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We present an interpretation of scar states and quantum revivals as weakly “broken” representations of Lie
algebras spanned by a subset of eigenstates of a many-body quantum system. We show that the PXP model,
describing strongly interacting Rydberg atoms, supports a “loose” embedding of multiple su(2) Lie algebras
corresponding to distinct families of scarred eigenstates. Moreover, we demonstrate that these embeddings can
be made progressively more accurate via an iterative process which results in optimal perturbations that stabilize
revivals from arbitrary charge density wave product states, |Zn〉, including ones that show no revivals in the
unperturbed PXP model. We discuss the relation between the loose embeddings of Lie algebras present in the
PXP model and recent exact constructions of scarred states in related models.
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I. INTRODUCTION

Isolated quantum systems are expected to approach ther-
mal equilibrium after sufficiently long times and much of
current research focuses on understanding the conditions for
this to happen as well as the details of the process of ther-
malization [1]. From this point of view, quantum revival—a
wave function periodically returning to its value at time t = 0
[2,3]—is a well-known counterexample of nonthermalizing
dynamics that has played an important role since the early
days of quantum physics. Experimentally, such recurrent
behavior has been observed in small or weakly-interacting
quantum systems, for example, the Jaynes-Cummings model
describing a two-level atom interacting with a resonant
monochromatic field [4], a micromaser cavity with rubidium
atom [5], in a Rydberg electron wave packet [6], vibrational
wave packets in Na2 [7], infinite square well potentials and
various types of billiards [8–10], cold atoms [11–13], and
more recently larger systems of one-dimensional superfluids
[14,15]. The ability to engineer recurrent behavior in more
complex quantum many-body systems is an important task
because this allows one to study their long-term coherent
evolution beyond the initial relaxation, while on the other
hand, it also provides insight into the emergence of statistical
ensembles in closed quantum systems that evolve according
to the Schrödinger unitary evolution.

Intuitively, the conditions for observing many-body wave
function revivals in a strongly-interacting quantum system
are expected to be very stringent due to the exponentially
large size of the Hilbert space. It was thus surprising when
recent experiments on strongly-interacting one-dimensional
chains of Rydberg atoms [16,17] observed revivals of local
observables when the chain was quenched [18] from an initial
Néel state of atoms [19], |ψ (0)〉 = |Z2〉 ≡ |0101 . . .〉, where
0 denotes an atom in the ground state and 1 in the excited
(Rydberg) state. This observation was surprising as the Néel
state effectively forms an “infinite-temperature” ensemble for
this system, for which equilibration is expected to occur

very fast according to the eigenstate thermalization hypothesis
(ETH) [20,21]. The observed revivals were thus in apparent
disagreement with the naïve expectations based on the ETH.
Moreover, the revivals from the Néel initial state have also
been seen in numerical simulations of an idealized model
believed to describe the Rydberg atom chain [22–26]. This
model is known as the “PXP” model [19], and it has the form
of a one-dimensional spin-1/2 chain with a kinetically con-
strained spin flip term that results from removing all nearest-
neighbor pairs of atoms that are simultaneously excited into
the Rydberg states (see Sec. II for more details on the model).
It has been understood that the key to revivals in the Rydberg
atom chain are the special eigenstates—“quantum many-body
scars” [25,27]—whose nonthermal properties cause a viola-
tion of the strong ETH [1,28,29]. Such atypical eigenstates
have previously been rigorously constructed in the noninte-
grable Affleck-Kennedy-Lieb-Tasaki (AKLT) model [30,31].
While the collection of models that feature scarred-like eigen-
states has recently expanded [32–43], a smaller subset of
such models have been demonstrated to display revivals from
easily preparable initial states [44–46]. Thus, the connection
between revivals and the presence of atypical eigenstates
remains to be fully understood.

Revivals in the experimentally realized PXP model are
relatively fragile. For example, numerical simulations have
shown that the revival of a wave function, quantified in
terms of the return probability, |〈ψ (0)|ψ (t )〉|2 [47], is at best
∼70% of its initial value, and it undergoes a clear decay as
a function of time [48]. While the imperfect PXP revivals
are still remarkable given the exponentially large many-body
Hilbert space, their decay poses a question of whether the PXP
many-body scars could be a transient effect that disappears
in the thermodynamic limit. It was realized, however, that
revivals can be significantly enhanced by slightly deforming
the PXP model [49], with the fidelity revival reaching the
value ∼1–10−6 in the largest systems available in numerics
[50], suggesting there could exist fine-tuned models that host
“perfect” many-body scars, while their overall behavior, as
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witnessed by the energy level statistics [50], remains thermal-
izing.

