πρs [65], where ρs is the spin stiffness. In Refs. [33,66], a
mean-field expression for the spin stiffness of a spin polarized
Landau level was derived. In Appendix C, this expression is
generalized to the case of electrons interacting via a density-
density term of the form

∑
k Ṽ (k)ρ(k)ρ(−k), projected onto

a flat band with Berry curvature F (k). Using the same
approach as Ref. [66], we find the following approximate
expression for the spin stiffness:

ρs = 1

8A

(
1

N

∑
k′

F (k′)2

)(
1

N

∑
k

Ṽ (k) f 2(k)|k|2
)

, (23)

where A is the area of the unit cell, N is the number of
unit cells and f (k) = |λ(k, k0)| for some representative k0.
The only approximation used to derive Eq. (23) is that the
magnitude of the form factor |λ(k, q)| is independent of q.
If the Berry curvature is completely uniform throughout the
Brillouin zone, Eq. (23) reduces to the previously derived
expression for Landau levels [33,66]. From Eq. (23), we see
that a nonhomogeneous Berry curvature leads to a higher spin
stiffness, and therefore a higher skyrmion energy.

If we apply Eq. (23) to tBLG, we find

ρs ≈ 1

8AM

(
1

NM

∑
k′∈mBZ

F (k′)2

)

×
(

1

N

∑
k∈mBZ

∑
g

V (k + g) f 2
g (k)|k|2

)
, (24)

where AM is the area of the moiré unit cell, N is the number
of monolayer graphene unit cells, NM the number of moiré
unit cells, g again denotes the moiré reciprocal lattice vectors,
V (k) is the screened Coulomb potential defined in Eqs. (6)
and (7) [with d = 0), and fg(k) = | ∑l λ++

l,g (k, K+/2)| (recall
that K+ is the mini-BZ K point]. The reason for defining
fg(k) with respect to the momentum point K+/2 instead of
the � point is that we found |∑l λ++

l,g (k, q)| to be largely
independent of q, except near �.

The energy cost of a well-separated skyrmion pair E2,sk =
8πρs is to be compared with the energy cost of a particle-
hole excitation in the spin polarized flat band. Using the same
approximation as for the calculation of ρs, this energy cost in

FIG. 5. Ratio r = E2,sk/Eph of the energy of a well-separated
skyrmion pair over the energy of a particle-hole excitation in a
SU(2)+ × SU(2)− symmetric model as a function of the sublattice
splitting on the top graphene layer.

a mean-field decoupled Hamiltonian is readily found to be

Eph = 2

N

∑
k,g

V (k + g) f 2
g (k) , (25)

which agrees with the expression for the energy of a well-
separated particle-hole pair in the spin polarized lowest Lan-
dau level [67], and sets the scale for the mean-field gap MS .

In Fig. 5, we plot the ratio r = E2,sk/Eph of the energy of
a skyrmion pair over the energy of a well-separated particle-
hole pair for a dual-gate screened Coulomb potential, as a
function of the sublattice splitting �t on the top layer. The
shape of this curve is completely determined by the distri-
bution of the Berry curvature over the mini-Brillouin zone.
From Fig. 5, we see that r initially decreases very quickly,
until it reaches a minimum at �t ≈ 5 meV. This decrease
follows from the fact that the Berry curvature is initially
peaked at the K points because of the Dirac cones in the
�t = 0 band spectrum, but starts to smoothen out when �t

increases. The ratio r reaches a minimum for �t ≈ 5 meV.
After this minimum, the Berry curvature starts to accumulate
again, this time at the � point. Now the spin stiffness increases
only slowly with �t . This is because a large value of �t is
required in order to close the gap between the flat band and
the higher dispersive band at �, at which point the Berry
curvature would also become singular. However, for realistic
values of �t , we see that the skyrmion-pair energy is around
40% to 45% of the particle-hole energy. For example, with
�t = 15 meV, we find a skyrmion-pair energy of ≈21 meV,
and a particle-hole energy of ≈48 meV.

The energy of a skyrmion in a single valley will increase
when the intervalley Heisenberg coupling is taken into ac-
count because this term wants to lock the spin moments
in both valleys together and therefore penalizes a skyrmion
texture made from the spins in only one valley but not the
other. In the next section, we study the effect of nonzero
intervalley Heisenberg coupling in more detail.

B. Effective field theory description

In this section, we compute the energy of a charge
e skyrmion in a single valley with nonzero intervalley
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Heisenberg coupling. We take into account the change of the
ground state due to the external magnetic field, but neglect the
back-reaction of spins in the opposite valley in response to the
formation of a single skyrmion. We expect this to be a good
approximation in the regime where the intervalley exchange,
parameterized by ρ̄s, is weaker than the spin stiffness ρs in
each individual valley; this is the case for tBLG on HBN as
shown by our numerical estimates (ρ̄s/ρs ≈ 0.1).

First, we consider the ferromagnet. A single skyrmion in
one valley contains spins which are not aligned with the spins
in the other valley, and also with the external magnetic field
B⊥ which aligns all spins with itself in the ground state. The
core size (and energy) of a skyrmion is determined by the
competition between the Coulomb repulsion and exchange
energy loss due to decoupling with spins from the opposite
valley (determined by ρ̄s), and with B⊥. For small ρ̄s and
B⊥, the skyrmion would be large as it would try to minimize
Coulomb repulsion. On increasing B⊥, the Zeeman energy
dominates and the skyrmion size saturates to a small value
of the order of moiré lattice spacing aM . In this limit, the
skyrmion energy also saturates to a maximum value; and a
skyrmion-antiskyrmion pair resembles a particle-hole pair.

To illustrate this schematically, we make an (oversimpli-
fied) estimate the energy Esk of a two-dimensional skyrmion
of linear size R, which is given by the sum of its elastic energy
Eel, Coulomb energy EC (for simplicity, we temporarily ignore
screening) and Zeeman-energy EZ that receives contribution
from both the intervalley coupling and the external magnetic
field B⊥:

Esk ≈ 4πρs + e2

4πεR
+

(
gsμBB⊥ + ρ̄s

2

)(
R

aM

)2

⇒ Ropt ≈
(

e2a2
M

4πε(gsμBB⊥ + ρ̄s/2)

)1/3

≡
(

a2
M�2

B̃

a0

)1/3

,

(26)

where a0 = 4πε
mee2 is the effective Bohr radius, �B̃ =√

h̄/e[B⊥ + ρ̄s/(2gsμB)] is the effective magnetic length and
aM is the moiré length scale. At the optimal length scale, the
energy of the skyrmion is given by

Esk (B⊥) − Esk (B⊥ = 0) ≈ e2

4πεaM

(
a0aM

�2
B̃

)1/3

∝
{

B⊥, for gsμBB⊥ 	 ρ̄s

B1/3
⊥ for ρ̄s 	 gsμBB⊥

. (27)

Therefore Esk first increases linearly, and subsequently sub-
linearly in B⊥ for small B⊥; this feature remains valid even
in presence of screening and can contribute to an increasing
charge gap on turning on B⊥.

Next, we turn to a continuum field theory for a more
accurate estimate of the skyrmion energy. The effective La-
grangian density for the ferromagnet can be described by the

following two-component O(3) nonlinear σ model:

L =
∑
τ=±

[
nS(A[nτ ] · ∂t nτ (r) + gsμBB · nτ (r))

− ρs

2
(∇nτ (r))2

]
− nS2ρ̄s

2
[n+(r) − n−(r)]2

− 1

2

∫
dr′ V (r − r′)ρ(r)ρ(r′), (28)

where A[nτ ] corresponds to the vector potential of a unit
monopole with ∇n × A[nτ ] = nτ , and nτ (r) lies on the 2-
sphere (nτ · nτ = 1). ρ(r) = ∑

τ ρτ (r) with ρτ (r) = − Cτ

4π
nτ ·

(∂xnτ × ∂ynτ ) is the topological charge density of the
skyrmion (Cτ = ∓1 for valleys labeled τ = ±), ρ̄s is the
intervalley spin stiffness, n = 2/(

√
3a2

M ) is the density of
electrons and S = 1/2 is the electron spin (h̄ = 1). In the
ground state, n+(r) = n−(r) for the ferromagnet so the term
with ρ̄s does not contribute.

To calculate the energy of a skyrmion configuration, it is
convenient to use complex coordinates z = x + iy, and write
the single skyrmion texture in terms of a complex analytic
function W (z) as follows [65]:

nx − iny = 2W (z)

1 + |W (z)|2 , nz = 1 − |W (z)|2
1 + |W (z)|2 . (29)

As shown in Appendix D 1, we find that the field theory yields
the following energy for the skyrmion ansatz W (z) = R/z
after optimizing its size R (α is an O(1) numerical constant)

Esk = 4πρs + αEC

[(
�

EC

)
ln

(
1 + EC

�

)]ν

, (30)

where ν = 1/2 (1/3) for strongly gate-screened (unscreened)
Coulomb interaction [see Eq. (6)] and � = gsμBB⊥ + ρ̄s/2
is the effective Zeeman energy-scale in a given valley. We
conclude that irrespective of the precise details of screening,
Esk increases sublinearly with B⊥ for small external fields.
Though this effective theory cannot capture large B⊥ when
lattice-scale effects become important, the skyrmion energy
is expected to saturate as a skyrmion pair gets squeezed to a
particle-hole pair.