Indeed, several nonintegrable spin chain models have
recently been shown to contain “exact” scars and exhibit
perfect wave-function revivals when quenched from special
initial states [51–54]. Exact revivals in these models are a
consequence of a dynamical symmetry of certain terms in
the Hamiltonian (as we explain below in Sec. III), such
that scarred eigenstates are equidistant in energy. On the
other hand, PXP is not the only model to exhibit decaying
wavefunction revivals due to many-body quantum scars. This
phenomenon has also been observed in models of fractional
quantum Hall effect in a quasi-one-dimensional limit [39] and
in a model of bosons with correlated hopping [55]. In each of
these cases, it was found that scar states are well approximated
by Ritz vectors of a Krylov-like subspace generated by the ac-
tion of some raising operator. In general, the energy variance
of this subspace is nonzero; however, provided this subspace
variance is small, the Hamiltonian takes the approximate
block-diagonal form H ≈ HKrylov

⊕
H⊥. This is reminiscent

of the recently introduced notion of “Krylov-restricted ther-
malization” [56], whereby the Hilbert space fractures into
closed Krylov subspaces in which exponentially large inte-
grable and ergodic sectors can coexist alongside one another.
While “Krylov restricted thermalization” with exponentially
large integrable sectors arises naturally in a model of interact-
ing fermions [56], it has also been demonstrated that one can
embed a target integrable subspace of arbitrary size alongside
ergodic subspaces in an interacting spin model [29,37]. We
will refer to the latter approach as “projector embedding.”

In this paper, we demonstrate how a “loosely embedded”
integrable subspace can give rise to many-body quantum
scars and strong ETH violation, thus providing a general
picture of scarring in the PXP model that relates it to other
types of scarred models in the literature. Our embedding
scheme is defined by considering Hamiltonians that consist
of generators of a Lie algebra representation, but with slightly
“broken” commutation relations, resulting in the approximate
block diagonal form H ≈ Hint

⊕
H⊥. Due to the “broken”

root struture of the Lie algebra, Hint is found to possess an
approximate dynamical symmetry such that scar states are
embedded throughout the spectrum with nearly equal energy
spacing. This, along with the nonzero subspace variance, gives
rise to decaying wave-function revivals when the system is
quenched from certain initial states.

Further, we introduce an iterative scheme to identify per-
turbations which correct the errors in the root structure of the
Lie algebra representation. While the perturbations we find
are generically long-range and have complicated forms, they
serve to elucidate the connection between exact integrable
subspaces, seen in either “projector embedding” or “Krylov-
restricted thermalization,” and loose embeddings such as in
PXP model. Correcting the algebra causes the energy variance
of the loosely embedded subspace to decrease, resulting in
the Hamiltonian becoming increasingly block diagonal. In
addition, an improving root structure within the embedded
subspace results in scar states becoming more equidistant in
energy, such that revivals are also enhanced.

Specifically, our scheme allows to re-derive perturbations
to the PXP model which have been shown to enhance revivals

from the |Z2〉 state [49,50]. Nevertheless, in doing so, we
also identify a missing set of perturbations which enhance
the revivals further by several orders of magnitude compared
to previous works [49,50]. Moreover, by considering differ-
ent possible su(2) representations embedded within the PXP
model, we also identify a weak perturbation which enhances
revivals from the |Z3〉 = |100100 . . . 〉 state, and a strong
deformation resulting in a new model which supports revivals
from |Z4〉 initial state. We also identify two deformations
of the PXP model which fix an su(2) algebra completely,
such that the models feature exact wavefunction revivals from
simple product states and an exact integrable Krylov subspace
generated by repeated application of the Hamiltonian, while
also simultaneously containing thermalizing sectors.