We can estimate the energy and size of a skyrmion for
screened Coulomb coupling with a screening length of the
order of aM . Taking Ec ≈ ρs ≈ 1 meV, we find that the cor-
rection to the elastic energy of the skyrmion is ≈1 meV for
B⊥ = 0 and ρ̄s = 0.12 meV. This implies that the skyrmion-
antiskyrmion pair still costs lower energy than the particle-
hole pair. The net magnetic moment carried by the skyrmion
is approximately 2.7 gsμB, so we are in the regime where
the skyrmion size is quite small. Hence, the exact numerical
estimates from our continuum model are not likely to be
very accurate; however, they are robust to small microscopic
deformations of the Hamiltonian and provide a reasonable
sense of the relevant energy scales.

For the spin-valley locked state, we replace n− → −n−
in Eq. (28). While the Zeeman gap � = ρ̄s/2 is identical to
the ferromagnet for B⊥ = 0, turning on B⊥ causes spins from
opposite valleys to cant towards itself, changing the ground
state (however, spins within one valley remain ferromagnet-
ically aligned). Interestingly, the effective Zeeman gap for a
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(a) (b)

FIG. 6. (a) Band splitting and skyrmion gap in the ferromagnet as a function of B⊥. (b) Green (brown) line schematically depicts the charge
gap �c as a function of B⊥ for the ferromagnet (spin-valley locked state). �c increases till B⊥ = BFM (BSVL) when the energies of the skyrmion
pair and particle-hole pair cross and then drops.

single valley (�) remains constant until the field reaches the
critical value B⊥ = ρ̄s/(gsμB), at which point a transition to
the ferromagnetic state occurs (see Appendix D 1). Once the
system is ferromagnetic, the skyrmion energy increases lin-
early as discussed above. To summarize, we find the following
behavior for �:

� = gsμBB̃ =
{

ρ̄s

2 , B⊥ <
ρ̄s

gsμB

gsμBB⊥ − ρ̄s

2 , B⊥ � ρ̄s

gsμB

. (31)

Accordingly, the skyrmion size also remains fixed till B⊥ =
ρ̄s/(gsμB) and then gradually decreases as B⊥ is tuned up
further.

C. Charge gap in a magnetic field at ν = 2

Having established that a skyrmion is the lowest energy
charge e excitation for small external fields, we now turn to the
longitudinal resistivity ρxx as a function of B⊥. We assume that
the insulator at ν = 2 has an activated ρxx which is governed
by the gap �c to the charged excitation that costs the lowest
energy. Because of the valley- and spin-Zeeman terms in
Eq. (1), the band gap decreases with increasing B⊥, and hence
the gap to exciting an electron to an empty band decreases. On
the other hand, the single charge e skyrmion gap for the fer-
romagnet increases as Bν

⊥ (1/3 � ν � 1/2 depending on the
nature of screening) for small fields B⊥. Therefore the overall
charge gap �c = min{2Esk (B⊥), 2|MS| − μB|gv,maxB⊥|} will
initially increase as a function of B⊥, and then start dropping
when the valley-Zeeman term dominates, as schematically
depicted in Fig. 6. Assuming that the behavior of the resis-
tivity is determined entirely by the activation gap �c, charge e
skyrmions can explain the peculiar behavior of ρxx(B⊥) [29].
For the spin-valley locked state, the gap remains constant
till B⊥ ≈ ρ̄s/(gsμB), and then increases; therefore it appears
unlikely that the ground state is the spin-valley locked state
based on the transport data. This agrees with the results
of Sec. IV, where we found the net intervalley Heisenberg
coupling to be ferromagnetic.

D. Charge gap at ν = 3

Next, we turn our attention to the ν = 3 state and discuss
predictions for the charge gap in presence of B⊥, assuming it is
insulating in a high-quality sample. The anomalous Hall effect

and evidence of edge transport [29] can be explained by a
single spin and valley polarized hole-band. Equivalently, three
of the four conduction bands are filled; for concreteness let
us assume these are (τ z, sz ) = (+,↑), (−,↑), and (+,↓). If
the lowest energy charged excitations are skyrmions, then the
energy of a single isolated skyrmion is be given by Eq. (30).
In particular, the elastic energy 4πρs of the skyrmion should
remain unchanged as the spin stiffness ρs is insensitive to the
valley or spin quantum number of the conduction band. The
effective magnetic field seen by the skyrmion B̃ is given by
the sum of the external field B⊥ and the internal field which
is proportional to ρ̄s and the internal Zeeman field from the
ordered moments of the remaining filled bands. In our mean-
field picture, the (+,↑) and (+,↓) states form a spin-singlet
at each k. Therefore skyrmions cannot be excited in the τ = +
valley. A skyrmion excitation is possible in the τ = − valley,
starting with electrons in the (−,↓) band. Such a skyrmion
will see no background ordered moment, and therefore have a
lower energy Esk given by Eq. (30) with B̃ = B⊥. The charge
gap �c is just 2Esk.

At higher external fields, we expect the charge gap to be
set by the particle-hole gap, as the skyrmion energy increases
with B⊥. Note that although the degeneracy between the four
conduction bands is spontaneously broken at B⊥ = 0, turning
on an infinitesimal B⊥ automatically chooses an arrangement
of the bands via the valley and spin Zeeman terms in the
Hamiltonian. The behavior of the particle-hole gap as a func-
tion of B⊥ depends on the sequence in which these bands are
ordered with energy, which in turn depends on the interaction
induced valley-Zeeman and spin-Zeeman gaps at zero B⊥. If
the valley-Zeeman gap is larger than the spin-Zeeman gap,
the top two bands are spin-split and they move apart under an
applied B⊥ via the single-particle Zeeman shift with a constant
g factor gs = 2. In contrast, if the spin-Zeeman gap dominates
and the top two bands are valley-split, then the particle-hole
gap increases with B⊥, but with a g factor gv (k0) where k0

corresponds to the point where the gap is minimal at B⊥ = 0.
The situation is depicted schematically in Fig. 7, where we
neglect the dispersion of the flat bands (which is justified for a
spatially uniform order parameter, as the gap magnitude is set
by the larger Coulomb scale).

To summarize, at ν = 3, the skyrmion energy is expected
set the charge gap at B⊥ = 0, leading to a nonlinear onset
with B⊥. At intermediate fields the skyrmion-antiskyrmion
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FIG. 7. The band-gap evolution at ν = 3 as a function of B⊥, for �VZ < �SZ and �VZ > �SZ. We have assumed that gv < 0, gs > 0 and
|gv| > |gs|, following Refs. [27,28].

energy will exceed the particle-hole energy. In this regime,
gap will continue to increase with B⊥, but linearly. Further,
the coefficient of linear increase can tell whether the valley
Zeeman gap is larger than the spin-Zeeman gap at B⊥ = 0,
or vice versa. At even larger values of B⊥, the valence bands
which we have neglected till now may come close the Fermi
level, resulting in a decrease of the charge gap.

VI. SKYRMION PAIRING

In this section, we show that charge e fermionic skyrmions
have a generic tendency to attract and bind into charge 2e
bosonic pairs, leading to the exotic possibility of quantum
phases (like superconductivity) that can arise from skyrmion
pairing at finite density at T = 0. Although we use a semiclas-
sical description for the energetics to maintain an analytical
handle and pinpoint the physical mechanism of pairing, the
small size of the skyrmions for parameters relevant to tBLG
(see Sec. V B) motivates us to consider these skyrmions (or
skyrmion pairs) as charged quantum quasiparticles. Therefore
we can envision transitions to quantum liquid (superconduc-
tor) or quantum solid (Wigner crystal) phases of 2e skyrmion
pairs at small but finite density of charge carriers, in the same
spirit as band structures or phase transitions of charge-neutral
quantum skyrmions have been considered in two-dimensional
chiral magnets [68].

We first consider two skyrmions from the same Chern band
(same valley). If they have opposite phases in the plane normal
to the spin-ordering axis (x-y plane in our scenario), they will
always attract at large distance scales (an opposite phase-
winding skyrmion can be obtained by n = (nx, ny, nz ) →
(−nx,−ny, nz ) and has the same topological and electric
charge). The physical reason is simple: for a pair of well-
separated skyrmions of opposite phases (the distance between
their centers 2L is much larger than the typical skyrmion
size R, but smaller than the spin-correlation length ξs), the
components of the spin pointing normal to the effective field
B̃ are quenched at distance L 	 ξs. This lowers the effective
Zeeman energy, which is present in tBLG due to intervalley
coupling even at B⊥ = 0. Indeed, we show below that the
effective Zeeman energy gain is logarithmic and this results
in a L−1 attractive force between these skyrmions that always
prevails the L−2 Coulomb replusion at large distances [69,70]
(or a screened Coulomb repulsion, which decays exponen-
tially at distances larger than the screening length). Therefore
the skyrmions prefer to be paired at the lowest energy scales

[akin to vortices in a U(1) superfluid below the Berezinskii-
Kosterlitz-Thouless transition temperature (TBKT)].

We now consider an opposite phase skyrmion pair config-
uration in the ferromagnet, with a distance 2L between their
centers:

W (z) = R

z − L
− R

z + L
. (32)

The energy of the skyrmion pair Epair can be computed using
the effective field theory in Eq. (28); the details are relegated
to Appendix D 2.

Epair = E el
pair + EZ

pair + EC
pair

= 8πρs + 8πgsμBB̃R2

√
3a2

M

ln

(
2L

R

)

+ e2

4πε(2L)
, (33)

where B̃ = B⊥ + ρ̄s

2gsμB
is the effective Zeeman field at ν =

2. Therefore we confirm that the skyrmion pair attracts at
distances L larger than R but smaller than ξs, as depicted
schematically in Fig. 8.

At finite density the charge 2e bosonic skyrmion pairs can
either condense to form a superconductor, or form into a
Wigner crystal phase to minimize Coulomb repulsion [70].
Such superconductivity may be aided by gate-screening of
Coulomb interaction, or suppressed by the Magnus force felt
by a skyrmion pair from the same Chern band [71]. The
exact phase diagram requires an involved study we will not
attempt here; instead we focus on the symmetry properties of
superconductor obtained by such a condensate.

FIG. 8. Schematic depiction of the skyrmion-pair potential from
a single valley. The skyrmions can form a bound state if the minima
at 2Lopt is deeper than minima at L → ∞.

165141-10



SYMMETRY BREAKING AND SKYRMIONIC TRANSPORT IN … PHYSICAL REVIEW B 101, 165141 (2020)

To derive the quantum numbers of the skyrmions and
skyrmion pairs, we follow the approach in Ref. [70]. We note
that if we write nx + iny ∼ eiφ sin θ , the classical phase space
variables (φ, nz ) can be promoted to canonically conjugate
quantum operators (φ̂, 2ŝz ). The infinite degeneracy with re-
spect of rotation of phase φ for a single classical skyrmion
texture translates to a fixed quantum number for the total
spin Sz = (n/2)

∫
dr[nz(r) − 1] (recall that n is the electron

density, and we have subtracted out the background spin from
the ground state). The size of the quantum skyrmion R takes
the closest possible value to the classical minimum to ensure
a half-integer spin Sz. The same should be true for a skyrmion
pair, the quantum 2e boson corresponding to classical texture
npair(r) carries a quantized integer spin given by

Sz = n

2

∫
dr [npair(r) · ẑ − 1]. (34)

The 2e bosonic pair carries nonzero net spin; therefore its
condensation breaks time-reversal, and ferromagnetism per-
sists into the superconductor. This is easiest to see in the
small-size limit when the skyrmion pair resembles a hole pair,
it carries spin S = 1, and its condensation leads to triplet
superconductivity. However, the symmetry properties of the
superconductor do not change away from this limit, where our
proposed mechanism is operative. Hence, the quantum phase
transition (QPT) from the ferromagnet to the superconduc-
tor only breaks U(1) charge conservation, and is described
by the Abelian Higgs model [charged 2e scalar coupled to
a U(1) electromagnetic gauge field]. Further, since the 2e
boson carries charge ±2 under U(1)v (depending on the
valley/Chern sector), it transforms nontrivially under moiré
lattice translations and its condensation will lead to broken
translation symmetry with a threefold enlarged unit cell. A
similar scenario holds for the spin-valley locked state as well,
making appropriate modifications to B̃ using Eq. (31).

Next, we consider skyrmion pairing from opposite Chern
sectors (or equivalently, from opposite valleys). In case of
the ferromagnet, a charge 2e pair requires pairing a skyrmion
from one valley with an antiskyrmion from the opposite
valleys (since they have opposite Chern numbers). This does
not lead to any effective Zeeman energy gain, and is therefore
not favorable. However, skyrmion pairing of opposite charges
from opposite valleys is favored by both Coulomb and ef-
fective Zeeman terms [as it locally preserves the intervalley
ferromagnetic configuration when the skyrmions sit on top of
each other with n+(r) = n−(r)]. Such a skyrmion pair again
carries a large spin. The resulting intervalley coherent state
breaks valley U(1) and spin rotation, and the QPT is described
by a complex scalar field theory. Note that this state is distinct
from the conventional time-reversal preserving IVC phase
discussed in the context of tBLG [28]. Regardless, a uniform
condensate of such skyrmion pairs is also precluded by the
opposite Chern number of the bands. To understand this, one
can again resort the small size (or large field) limit, when
the skyrmion-antiskyrmion pair reduces to a particle-hole or
exciton pair carrying a net spin S = 1. Since the argument
of Ref. [27] relies solely on topological considerations and
is independent of the spin of charge carriers, we expect
such a uniform condensate to be energetically unfavorable.
A lattice of skyrmion-antiskyrmion pairs (analogous to the

exciton-vortex lattice discussed in Ref. [27]) offers an attrac-
tive alternative, but more detailed investigations are required
to establish its stability.

For the spin-valley locked state, a skyrmion-antiskyrmion
pair from opposite valleys (both with same charge) can avoid
losing any exchange energy at zero B⊥ by keeping spins
locally antialigned (n+(r) = −n−(r) ≡ n(r)), and simulta-
neously quench the Coulomb energy cost by having a very
large radius R which is fixed by small anisotropies beyond
the SU(2)+ × SU(2)− symmetric limit. Such a charge 2e pair
therefore only costs an elastic energy of Epair ≈ 8πρs. In
analogy with the previous discussion, the quantum number
Qa of the skyrmion-antiskyrmion pair under a generator T a ∈
{s, τ zs} of the symmetry group SU(2)+× SU(2)− are given by

Qa = n

2

∫
dr (nsk (r) − n0) · Tr[(τ zs)T a], (35)

where nsk (r) is the skyrmionic texture in n(r) and n0 =
(0, 0, 1) is the ground state configuration. From Eq. (35),
we note that the superconductor formed by skyrmion pairing
from opposite valleys in the spin-valley locked state preserves
global spin-rotation symmetries, i.e., Qa = 0 ∀ T a ∈ {s}. Fur-
ther, it also preserves time-reversal and translation (being
neutral under U(1)v). This necessarily implies that in case of a
direct transition, the critical point that describes the QPT from
the spin-valley locked state [breaks spin-rotation symmetry,
preserves U(1) charge conservation] to the superconductor
[which breaks U(1) charge conservation but preserves spin
rotation] is a deconfined quantum critical point. The critical
theory for this transition has been discussed using a five-
component “super-spin” order parameter in Ref. [72] that
transforms as a vector under an emergent SO(5) symmetry.
The defects of the spin-Hall like order parameter, which
are skyrmion pairs, carry charge 2e. Therefore proliferation
of these defects leads to suppression of antiferromagnetic
order and simultaneous appearance of superconductivity. Ap-
proaching from the opposite side, the defects of the super-
conductor, which are vortices, carry quantized spin. This can
be seen via the critical theory with the Wess-Zumino-Witten
term in Ref. [72]; the latter endows a superconducting vortex
with a spin-half. Hence, proliferation of vortices destroys
superconductivity and simultaneously results in long-range
magnetic order.

Lastly, we note that if this mechanism is operative in
tBLG, the critical temperature of the superconducting tran-
sition would be set by the Heisenberg coupling J between
the spins from opposite valleys (which provides the binding
energy). From Eq. (16), we therefore expect Tc ∼ J ∼ 1 K.
An in-depth investigation of superconductivity via skyrmion
pairing, including a quantitative estimate of Tc and a phase
diagram as a function of doping, will be the subject of a
forthcoming study [73].

VII. DISCUSSION

We have argued that the ν = 2 resistance peak ob-
served in magic-angle tBLG aligned with hBN observed in
Refs. [29,30] arises from electrons filling a spin polarized
band in each valley. The spins in different valleys are most
likely aligned ferromagnetically, but we cannot completely
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exclude the possibility that there is antiferromagnetic align-
ment between the valleys. The precise nature of the inter-
valley spin correlation depends on lattice-scale effects which
determine the intervalley Heisenberg coupling and are not
accurately captured by our approach. However, irrespective
of the spin alignment or antialignment between the valleys,
we expect skyrmion excitations to be lower in energy than
particle-hole excitations. Because of the nonzero Chern num-
ber of the flat bands, these skyrmions carry charge ±e, making
them the most relevant charge carriers. Because skyrmions
have a large effective g factor, the spin-Zeeman term effi-
ciently raises their energy, which we propose to be the origin
of the increase in resistivity with out-of-plane magnetic field
observed in Ref. [29] at ν = 2. We note that our diagnosis of
a ferromagnetic insulator at ν = 2 based on magnetotransport
data is consistent with recent predictions of ferromagnetic
insulating states at integer fillings of nearly flat bands based
on exact diagonalization and DMRG studies of models appro-
priate to tBLG on hBN [74].