The remainder of this paper is organized as follows. Sec-
tions II and III contain an overview of the physics of the
PXP model and the recent constructions of scarred models
via projector embedding and dynamical symmetry. Section IV
introduces our notion of “loose” embedding of broken Lie
algebra representations into an eigenspectrum of a many-body
system. In Sec. V, we present the simplest application of
our construction to revivals from |Z2〉 product state in PXP
model. In Sec. VI, we explore a different su(2) Lie algebra
representation which can be loosely embedded in the PXP
model in order to give rise to revivals from |Z3〉 product
state. Additionally, we find an exactly embedded subspace in
a new model which represents a strong deformation of the
PXP model. In Sec. VII, we demonstrate that our method can
be used to stabilize revivals from |Z4〉 product state which
are absent in the PXP model. Our conclusions are presented
in Sec. VIII. Appendices contain a nontrivial perturbation
that stabilizes Z2 revivals in the spin-1 generalization of the
PXP model, as well as technical details on the second-order
corrections to su(2) algebras.

II. A BRIEF OVERVIEW OF PXP MODEL

The PXP model [57] prevents adjacent excitations of atoms
into the Rydberg states [19]. The model can be expressed as a
kinetically constrained spin-1/2 chain by denoting the basis of
|0〉 = |↓〉, |1〉 = |↑〉, where |0〉 refers to an atom in its ground
state and |1〉 denotes an excited state. The PXP Hamiltonian
is given by

HPXP =
N∑

n=1

Pn−1σ
x
n Pn+1, (1)

where σ x
n = |0〉n〈1|n + |1〉n〈0|n is the standard Pauli x matrix

on site n, and the projector

Pn = |0〉n〈0|n (2)

implements correlated spin flips, i.e., P removes any tran-
sitions that would create adjacent Rydberg excitations. Ex-
amples of allowed and forbidden processes are illustrated in
Fig. 1. Our numerical study of the model in Eq. (1) and related
models below will be based on exact diagonalization of finite
chains with periodic boundary condition (n + N ≡ n).

The PXP model in Eq. (1) is nonintegrable and thermal-
izing [25], but its quench dynamics is strongly sensitive to
the choice of the initial state [19]. For simplicity, we focus
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FIG. 1. An example of an allowed (a) and forbidden (b) transition
under the Hamiltonian in Eq. (1).

on initial states that are product states of atoms compatible
with the Rydberg constraint (recent work in Ref. [58] studied
the revivals from more general classes of weakly entangled
initial states). One such initial state is the Néel state |ψ (0)〉 =
|Z2〉 ≡ |0101 . . . 〉, which gives rise to revivals in the quantum
fidelity,

|〈ψ (0)|e−iHt |ψ (0)〉|2. (3)

Other physical quantities, such as local observable expectation
values, correlation functions as well as nonlocal quantities
such as entanglement entropy, were all found to revive with
the same frequency as the fidelity [48]. Other initial states
such as |Z3〉 ≡ |100100 . . .〉 also revive, though much more
weakly, while states with larger unit cells, such as |Z4〉 ≡
|10001000 . . .〉, do not revive even in small systems accessible
by exact numerics [48].

As we pointed out in Introduction, the return probability
of the Z2 state in PXP model clearly decays with time,
suggesting that the revival is fragile and likely to disappear
in the thermodynamic limit. In this context, Ref. [50] made
an important observation that PXP model could be weakly
deformed such that revivals are made nearly perfect. The en-
hancement of revivals in the PXP model was explained by the
fact that appropriate perturbations stabilize an approximate
su(2) algebra formed by the special eigenstates of the PXP
model. The special eigenstates can be described, with high
accuracy, using a “forward scattering approximation” (FSA)
[25]. The FSA is based on a particular decomposition of the
PXP Hamiltonian, HPXP = H+ + H−, chosen in such a way
that H− annihilates the initial Néel state |Z2〉 (with H+ =
(H−)†). The set of states (H+)n|Z2〉 then form an orthogonal
Krylov-like subspace of finite dimension N + 1, where N is
the number of atoms. The scarred eigenstates can be com-
pactly represented as linear superpositions of N + 1 FSA ba-
sis states [48]. Within the subspace of special eigenstates, the
operators H+ and H− act like raising and lowering operators
for a fictitious spin-N/2 particle. Intuitively, periodic revivals
can then be interpreted as precession of this large spin [50]. In
the pure PXP model, the emergent su(2) spin algebra is only
approximate but becomes nearly exact at the optimal revival
point.

In this paper, we reinterpret the revivals in PXP model
from the point of view of broken Lie algebras, by defining
a set of broken generators for which the scar states act as

an approximate basis. Considering corrections to this algebra
allows us to construct perturbations that significantly enhance
the revivals for general types of initial states without relying
on FSA scheme.