Experimental probes. A natural question arises regarding
experimental probes that distinguish between the different
magnetic orders at ν = 2, since neutron-scattering experi-
ments may be difficult due to the two-dimensional nature of
the sample. The ferromagnet breaks time-reversal symmetry,
and therefore can be probed using muon spin resonance. How-
ever, nonlinear optical responses that are enhanced by orbital
ferromagnetism in flat bands as suggested in Ref. [75] will
remain suppressed as there is no net valley-polarization at this
filling. The spin-valley locked state breaks spin-rotation but
preserves time-reversal (since opposite valleys carry opposite
spin), and is comparatively harder to detect. We note that
the collective magnons (which simultaneously involve both
valleys) have different dispersions in the two cases (quadratic
for FM, linear for spin-valley locked); further ferromagnetic
magnons gap out under a magnetic field while antiferro-
magnetic magnons do not. Therefore, studying the magnetic
contribution to specific heat or thermal conductivity; or per-
forming spin-injection experiments (which can directly probe
the magnon dispersion) at the sample-edge [76,77] can dis-
tinguish these states. Since a skyrmion has a large number of
flipped spins, one can sense a trapped skyrmion in an impurity
potential via spin-polarized STM, or local magnetometers like
a scanning nanosquid [78] or a nitrogen-vacancy (NV) center
[79]. Finally, if the state is indeed an AFM, then applying a
strong B⊥ will cant the spins and change the ground state.
As discussed, the charge e skyrmion gap �c(B⊥) will behave
very differently from the ferromagnet; it will stay constant
till a critical field Bc that induces a phase transition to FM.
Hence, a careful study of the activation gap as a function of the
magnetic field can distinguish these scenarios. The said phase
transition to a FM and associated critical signatures may also
be observed via thermodynamic probes.

Outlook. Recent theoretical and experimental works have
shown that flat bands with nonzero Chern number are
quite common in moiré materials [19,80]. For example,
Refs. [3,26,31] found either from experiments or a self-
consistent Hartree-Fock calculation that in certain regimes
electron interactions in magic-angle tBLG unaligned with
hBN lead to a spontaneous breaking of the C2vT symmetry
protecting the Dirac cones, giving rise to mean-field bands

with Chern number equal to either ±2 [3,26] or ±1 [3,31].
In twisted double bilayer graphene the C2 symmetry is broken
explicitly on the single-particle level, and the flat bands have
Chern number 2 [20]. In Ref. [5], a Chern insulator at ν = 1
was observed in ABC trilayer graphene on hBN, which can be
understood from a Hartree-Fock study which predicts mean-
field bands with Chern number ±2 at intermediate interaction
strengths.

There is also mounting evidence that the insulating states at
integer ν result from spontaneous symmetry breaking which
lifts the spin and valley degeneracies, similar to what hap-
pens in quantum Hall ferromagnetism [33,47,48]. The general
picture that seems to emerge at present is that this spin and
valley degeneracy lifting occurs in a valley-U(1) preserving
manner, i.e. without developing intervalley coherence. For
example, the anomalous Hall effect at ν = 3 in tBLG aligned
with hBN observed in Refs. [29,30] and the Chern insulator
at ν = 1 in trilayer graphene [5] can both naturally be at-
tributed to a spontaneous valley polarization [5,27,28]. The
insulators at ν = 1 and ν = 2 observed in twisted double
bilayer graphene in Refs. [6–8] were proposed to respectively
be a valley-polarized and valley-singlet ferromagnet [20]. A
priori, skyrmions could play a role in charge transport for any
of these devices. However, this is less likely for bands with
higher Chern numbers because the spin stiffness increases
quadratically with C [19,47]. We note that, interestingly, the
ν = −2 insulator observed in ABC stacked trilayer graphene
on hBN [5] also shows an increased resistance peak under
an applied out-of-plane magnetic field. ABC stacked trilayer
graphene has a large orbital g factor [81], which means that
the valley-Zeeman effect dominates the spin-Zeeman effect.
Because of this, one expects that a slightly modified version
of our discussion in the main text applies to this device
as well.

An important general open question concerns the con-
nection between the insulators observed at integer fillings in
moiré materials and the superconducting domes which result
from doping these insulators. No superconducting domes
were observed in Refs. [29,30], but this could be because
the temperatures in these experiments were too high, or
because of device quality. Further experimental studies are
needed to either rule out superconductivity in magic-angle
tBLG aligned with hBN, or to establish its existence and
measure its response to different electric and magnetic fields.
If superconductivity is observed, theory will have to come
up with a pairing mechanism for the charge carriers which
are doped into the insulator. In this work, we looked into
the possibility of skyrmion pairing, but other mechanisms are
possible of course. For example, Ref. [20] proposed a more
conventional pairing mechanism driven by ferromagnetic spin
fluctuations to explain the superconducting domes in twisted
double bilayer graphene.

Finally, the precise connection between the insulators ob-
served in magic-angle tBLG aligned with hBN, and those ob-
served in the C2v symmetric devices [1,3] where the substrate
does not significantly modify the single-particle physics, is
not clear. Theoretically, one would like to understand what
happens if one continuously turns off the hBN-induced sub-
lattice splitting. It is likely that some insulators will undergo
phase transitions, perhaps accompanied by changes in Chern
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number. Understanding this connection is an important miss-
ing piece in the moiré puzzle.
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APPENDIX A: MOIRÉ HAMILTONIAN

The spinless moiré Hamiltonian in valley +, i.e., around the K+ points of the graphene Brillouin zone, is given by

H (k) =
∑
g1,g2

⎛
⎝htt (R(θ/2)(k + X + g1))δg1,g2 + hbb(R(−θ/2)(k + X + g1))δg1,g2 +

∑
g̃

[
T tb

g̃ δg1,g2+g̃ + T bt
g̃ δg1+g̃,g2

]⎞⎠. (A1)

Here, g1 and g2 lie on the moiré reciprocal lattice, R(±θ/2) is a rotation matrix over angle ±θ/2 with θ corresponding to the
first magic angle θ ≈ 1.05◦ [15]. htt (k) = −t0h(k) + �tσ

z [hbb(k) = −t0h(k) + �bσ
z] is the monolayer graphene Hamiltonian

of the top (bottom) layer with hopping strength t0 = 2.61 eV and a sublattice splitting �tσ
z (�bσ

z). X is the position of the
center of the mini-Brillouin zone at the monolayer K+ points as shown in Fig. 9(b). The interlayer coupling is given by the
matrices [15]

T0 =
(

w0 w1

w1 w0

)
, (A2)

Tg1 =
(

w0 w1ω

w1ω
∗ w0

)
, (A3)

Tg2 =
(

w0 w1ω
∗

w1ω w0

)
, (A4)

where ω = ei2π/3, g1 = (R(θ/2) − R(−θ/2))G1 and g2 = (R(θ/2) − R(−θ/2))G2, with G1 and G2 the graphene reciprocal
lattice vectors shown in Fig. 9. The AB interlayer hopping strength is w1 = 195 meV. To phenomenologically incorporate
corrugation of the bilayer system [82–85] we use an AA-AB interlayer hopping ratio w0/w1 = 0.85 [86–88]. The moiré
Hamiltonian in valley—can be obtained by acting with time-reversal on the moiré Hamiltonian in valley +.

APPENDIX B: PHONON HAMILTONIAN AND ELECTRON-PHONON COUPLING

In this Appendix, we review electron-phonon coupling in graphene, and phonon-mediated electron interactions in tBLG.
The potential relevance of phonons for the superconducting domes and transport in magic-angle tBLG graphene was studied
previously in Refs. [14,89–92]. Our approach to incorporate the effects of phonons is most closely related to that of Ref. [89],

FIG. 9. (a) The monolayer graphene Brillouin zone with the two basis vectors G1 and G2 of the reciprocal lattice. We have indicated the
high-symmetry K points, where the Dirac cones are located, by the valley label τ = ±. (b) The monolayer Brillouin zones of the top and
bottom graphene layer with relative twist angle θ . The vector X points from the common � point of the monolayer Brillouin zones to the
center of the mini-Brillouin zone at the τ = + valley. In presence of C6T symmetry, there are Dirac points at the K+ and K− points of the mini
Brillouin zone (which is depicted by the small hexagon).
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where monolayer graphene phonons near both the � and K points were taken into account (these are the modes that couple
most efficiently to the electrons [93–95]). In Refs. [90,91,96], only long-wavelength acoustic phonons were considered. Here,
we ignore these acoustic modes, as they do not give rise to intervalley scattering for the electrons. The analysis below is solely
based on the symmetry properties of graphene and parallels the approach of Ref. [97].