III. EXACT EMBEDDING OF SCARRED EIGENSTATES

Before we consider PXP model which features approx-
imate integrable subspaces with small subspace variance,
which we term as having loosely embedded scar states, we
first review several ways in which an exact integrable sub-
space has been demonstrated to arise in recent works in the
literature.

A. Projector embedding

Selected eigenstates can be embedded into the spectrum
of an ergodic Hamiltonian via the “projector embedding”
construction due to Shiraishi and Mori [29] (further exten-
sions to topologically ordered systems have been developed
in Ref. [37]). Consider a Hamiltonian describing some lattice
system of the form:

H =
N∑

i=1

PihiPi + H ′, (4)

where Pi are arbitrary local projectors [not necessarily the
same as in Eq. (2)], hi are arbitrary local Hamiltonians acting
on lattice sites i = 1, 2, . . . , N , [H ′, Pi] = 0 for all i, and |ψi〉
are target states that are annihilated by the projectors,

Pi|ψ j〉 = 0, ∀ i, j. (5)

It follows

PiH |ψ j〉 = PiH
′|ψ j〉 = H ′Pi|ψ j〉 = 0, (6)

thus [H, Pi] = 0 for all i, which implies [H,
∑

i Pi] = 0.
Therefore H takes the block diagonal form

H = Htarget

⊕
H⊥, (7)

where Htarget is spanned by the target states |ψi〉. Such a
decomposition may result in the model possessing both in-
tegrable and ergodic sectors. Models of this form generically
contain eigenstates embedded near the center of the spectrum
[29]. There is no guarantee embedded states are equidistant in
energy and may even be degenerate, such that this scheme can
produce models which do not exhibit perfect wave-function
revivals. We note that, for periodic boundary conditions, the
PXP model, introduced in Sec. V below, can be expressed in
this “projector embedded” form such that a single target state
is embedded—namely the AKLT ground state at zero energy
[59]. However, the complete set of N + 1 scarred eigenstates
with enhanced support on |Z2〉 state (mentioned in Sec. II)
have not been understood through this embedding procedure.

B. Equidistant embedding: dynamical symmetry

Next we review a way in which ETH violating eigenstates
can be embedded with equidistant energy spacing, yielding
exact wave-function revivals in specially designed quenches.
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Consider a Hamiltonian of the form:

H = H0 + H ′. (8)

We assume the existence of some local operator Q+ for which
there exists an extensive dynamical symmetry with H ′:

[H ′, Q+] = αQ+, (9)

such that, for any eigenstate |�〉 of H ′, we can generate an
equally spaced tower of eigenstates, (Q+)n|�〉. If the subspace
given by a tower of H ′ eigenstates, |n〉 = 1/N (Q+)n|�〉,
are also zero energy eigenstates of H0, H ′ will split the
degeneracy such that |n〉 are equidistant eigenstates of the
full Hamiltonian. Further, if |�〉 is a weakly entangled state,
due to the locality of Q+, states |n〉 are also expected to be
weakly entangled. Given an appropriate choice of H0 such
that the model is nonintegrable, the states |n〉 will be weakly
entangled scarred eigenstates which violate the ETH. Such
a scenario has been realized in a variety of models, such as
spin-1 XY models [51,53], a spin 1/2 model with emergent
kinetic constraints [52] and a spin chain where the dynamical
symmetry emerges due to an underlying Onsager algebra [54].
A summary of exact embeddings is presented in Figs. 2(a) and
2(b). In contrast to exact embeddings, the focus of this paper
is the PXP model [19] where the scarred subspace is only
approximately decoupled from the thermal bulk, Fig. 2(c).
Before discussing in detail the PXP model in Sec. V, in the
following section we introduce our general notion of loose
embedding that can be applied, in principle, to any model.

IV. LOOSE EMBEDDINGS OF BROKEN LIE ALGEBRAS

Previous examples of exact embeddings of scarred eigen-
states in Sec. III are analytically tractable, but they do not
directly apply to the experimentally observed scarred re-
vivals in the PXP model [19]. In the latter case, the revivals
clearly decay over time, thus we are looking to interpret
such revivals in terms of an inexact embedding of an algebra
whose representation is defined by the scarred states. Here we
outline how to construct models with loosely embedded scar
states, whose Hamiltonian approximately fractures into the
form H ≈ Hint

⊕
H⊥, where Hint possesses an approximate

dynamical symmetry, which we engineer from the root struc-
ture of a Lie algebra representations with weakly “broken”
commutation relations.