1. Phonon Hamiltonian

We define the Fourier transformed displacement operators ûi
q,σ for the carbon atoms and the canonical conjugate operators

p̂i
q,σ as

ûi
q,A = 1√

N

′∑
q

eiq·RA ûi
A(RA), (B1)

ûi
q,B = 1√

N

′∑
q

eiq·(RA+δ1 )ûi
B(RA + δ1), (B2)

p̂i
q,A = 1√

N

′∑
q

e−iq·RA p̂i
A(RA), (B3)

p̂i
q,B = 1√

N

′∑
q

e−iq·(RA+δ1 ) p̂i
B(RA + δ1), (B4)

where i = x, y, σ denotes sublattice, N is the number of unit cells, RA denotes the positions of the A sublattice sites, δ1 is one of
the three vectors δl (l = 1, 2, 3) pointing from the A sublattice sites to the neighboring B sublattice sites. Recall that we define
primed sums to run over the graphene Brillouin zone. We only consider in-plane displacements, as the out-of-plane displacements
couple only weakly to the electrons. Using the combined four-dimensional index ν = (i, σ ), the phonon Hamiltonian can be
written as

Hph = 1

2

′∑
q

(
1

M

∑
ν

p̂q,ν p̂†q,ν + 2
∑
ν,ν ′

ûq,νD(q)νν ′ û†
q,ν ′

)
(B5)

= 1

2

′∑
q

⎛
⎝ 1

M

∑
ν,ν ′, j

p̂νe j
q,νe j∗

q,ν ′ p̂
†
ν ′ + 2

∑
ν,ν ′, j

ûq,νe j∗
q,νλq, je

j
q,ν ′ û

†
q,ν ′

⎞
⎠ (B6)

= 1

2

′∑
q

⎛
⎝ 1

M

∑
j

p̂q, j · p̂†q, j + 2
∑

j

ûq, jλq, j û
†
q, j

⎞
⎠ , (B7)

where M is the carbon atom mass. Using ωq, j = √
2λq, j/M, we define the phonon annihilation and creation operators as

bq, j = i√
2Mh̄ωq, j

p̂†q, j +
√

λq, j

h̄ωq, j
ûq, j, (B8)

b†q, j = −i√
2Mh̄ωq, j

p̂q, j +
√

λq, j

h̄ωq, j
û†

q, j . (B9)

In terms of the creation and annihilation operators, the phonon Hamiltonian becomes

Hph =
′∑
q

∑
j

h̄ωq, j

(
b†q, jbq, j + 1

2

)
. (B10)

Using the eigenvectors of the phonon Hamiltonian, we can write the displacement operator in second quantization as

ûν (r) =
′∑

q, j

√
h̄

2NMωq, j
(bq j + b†−q j )e

j
qνe−iq·r . (B11)
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For future convenience, we also introduce the notation

bq, j ≡ 〈
e j

q

∣∣bq
〉

(B12)

=
∑

ν

e j∗
q,νbq,ν (B13)

=
∑

ν

e j∗
q,ν

(
i√

2Mh̄ωq, j
p̂†q,ν +

√
λq, j

h̄ωq, j
ûq,ν

)
. (B14)

2. Electron-phonon coupling in graphene

In a tight-binding approximation, the only coupling between electrons and lattice vibrations occurs via the associated spatial
modulation of the tight binding parameters. In the case of graphene, we write the tight-binding Hamiltonian coupled to small
lattice vibrations as [98–102]

H = −t0
∑
RA

3∑
l=1

ψ
†
RA

ψRA+δl − ∂t0
∂aCC

∑
RA

3∑
l=1

(|δl + uA(RA) − uB(RA + δl )| − aCC )ψ†
RA

ψRA+δl + H.c.

≈ −t0
∑
RA

3∑
l=1

ψ
†
RA

ψRA+δl − 1

aCC

∂t0
∂aCC

∑
RA

3∑
l=1

δl · (uA(RA) − uB(RA + δl ))ψ
†
RA

ψRA+δl + H.c., (B15)

where t0 is the graphene hopping strength, aCC = |δl | the distance between two carbon atoms. Going to momentum space, the
electron-phonon coupling Hamiltonian becomes

He-ph = − 1

aCC

∂t0
∂aCC

′∑
k,q

3∑
l=1

δl · (uA(q) − uB(q)e−iq·δl )e−ik·δl ψ
†
k+q,Aψk,B + H.c.

= − 1

aCC

∂t0
∂aCC

′∑
k,q

∑
j

3∑
l=1

√
h̄

2NMωq, j
δl · (

e j
q,A − e j

q,Be−iq·δl
)
e−ik·δl ψ

†
k+q,Aψk,B(bq j + b†−q j ). (B16)

By defining the vectors

|Vq,k〉 =
3∑

l=1

(
δl e

ik·δl ,−δl e
i(k+q)·δl

)
,

∣∣e j
q

〉 = (
e j

q,A, e j
q,B

)
, (B17)

we can write the electron-phonon coupling Hamiltonian as

He-ph = −g̃
∑

j

′∑
q,k

ω
−1/2
q, j 〈Vq,k

∣∣e j
q

〉
ψ

†
k+q,Aψk,B(bq j + b†−q j ) + H.c., (B18)

where g̃ = 1
aCC

√
h̄

2NM
∂t0

∂aCC
. Let us now examine how the symmetries of graphene are realized in this Hamiltonian. We first consider

the threefold rotation symmetry group C3v and define the rotation matrix R3

R3 =
(

cos(2π/3) sin(2π/3)

− sin(2π/3) cos(2π/3)

)
=

(
−1/2

√
3/2

−√
3/2 −1/2

)
. (B19)

C3v symmetry of the phonon Hamiltonian implies that

D(R3q) = R†D(q)R , with R =
(

R3

R3

)
, (B20)

from which it follows that ωq, j = ωR3q, j and R|e j
q〉 = eiαq |e j

R3q〉. The C3v symmetry of the electron-phonon Hamiltonian implies
that

ω
−1/2
R3q, j

〈
VR3q,R3k

∣∣e j
R3q

〉〈
e j

R3q

∣∣R|bq〉 = ω
−1/2
q, j 〈Vq,k

∣∣e j
q

〉〈
e j

q

∣∣bq
〉
, (B21)

Because ωR3q, j = ωq, j , we can see that this is true by doing following steps:〈
VR3q,R3k

∣∣e j
R3q

〉〈
e j

R3q

∣∣R|bq〉 = 〈
VR3q,R3k

∣∣RR†∣∣e j
R3q

〉〈
e j

R3q

∣∣R|bq〉 (B22)

= e−iαk
〈
VR3q,R3k

∣∣R∣∣e j
R3q

〉〈
e j

q

∣∣bq
〉
eiαk (B23)

= 〈
Vq,k

∣∣e j
q

〉〈
e j

q

∣∣bq
〉
. (B24)

165141-15



CHATTERJEE, BULTINCK, AND ZALETEL PHYSICAL REVIEW B 101, 165141 (2020)

The C2v symmetry can be derived in a similar way, with the main difference that C2v interchanges the A and B sublattices. So
C2v symmetry implies that

ω
−1/2
−q, j

〈
V−q,−k

∣∣e j
−q

〉〈
e j
−q

∣∣R̃|bq〉 = ω
−1/2
−q, j

〈
V−q,k+q

∣∣e j
−q

〉∗〈
e j

q

∣∣bq
〉
, with R̃ =

( −1

−1

)
. (B25)

Equality (B25) follows from the definition of |Vk,q〉, the C2v rotation symmetry of the phonon Hamiltonian which implies that
R̃|e j

q〉 = eiβq |e j
−q〉, and |e j

q〉 = |e j
−q〉∗, which follows from hermiticity of the displacement operator. Time-reversal symmetry

of the electron-phonon Hamiltonian in Eq. (B18) is more straightforward to see, as this simply follows from the properties
|V−q,−k〉∗ = |Vq,k〉 and |e j

−q〉∗ = |e j
q〉.

We now focus on the coupling between lattice-scale phonons and low-energy electrons at the Dirac cones. So in the above
electron-phonon Hamiltonian we fix both k and q to either K or −K, where K = ( 4π

3a , 0) and a = √
3aCC is the graphene lattice

constant. Specifically, the terms we are interested in are

He-ph ≈ −g̃
∑

j

ω
−1/2
K, j

〈
VK

∣∣e j
K

〉
ψ

†
−K,AψK,B(bK j + b†−K j ) − g̃

∑
j

ω
−1/2
K, j

〈
VK

∣∣e j
K

〉∗
ψ

†
K,Aψ−K,B(b−K j + b†K j ) + H.c., (B26)

where |VK〉 = |VK,K〉. Let us now choose a basis in which the δl take the form

δ1 = aCC (0, 1) , δ2 = aCC

(√
3

2
,−1

2

)
= R3δ1 , δ3 = aCC

(
−

√
3

2
,−1

2

)
= R3δ2 (B27)

from which we see that eiK·δ1 = 1, eiK·δ2 = e2π i/3 ≡ ω, and eiK·δ3 = ω2 = ω−1. The phonon Hamiltonian at the K+ point satisfies

R†D(K)R = D(R3K) = D(K − G2) =
(
1

e−iG2·δ11

)
D(K)

(
1

eiG2·δ11

)
, (B28)

where we have used that R3K = K − G2, with G2 = 4π√
3a

(
√

3
2 , 1

2 ) a reciprocal lattice vector. The last equality follows from

bq+G,A,xi = bq,A,xi and bq+G,B,xi = eiG·δ1 bq,B,xi for any reciprocal lattice vector G. Using that eiG2·δ1 = ω, we see that the matrix
R− = R3 ⊕ ω−1R3 commutes with D(K). This means that the eigenvectors e j

K are also eigenvectors of R−, which has two
nondegenerate eigenvalues 1 and ω−1, and one twofold degenerate eigenvalue ω. The vector |VK〉 can be written as |VK〉 =
|V A

K 〉 + |V B
K 〉, where

∣∣V A
K

〉 =
3∑

l=1

(δl e
iK·δl , 0) ,

∣∣V B
K

〉 =
3∑

l=1

(0,−δl e
i2K·δl ). (B29)

These vectors have the property R−|V A
K 〉 = ω−1|V A

K 〉 and R−|V B
K 〉 = |V B

K 〉. This means that only two of the four inner products
〈VK|e j

K〉 are nonzero. The eigenvectors |e j
K〉 which can couple to the electrons are those which have eigenvalue 1 and ω−1 under