A. Embedding scheme

We start by recalling some basics of Lie algebras and
representation theory. Infinitesimal generators gi of a Lie
group G form a Lie algebra A:

[gi, g j] = f k
i jgk . (10)

The algebra is encoded in the structure constants f k
i j , which

are antisymmetric with respect to lower indices, f k
i j = − f k

ji. A
set of n × n matrices {Mi} satisfying [Mi, Mj] = f k

i jMk forms
an n-dimensional representation of the Lie algebra. Verifying
these commutation relations is sufficient to verify the set {Mi}
forms a valid representation.

Given a set of infinitesimal generators of a Lie group, de-
fine {Hi} as the largest set of mutually commuting generators.

FIG. 2. Summary of various mechanisms for embedding scarred
eigenstates in a many-body system. (a) An exactly embedded Krylov
subspace (purple tridiagonal matrix, with red lines symbolizing the
nonzero elements). Such a scenario can emerge in models exhibit-
ing the phenomenology of fractonic systems [40], where if the
Krylov subspace is exponentially large this effect is coined “Krylov-
restricted thermalization” [56]. Lifting the restriction the embedded
subspace be tridiagonal, models of type (a) can also be generically
realized by the “projector embedding method” (Sec. III A). (b) Exact
scars featuring perfect revivals due to a dynamical symmetry of
certain terms in the Hamiltonian generated by Q+ (see Sec. III B).
Type (b) scars have being realized in a variety of spin models such
as spin-1 XY model [51–54]. (c) PXP-like scarring [49,50], where a
Krylov subspace which approximately acts as an su(2) representation
is sparsely coupled to the thermal bulk, such that the subspace
has a low subspace variance (which is equivalent to the Frobenius
norm of the block labeled couplings). By fixing various broken Lie
algebra representations in models of type (c) we can also realize the
scarred subspace of approximate type (a), where the nearly exactly
embedded subspace forms a representation of the Lie algebra (as will
be discussed in Secs. VI B and VII A).

By taking linear combinations of the remaining generators,
one can construct a set of ladder operators, {Eα}:

[Hi, Eα] = αiEα. (11)

Together, the sets {Hi}, {Eα} are known as the Cartan-Weyl
basis. As the set {Hi} are mutually commuting by definition,
there exists a basis which simultaneously diagonalizes every
Hi such that we can label basis states of a representation by
their Hi quantum numbers. On application of Eα , the change
in Hi quantum numbers is just the roots αi:

Hi|ψ〉 = λi|ψ〉, (12)

HiEα|ψ〉 = (EαHi + αiEα )|ψ〉 = (λi + αi )Eα|ψ〉. (13)

Given a single basis state which is an eigenstate of every Hi,
one can systematically construct the remaining basis states
via repeated applications of the ladder operators Eα . This
construction will prove useful for forming approximate basis
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states of broken Lie algebra representations, which can be
used to approximate many-body scar states (e.g., within the
FSA scheme [25]).

Consider the set of operators {Eα} which are raising and
lowering operators of some Lie algebra A in the Cartan-Weyl
basis. The set of equations

[Eα, Eβ] =
∑

γ

cγ Eγ +
∑

i

diH
i, (14)

follows from the properties of the Lie algebra, but can be taken
as defining the operators Hi when these equations are inverted.

Now we are in position to introduce our notion of “bro-
ken” Lie algebra. Let the set of operators {Ēα} be of equal
size as the previous set {Eα}, but we do not assume they
are raising/lowering operators of any Lie algebra. Taking
Eqs. (14) as a definition for Hi as some linear combination
of {Eα, [Eα, Eβ ]}, define H̄ i as the same linear combination
of {Ēα, [Ēα, Ēβ ]}.

If the sets {Ēα}, {H̄ i} satisfy

[H̄ i, Ēα] = αiĒα + δα, (15)

where αi are the root coefficients of the Lie algebra A and it is
understood δα contain no terms proportional to the generators
Ēα , we say {Ēα}, {H̄ i} form a broken representation of the Lie
algebra A.