R−. We can thus express |VK〉 in terms of the eigenvectors |e j
K〉 as follows:

1√
6aCC

|VK〉 = 1√
2

(
eiθ1

K
∣∣e1

K

〉 + eiθ2
K
∣∣e2

K

〉)
, (B30)

This allows us to write the electron-phonon Hamiltonian as

He-ph = −g̃
√

3aCC

2∑
j=1

eiθ j
K

√
ωK j

ψ
†
−K,AψK,B(bK, j + b†−K j ) + e−iθ j

K

√
ωK j

ψ
†
K,Aψ−K,B(b−K, j + b†K j ) + H.c. (B31)

From C2v symmetry, we know that eiθ j
K = eiθ j

−K = e−iθ j
K , which implies that eiθ j

K is real and can be absorbed in bK, j and b†−K, j . So
the final form for the electron-phonon coupling between lattice-scale phonons and low-energy electrons at the K points is simply

He-ph = −g
2∑

j=1

1√
ωK, j

(ψ†
−K,AψK,B(bK, j + b†−K j ) + ψ

†
K,Aψ−K,B(b−K, j + b†K j )) + H.c. , (B32)

where g =
√

3h̄
2NM

∂t0
∂aCC

. Because the graphene phonon bands have little dispersion around the K points [99,103,104], we will now
simply ignore any momentum dependence and simply assume that (B32) holds for electrons close to the K points. We will also
take ωK,1 = ωK,2 = ω0.

3. Phonon mediated electron interactions

The Hamiltonian describing the combined electron-phonon system, projected into the flat bands, takes the form

H = He + Hph + He-ph , (B33)
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with He = ∑
k,τ,s εk,τ c†k,τ,sck,τ,s. For the phonon Hamiltonian we take just two copies of the graphene phonon Hamiltonian:

Hph =
∑
q,g

∑
l, j

h̄ωq+g,l, j

(
b†q+g,l, jbq+g,l, j + 1

2

)
, (B34)

where q is defined to lie in the mini-Brillouin zone. We don’t consider out-of-plane phonon modes as these couple only to the
interlayer tunneling, which is much smaller than the intralayer hopping. Correspondingly, the electron-phonon Hamiltonian is
just two copies of Eq. (B34). If we project this into the flat bands, we get

He-ph = − g√
ω0

∑
τ,l, j,g

∑
k,q,s

〈u−τ (k + q)|σ xPlSg|uτ (k)〉c†k+q,−τ,sck,τ,s(bq+g+2τX,l, j + b†−q−g−2τX,l, j ) (B35)

≡ − g√
ω0

∑
l, j,g

∑
k,q,τ,s

f τ
l,g(q, k)c†k+q,−τ,sck,τ,s(bq+g+2τX,l, j + b†−q−g−2τX,l, j ) , (B36)

Using a Schrieffer-Wolff transformation, we obtain following phonon-mediated electron interaction Hamiltonian

HPH = 2g2

ω0

∑
k,k′,q

∑
τ,s,s′

∑
l

h̄ω0

f τ
l,g(k, q) f −τ

l,−g(k′,−q)

(εk+q,−τ − εk,τ )2 − (h̄ω0)2
c†k+q,−τ,sck,τ,sc

†
k′−q,τ,s′ck′,−τ,s′

≈ − 2g2h̄

(h̄ω0)2

∑
k,k′,q

∑
s,s′

∑
τ

⎛
⎝∑

ł,g

f τ
l,g(k, q) f −τ

l,−g(k′,−q)

⎞
⎠ c†k+q,−τ,sck,τ,sc

†
k′−q,τ,s′ck′,−τ,s′ ,

where we have again ignored the phonon dispersion, and also the flat band dispersion. The interaction strength gph used in the
main text is

gph = 3h̄2

2M

β2

(h̄ω0)2

(
t0

aCC

)2

, (B37)

where β = ∂ ln t0/∂ ln aCC . The numerical value gph ≈ 630 meV can be obtained by using h̄ω0 = 0.16 eV, t0 = 2.61 eV, aCC =
0.25/

√
3 nm, and β = 3 [89,105].

APPENDIX C: SPIN STIFFNESS IN A SPIN POLARIZED FLAT CHERN BAND

In this section, we derive an expression for the spin stiffness associated with a spin polarized flat Chern band. The spin
stiffness ρs appears in a long-wavelength description as the coefficient of the gradient term in the effective action describing spin
fluctuations:

ρs

2

∫
dr (∇n)2. (C1)

To derive ρs within mean-field theory, we generalize the calculation of Ref. [66] for a spin-polarized lowest Landau level to a
Chern insulator. We assume that in the ground state the spins are polarized in the z direction. We create a nonhomogeneous spin
texture by acting with eiÔ on the uniformly polarized ground state wave function. The operator eiÔ is defined as

eiÔ = ei
∑

r �(r)·S(r) = ei
∑

q �(q)·S(−q) , (C2)

where S(r) is the spin operator at site r. We will assume that the resulting spin texture consists only of small fluctuations around
the z direction, such that �(r) ≈ ẑ × n(r), and is slowly varying in space. If we project eiÔ in a Chern band with band label μ,
the resulting operator eiÔμ = ei

∑
q �(q)·Sμ(−q) is defined using the projected spin operator

Sμ(−q) = 1√
N

∑
k

〈uμ(k − q)|uμ(k)〉c†k−q,μ

s
2

ck,μ ≡ 1√
N

∑
k

λμ(−q, k)c†k−q,μ

s
2

ck,μ , (C3)

where the operator c†k,μ
creates an electron with crystal momentum k in band μ, N is the number of unit cells, s = (sx, sy, sz ) are

the Pauli spin operators, and |uμ(k)〉 are the periodic Bloch states. From now on, we will drop the band index μ. This should not
cause any confusion, as we are always considering the same single band.

We are interested in the energy increase associated with the spin texture in the small |q| limit, which we get from

δE = 〈eiÔHe−iÔ〉 − 〈H〉 (C4)

= i〈[Ô, H]〉 − 1
2 〈[Ô, [Ô, H]]〉 + · · · (C5)

165141-17



CHATTERJEE, BULTINCK, AND ZALETEL PHYSICAL REVIEW B 101, 165141 (2020)

For the Hamiltonian, we use a general density-density interaction
∑

k Ṽ (k) : ρ(k)ρ(−k) :, projected into the flat Chern band.
So the commutator we need to calculate is

[Ô, H] =
∑
k,q

∑
i

�i(q)Ṽ (k)[Si(−q), ρ(k)ρ(−k)]. (C6)

We can easily evaluate this by applying the identity

[Si(−q), ρ(k)ρ(−k)] = [Si(−q), ρ(k)]ρ(−k) + ρ(k)[Si(−q), ρ(−k)]. (C7)

Using the explicit expression ρ(k) = 1√
N

∑
k′ λ(k, k′)c†k′+kck′ for the projected density operator and Eq. (C3), we find

[Si(−q), ρ(k)] = 1

N

∑
k′

(λ(k, k′)λ(−q, k + k′) − λ(k, k′ − q)λ(−q, k′))c†k′+k−q

si

2
ck′ (C8)

≡ 1

N

∑
k′

�k′,k,−qc†k′+k−q

si

2
ck′ (C9)

and thus

[Ô, H] = 1

N

∑
i,k,q

�i(q)Ṽ (k)
∑

k′

(
�k′,k,−qc†k′+k−q

σ i

2
ck′ρ(−k) + �k′,−k,−qρ(k)c†k′−k−q

σ i

2
ck′

)
. (C10)

The expectation value of this commutator with respect to the homogeneously z-polarized Slater determinant vanishes because
�z = 0.

The double commutator determining the energy change in second order becomes

[Ô, [Ô, H]] = 1

N

∑
i, j

∑
k,q1,q2

�i(q1)� j (q2)Ṽ (k)

×
∑

k′

(
�k′,k,−q1

[
S j (−q2), c†k′+k−q1

si

2
ck′ρ(−k)

]
+ �k′,−k,−q1

[
S j (−q2), ρ(k)c†k′−k−q1

si

2
ck′

])
. (C11)

Evaluating the expectation value of this double commutator is tedious, but straightforward. We find

〈[Ô, [Ô, H]]〉
= 1

N2

∑
i,k,q

�i(q)�i(−q)Ṽ (k)
∑

k′
�k′,k,−q[λ(q, k′ + k − q)λ(−k, k′ + k) − λ(q, k′ − q)λ(−k, k′ + k − q)]. (C12)

To simplify the product of form factors λ, we work up to second order in q, because by assumption �(q) is a fast decaying
function. The interaction V (k) is in general not decaying fast enough to justify working up to second order in k. However,
the expectation value of the double commutator contains factors of the form λ(k, k′) = 〈u(k + k′)|u(k′)〉, which are expected
to decay very fast in |k|. So this decay does allow us to work up to second order in k, but we need to explicitly keep the
function f (k, k′) = |λ(k, k′)|. We expect the decay of the form factors not to vary too much over the Brillouin zone, so we
will use the function f (k) = |λ(k, k0)| for a fixed representative k0 in the Brillouin zone to enforce the fast decay in |k| (for
example, Ref. [19] chose k0 = 0). The Taylor expanded expressions for the form factors contain a term proportional to the
Berry connection, which provides the connection between a Landau level and a Chern band, as noted in Ref. [106]. After a few
straightforward manipulations, we find for the energy difference

δE = 1

8N2

∑
i,k,q

�i(q)�i(−q)Ṽ (k)(q ∧ k)2
∑

k′
F (k′)2 f 2(k) (C13)

= 1

16

(
1

N

∑
k′

F (k′)2

)(
1

N

∑
k

Ṽ (k) f 2(k)|k|2
) ∑

i, j,q

(iq j�i(q))( − iq j�i(−q)) (C14)

= 1

16

(
1

N

∑
k′

F (k′)2

)(
1

N

∑
k

Ṽ (k) f 2(k)|k|2
) ∑

i,r

(∇�i(r)) · (∇�i(r)) (C15)

→ ρs

2

∫
d2r (∇n)2 , (C16)

where in the second line we have used (q ∧ k)2 = |q|2|k|2 sin2 α, where α is the angle between q and k. Because Ṽ (k) and
to a good approximation also f (k) are isotropic, we can replace sin2 α by its average value 1/2. So we arrive at the following
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Hartree-Fock expression for the spin stiffness:

ρs = 1

8A

(
1

N

∑
k′

F (k′)2

)(
1

N

∑
k

Ṽ (k) f 2(k)|k|2
)

, (C17)

where A is the area of the unit cell. In the continuum limit, the factor A−1 is interpreted as the charge density [47].

APPENDIX D: SKYRMION ENERGETICS

1. Single skyrmions

In this section, we present an explicit evaluation of the energy of a skyrmion in a single-valley, using the two-component
nonlinear σ model discussed in Eq. (28), which we recall below for completeness. We assume that while a skyrmion forms in a
single valley, the spins in the other valley remain in their equilibrium configuration. We first look at the ferromagnet.

L =
∑
τ=±

[
nS(A[nτ ] · ∂t nτ (r) + gsμBB · nτ (r)) − ρs

2
(∇nτ (r))2

]
− nS2ρ̄s

2
[(n+(r) − n−(r)]2 − 1

2

∫
dr′ V (r − r′)ρ(r)ρ(r′).

(D1)

We henceforth set S = 1/2 for the electron spin. We consider a single isolated skyrmion in valley + (say) completely
characterized by a complex function W (z) [see Eq. (29)]. As shown by Belavin and Polyakov, any analytic complex function
W (z) with a single pole minimizes the elastic energy E el to be 4πρs [65], and the size of a charged skyrmion in a Chern band is
therefore determined by the competition between the effective Zeeman and Coulomb energies [33]. A skyrmion of linear size R
can be described by W (z) = R/z, or more explicitly by

n+(r) =
(

2xR

r2 + R2
,

2yR

r2 + R2
,

r2 − R2

r2 + R2

)
and n−(r) = (0, 0, 1). (D2)

We want to optimize the size R as a function of the ratio of effective Zeeman energy � [which is a combination of the external
magnetic field B = B⊥ẑ and the internal exchange field from the other valley ρ̄s n−(r) = ρ̄s ẑ] to the Coulomb energy, i.e., g̃
which we define below

g̃ ≡ �

EC
= gsμBB̃

e2

4πεaM

, where B̃ = B⊥ + ρ̄s

2gsμB
. (D3)

If we naively use the effective Hamiltonian from Eq. (D1) to compute the energy, the Zeeman term will diverge as a very large
number of spins are flipped in our ansatz in Eq. (D2). There is a natural cutoff set by the correlation length of spin fluctuations,
as the Goldstone mode in a single valley gets gapped in presence of the effective magnetic field B̃. In particular, we can use the
equation of motion derived from Eq. (D1) to get the dispersion of a neutral spin wave:

∂n+
∂t

=
(

2ρs

n
∇2n+ + gsμBB̃ẑ

)
× n+ ⇒ i

∂ψ+
∂t

=
(

2ρs

n
∇2 − gsμBB̃

)
ψ+, where ψ+ = n+,x + in+,y

⇒ ωk = 2ρs

n
k2 + gsμBB̃ ≡ 2ρs

n
(k2 + ξ−2

s ). (D4)

This implies that the spin-correlations fall off exponentially beyond a length scale set by ξs

aM
≡ (

√
3ρs

gsμBB̃
)
1/2 ≈ ( EC

�
)
1/2

, where

n = 2√
3a2

M
is the density of electrons per band, and we have used that the spin stiffness ρs is set by the Coulomb energy scale

EC = e2

4πεaM
. Note that we treat ε as a phenomenological dielectric constant that also takes into account the renormalization of

the bare Coulomb energy due to projection to the relevant flat bands. Therefore we can write down the total excitation energy of
the skyrmion as the sum of the elastic contribution Eel, the effective Zeeman contribution EZ and the Coulomb contribution.

Esk = 4πρs + gsμBB̃√
3a2

M

∫ κξs

0
d2r [1 − nz(r)] + 1

2

∫
d2q

(2π )2
V (q)ρqρ−q. (D5)

The first term, which is the elastic contribution, is independent of the size of the skyrmion [65]. The effective Zeeman energy, with
a cutoff κξs for the domain of integration is given by (the additional scale factor of κ is added for later analytical convenience)

EZ = gsμBB̃√
3a2

M

∫ κξs

0
d2r [1 − nz(r)] = 2πgsμBB̃R2

√
3a2

M

ln

(
R2 + (κξs)2

R2

)
. (D6)
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We first discuss the case of unscreened Coulomb interaction V (r) = 1
4πεr , as would be expected for a dilute gas of skyrmions in

the absence of gate screening. Therefore we take V (q) = ∫
d2r V (r)eiq·r = 1

2εq and compute the Coulomb energy

ρ(r) = − 1

8π
εμνn · (∂μn × ∂νn) = − R2

π (r2 + R2)2
⇒ ρq =

∫
d2r ρ(r)eiq·r = −qR K1(qR)

⇒ 1

2

∫
d2q

(2π )2
V (q)ρqρ−q = e2

8πεR

∫ ∞

0
dt [tK1(t )]2 = 3πe2

28εR
. (D7)

Now, we parametrize the size of the skyrmion by R = κaM (roughly speaking, κ2 counts the number of flipped spins) and
minimize the skyrmion energy Esk in Eq. (D5) as a function by κ:

Esk (κ ) = 4πρs + 2π√
3
�κ2 ln

(
1 + EC

�

)
+ 3π2EC

26κ
⇒ κoptimal =

[
28

3
√

3π

(
�

EC

)
ln

(
1 + EC

�

)]−1/3

. (D8)

Hence, we finally find that the energy of optimal size skyrmion is given by

Esk = 4πρs + EC

(
35π5

213
√

3

)1/3[(
�

EC

)
ln

(
1 + EC

�

)]1/3

≈ 4πρs + 1.75 EC

[(
�

EC

)
ln

(
1 + EC

�

)]1/3

. (D9)

We immediately see that our analytical estimate of Esk in Eq. (27) receives a logarithmic correction. For small Zeeman fields B⊥
and intervalley coupling ρ̄s, the energy of the skyrmion grows as Esk (�) ≈ [� ln(EC/�)]1/3. At larger fields (when the Zeeman
energy becomes roughly of the order of the Coulomb energy), the size of the skyrmion will saturate, but an accurate estimate of
the required magnetic field depends on lattice scale physics, and cannot be obtained from the low-energy field theory.

Next, we turn to the effects of screening of the Coulomb interaction, which is relevant due to the metallic gates used on
twisted bilayer graphene [see Eq. (6)]. Since the long-range (small q) nature of the Coulomb interaction is responsible for the
1/R scaling of the Coulomb energy with skyrmion size, we expect this scaling and thereby the optimal size and energy of the
skyrmion to be significantly affected by screening. We assume that the gate-screened Coulomb interaction takes the following
form discussed in Eq. (6). In the limit of small linear size of the skyrmion compared to the screening length D, i.e., R 	 D,
screening effects are irrelevant and our previous result for the skyrmion energy holds [Eq. (31)]. However, the more relevant
limit (where our continuum theory is likely to work better) is the large skyrmion size limit with R � D, as the screening length
is typically of the order of a few moiré lattice spacings aM . In this limit, the interaction term reduced to a short-range (contactlike)
term. More precisely, the Fourier transformed charge density ρq is significant only for q � 1/R; in this regime qD 	 qR and
therefore Vscreened(q) ≈ e2D

2ε
. Using Eq. (D5) and parametrizing R = κaM , we repeat the previous computations and find that our

results for optimal size and energy are altered as follows for D ≈ aM [α is an O(1) numerical constant]:

κoptimal ∝
[(

�

EC

)
ln

(
1 + EC

�

)]−1/2

and Esk = 4πρs + αEC

[(
�

EC

)
ln

(
1 + EC

�

)]1/2

. (D10)

We note that the energy of the skyrmion grows as Esk (�) ≈ [� ln(EC/�)]1/2 as a function of the magnetic field in this case.
Therefore it is reasonable to expect that Esk (�) ≈ [� ln(EC/�)]ν for some ν ∈ (1/3, 1/2) will accurately capture intermediate
screening. Irrespective of the exact value of the exponent ν, the estimate for the saturation lengthscale for the skyrmion remains
identical, i.e., �B̃ ≈ √

a0aM .
Finally, we discuss how the energetics of the skyrmion in a magnetic field are significantly different for a spin-valley locked

state. In this case, the low-energy Lagrangian density is given by

L =
∑
τ=±

[
nS(A[nτ ] · ∂t nτ (r) + gsμBB · nτ (r)) − ρs

2
(∇nτ (r))2

]
− nS2ρ̄s

2
[(n+(r) + n−(r)]2 − 1

2

∫
dr′ V (r − r′)ρ(r)ρ(r′).