Now consider a Hamiltonian consisting of a linear combi-
nation of the diagonal generators {H̄ i} rotated to some other
basis:

H =
∑

n

anU
†H̄nU, (16)

where U is an arbitrary unitary rotation. Consider quenching
from a simultaneous eigenstate |ψ0〉 of the operators {H̄ i}.
Construct an approximate basis for the broken representation
by repeated application of the raising operators Ēα on |ψ0〉.
If the algebra were exact, the Hamiltonian would fracture
into the block diagonal form H = Hrep basis

⊕
H⊥ and there

would exist several dynamical symmetries of Hrep basis, corre-
sponding to the rotated ladder operators, Qα = U †EαU . For
a broken Lie algebra, these relations become approximate,
thus Hamiltonians of the form of Eq. (16) will contain an
approximate dynamical symmetry within a loosely embedded
integrable subspace.

It is possible the dynamics can resemble a quench with
additional decoherence from the related system H (H̄ i, Ēα ) →
H (Hi, Eα). For example, if the embedded algebra was su(2),
it is possible the wave function will revive with a single
frequency provided the following conditions are met.

(1) The variance of the approximate basis with respect to
H̄ i is sufficiently small.

(2) The spacing of expectation values with respect to H̄ i

after applications of Ēα to |ψ0〉 approximately obeys the root
structure of the desired Lie algebra, i.e.,

〈φ|H̄ i|φ〉
〈φ|φ〉 ≈ λi + αi, (17)

where H̄ i|ψ0〉 = λi|ψ0〉 and |φ〉 = Ēα|ψ0〉.
(3) Repeated application of Ēα on |ψ0〉 will terminate

after a finite number of steps, thus generating a subspace

of the full Hilbert space. In general, this subspace does not
correspond to an exact symmetry sector of the Hamiltonian.
To see signatures of the exact Lie algebra, this subspace must
be sufficiently disconnected from the orthogonal space under
the action of the Hamiltonian.

B. Iterative corrections to broken Lie algebras: Identifying
perturbations that stabilize revivals

By perturbing the operators Ēα with terms that appear in
the error δα , it is possible to improve the broken Lie algebra, in
the sense that decoherence in the previously described quench
in Sec. IV A is reduced.

Consider some broken representation of a Lie algebra:

[H̄ i, Ēα] = αiĒα + δα, δα =
∑

n

anV
α

n , (18)

where the error δα has been decomposed into terms sharing
the same coefficient an. Now perturb the raising/lowering
operators as follows:

Ēα
(1) = Ēα +

∑
n

cnV
α

n . (19)

This in turns defines new H̄ i
(1) = H̄ i + Hi

perts, following the
same definition of Hi in Eq. (14). It follows:[

H̄ i
(1), Ēα

(1)

] = αiĒα +
∑

m

fm(c0, . . . , cN )V α
m + δα

(2), (20)

δα
(2) =

∑
n

gn(c0, . . . , cN )V α
(2)n, (21)

where fm(c0, . . . , cN ), gn(c0, . . . , cN ) are polynomials in the
perturbation coefficients and V α

(2)n are second order error
terms. If the coefficients cn can be optimized to satisfy[

H̄ i
(1), Ēα

(1)

] ≈ αiĒα
(1) + δα

(2), (22)

such that decoherence in the previously described quench
is reduced, we say that the broken representation has been
improved. This can lead to decreased variance of {Hi} and/or
improved spacing of 〈Hi〉 with respect to the approximate
basis of the broken representation and also may result in
the approximate basis becoming more disconnected from the
orthogonal subspace under the action of the perturbed Hamil-
tonian [Eq. (16), with H (Hi, Eα ) → H (Hi

(1), Eα
(1) )]. Further,

if the representation improves, we expect the magnitude of
the error terms to decrease, given by the Frobenius norm
||δα

(2)||F < ||δα||F . Figure 3 schematically shows this process
of identifying corrections to the algebra. We will demonstrate
that this procedure results in many-body scarred models with
long-lived coherent dynamics in the subsequent sections.

Before illustrating this approach with examples of a broken
su(2) Lie algebra, we briefly discuss ways of quantifying how
much the approximate su(2) Lie algebra representation differs
from an exact representation. As a possible error measure, we
consider max var(H̄ z )n with respect to the approximate basis,
where var(H̄ z )n is the variance of the basis state |n〉 defined as

|n〉 = 1√
N

(H̄+)n|LW〉, (23)

with |LW〉 being the lowest weight state of the su(2) Lie
algebra representation |S,−S〉. This state obeys H̄−|LW〉 = 0,
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FIG. 3. Schematic illustration of our iterative scheme which
identifies corrections to broken Lie algebras, specifically an su(2)
Lie algebra in this case. The optimization of λn is with respect to
the error measures described in the text, such as maximizing the first
fidelity peak |〈Hz, LW |e−iHt |Hz, LW 〉|2 or minimizing the subspace
variance of H with respect to the su(2) basis defined in Eq. (23).