(D11)

In presence of a magnetic field B⊥, the ground state is a canted antiferromagnet, with spins in each valley canting towards B⊥.
The optimal canting angle θ0(B⊥) can be obtained by minimizing the local energy for a spatially uniform ground state with
n+ = (cos θ, 0, sin θ ), n− = (cos θ, 0,− sin θ ).

E (θ ) = −gsμB

2
B · (n+ + n−) + ρ̄s

8
(n+ + n−)2 = −gsμBB⊥ sin θ + ρ̄s

2
sin2 θ ;

∂E

∂θ

∣∣∣∣
θ=θ0

= 0 ⇒ sin θ0 =
{ gsμBB⊥

ρ̄s
, B⊥ � ρ̄s

gsμB

1, otherwise
. (D12)

We now find the effective magnetic field Beff acting on the (ferromagnetic) spins of a single valley (say +), which will determine
the magnon gap �. We expect Beff,+ to be parallel to the ferromagnetic order parameter n+ at equilibrium; we show that this is
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explicitly true below [taking ê‖ and ê⊥ to be the axes parallel and normal to n+(θ0)].

Beff,+ = B⊥ẑ − ρ̄s

2gsμB
n−(θ0) =

(
B⊥ sin θ0 + ρ̄s

2gsμB
cos(2θ0)

)
ê‖ +

(
B⊥ cos θ0 − ρ̄s

2gsμB
sin(2θ0)

)
ê⊥ = ρ̄s

2gsμB
ê‖.

(D13)

Therefore the Zeeman gap for each valley is given by

� = gsμB|Beff| =
{

ρ̄s

2 , B⊥ <
ρ̄s

gsμB

gsμBB⊥ − ρ̄s

2 , B⊥ � ρ̄s

gsμB

. (D14)

Therefore we find that the unlike the ferromagnet, the Zeeman gap � initially remains fixed as the spins in each valley reorient
in the ground state to give a canted antiferromagnet, and only starts to increase beyond a critical field of Bc = ρ̄s/(gsμB). This
implies that the skyrmion size and the charge gap (due to charge e skyrmions) also remains fixed till Bc. On further increasing
B⊥ beyond Bc, we get analogous behavior to the ferromagnet, as the skyrmion begins to shrink in size and increase in energy as
(B⊥ − Bc)ν with logarithmic corrections.

2. Skyrmion pairs

In this section, we compute energy of skyrmion pairs, and discuss the situations where skyrmion pairing is favored at the
lowest energy scales. First, let us consider the ferromagnet with 〈sz〉 �= 0, and discuss pairing between skyrmionic charges in the
same valley. This will be the case when the intervalley coupling J ′ is much smaller than the intravalley coupling J , as such a
scenario will prefer the spins within the same valley to be aligned at the small cost of misalignment of spins in opposite valleys.
For a charge 2e pair, we need the skymions to carry the same Pontryagin index but opposite phases. Therefore we consider the
skyrmion pair ansatz given by

W (z) = R

z − L
− R

z + L
. (D15)

The elastic energy for W (z) with 2 poles is 8πρs, while the effective Zeeman energy is given by

EZ
pair = gsμBB̃√

3a2
M

∫ ∞

0
d2r [1 − nz(r)], where, as before B̃ = B⊥ + ρ̄s

gsμB
. (D16)

We now expect the logarithmic divergence to be cut off by L instead of ξs, which we verify by an explicit calculation below:

EZ
pair = gsμBB̃√

3a2
M

∫ ∞

0
dr r

∫ 2π

0
dθ

2(2LR)2

r4 − 2L2r2 cos(2θ ) + D4 + (2LR)2

= 16πgsμBB̃R2L2

√
3a2

M

∫ ∞

0
dr r

2π√
(r4 − L4 + 4D2R2)2 + 16L6R2

≈ 8πgsμBB̃R2

√
3a2

M

ln

(
2L

R

)
for

R

L
	 1. (D17)

The Coulomb energy of interaction between the skyrmions (labeled ± according to their centers at ±L x̂) can be written
down as

EC
pair = e2

∫
d2q

(2π )2
V (q)ρ+,qρ−,−q where ρ±,q = ρqe±iq·Dx̂

= e2

4πε

∫ ∞

0
dq (qR)2 [K1(qR)]2J0(2qL). (D18)

The integral in Eq. (D18) is cut off at q ≈ 1/L in the limit of small R/L (skyrmion sizes are small compared to their separation),
while for small separation 2L compared to the skyrmion size R it is cutoff by q ≈ 1/R. Recall that 2L is the separation between
the skyrmions, so in the limit of small R/L we can write down the net energy of the skyrmion pair as follows (neglecting the
self-Coulomb energy):

Epair = E elastic
pair + EZ

pair + EC
pair = 8πρs + 8πgsμBB̃R2

√
3a2

M

ln

(
2L

R

)
+ e2

4πε(2L)
. (D19)

It is evident from Eq. (D19) that there is a minima in the energy at a finite separation 2L, and therefore a bound state of
two skyrmions will be formed. Minimizing Epair(L) in Eq. (33) as a function of L, we find that 2L ≈ ( aM

R )2
�2

B̃
/a0 as the

optimal separation between the skyrmions of size R. Since the intervalley coupling ρ̄s is the smallest scale in the problem, the
corresponding magnetic length �B̃ will be very large and therefore our assumption of L � R is self-consistent. We carefully note
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that the mean-separation 2L between the two skyrmions needs to be less than ξs, as at very large distances greater than ξs only
the repulsive Coulomb interaction, which disfavors pairing, operates [70]. Recall that ξs = ( EC

�
)
1/2

aM , so such a regime always
exists as long as the effective Zeeman energy is not too large. Further, as discussed in the main text (see also Ref. [70]), such
a skyrmion pair carries spin, so the superconductor obtained by skyrmion pairing also breaks spin-rotation (and time-reversal)
symmetry.

Skyrmionic charges pairing from opposite valleys need to have opposite Pontryagin indices so that they have the same physical
charge (because of their opposite Chern numbers). There are two ways to do so: n → −n (which will cost a huge amount of
energy in a large system as spins far away are antialigned) and n = (nx, ny, nz ) → (−nx, ny, nz ) or (nx,−ny, nz ), which will be
relatively more favorable from energetic considerations. In either case, the skyrmion pair configuration does not lead to a gain
in the effective Zeeman energy (unlike the previous scenario) as there is no quenching of the perpendicular components of the
spin at distances larger than the skyrmion separation. Neither can it gain energy from alignment of spins in opposite valleys by
having the two skyrmions sit on top of each other (D � R), as the requirement of opposite Pontryagin index forces the effective
Zeeman energy to add up (it is approximately 2πρ̄s(R/aM )2 ln(ξs/R) in the continuum limit), and further, the Coulomb energy of
placing two charges on top of each other also becomes large. Therefore we conclude that there is no binding glue for skyrmions
from opposite valleys in the ferromagnet. On the contrary, both Coulomb and Zeeman energy favors a charge-neutral skyrmion
pairing from opposite valleys, resulting in a time-reversal symmetry breaking intervalley coherent phase as discussed in the main
text.

Next, we turn to the spin-valley locked state. Once again, we start by discussing pairing between skyrmions in the same
valley at zero external magnetic field (B⊥ = 0). Skyrmions with opposite phases still lead to an effective Zeeman energy (as
B̃ ∝ ρ̄s �= 0) which is logarithmic in their separation for D � R. The energy of the skyrmion pair is given by

Epair = E elastic
pair + EZ

pair + EC
pair = 8πρs + 8πρ̄sR2

√
3a2

M

ln

(
2L

R

)
+ e2

4πε0(2L)
, (D20)

which is identical to Eq. (33) for the ferromagnet at zero external magnetic field (B⊥ = 0). To summarize, the physics of pairing
is analogous to the corresponding ferromagnetic case, and the skyrmion pair will also carry a large spin.

Finally, we discuss the pairing between skyrmions in opposite valleys for the spin-valley locked state. In this case, skyrmion
from one valley and an antiskyrmion from the opposite valley can prevent any loss of intervalley exchange energy by simply
sitting on top of each other and locally satisfying n+(r) = −n−(r). Such a configuration has twice the charge of a single-valley
skyrmion, so its Coulomb energy goes as 1/R where R is its size, and can be almost negligible for a large enough skyrmion-sizes.
In the limiting case of R → ∞, the energy of this skyrmion pair is simply 8πρs. Such a skyrmion-antisykrmion pair thus avoids
both the effective Zeeman energy cost by keeping spins from opposite valleys locally antialigned, and Coulomb energy cost by
distributing the charge over a large lengthscale; it is the minimum energy skyrmion pair.
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