or equivalently, it is the ground state of H̄ z. If the revivals
are due to an su(2) algebra, we expect the corresponding
basis states should have harmonic (equal) energy spacing. To
quantify the deviation from harmonic spacing we introduce
the quantity K :

K = ||M||F , Mnm = |�En − �Em|, (24)

which represents the Frobenius norm of the matrix of level
spacings. The latter are given by

�En = 〈H̄ z〉n+1 − 〈H̄ z〉n, 〈H̄ z〉n = 〈n|H̄ z|n〉. (25)

To quantify how disconnected the subspace spanned by |n〉 is
from its orthogonal subspace under the action of the Hamilto-
nian, we use the subspace variance σ :

σ = tr((U †
repH2Urep) − (U †

repHUrep)2), (26)

where Urep is the unitary operator which projects to the bro-
ken representation basis. This quantity can be interpreted as
being proportional to the Frobenius norm of the block labeled
couplings in Fig. 2(c).

V. EXAMPLE: PXP MODEL AND
EMBEDDED su(2) ALGEBRA

We now exemplify our general embedding scheme outlined
in Sec. IV by using the PXP model [19,57]. We demonstrate
how to identify and improve the broken su(2) algebra associ-
ated with Z2 revivals.

A. Z2 revivals and su(2) algebra

First we focus on the well-known case of Z2 revivals in the
PXP model [50]. Define the su(2) spin raising operator

H̄+ ≡
∑

n

(σ̃+
2n + σ̃−

2n−1), (27)

where we have introduced the shorthand notation

σ̃ α
n ≡ Pn−1σ

α
n Pn+1. (28)

We have HPXP = H̄+ + H̄− such that HPXP = H̄x can be inter-
preted as an element of su(2) algebra. From the commutation
rules of su(2) algebra, the diagonal element is given by (half)
the commutator (note the minus sign)

H̄ z ≡ 1

2
[H̄+, H̄−] =

∑
n

(
σ̃ z

2n − σ̃ z
2n−1

)
. (29)

The reason for this choice of H̄+/− is that the lowest weight
state of H̄ z is the Néel state, |0101 . . . 〉. We seek a represen-
tation for which |Z2〉 is the lowest weight state of H̄ z as, for
an exact algebra, the lowest/highest weight states of H̄ z are
also simultaneously eigenstates of the Casimir operator, such
that repeated application of H̄+ on the lowest weight state
would generate an su(2) subspace. To be explicit, consider
the exact algebra H+ = ∑

n σ+
n , H− = (H+)†, Hz = ∑

n σ z
n .

Of the eigenstates of Hz, only repeated application of H+
on the lowest weight state |000 . . . 〉 = |S = N/2, Sz = −N/2〉
would generate an su(2) subspace. Superpositions of states
with equal number of singlets must be taken as the root state
for which repeated application of H+ would generate further
su(2) sectors.

It further follows:

[H̄ z, H̄+] = H̄+ + δ+
(1), (30)

[H̄ z, H̄−] = −H̄− + δ−
(1), (31)

where the error terms that break the algebra are

δ+
(1) = − 1

2 (PPσ+
2nP + Pσ+

2nPP + Pσ−
2n+1PP + PPσ−

2n+1P),

(32)

δ−
(1) = 1

2 (PPσ−
2nP + Pσ−

2nPP + Pσ+
2n+1PP + PPσ+

2n+1P).

(33)

For brevity, we have suppressed a summation over the lattice
sites in the definition of δ

+/−
(1) , and terms like PPσ+

2nP stand for∑
n P2n−2P2n−1σ

+
2nP2n+1 (i.e., strings of P’s act on consecutive

neighboring sites).
From the expressions in Eqs. (30) and (31), we see that

{H̄ z, H̄+, H̄−} form a broken representation of su(2). In this
language, the forward scattering approximation (FSA) [25]
is rephrased as projecting the Hamiltonian H to the broken
representation basis in Eq. (23), with |LW〉 ≡ |Z2〉, and diag-
onalizing. This procedure gives very accurate approximations
to the special eigenstates of the full PXP model—see red
crosses in Figs. 4(a)–4(c), and 4(e).

Next, we continue our program and identify a perturbation
which can potentially improve the su(2) representation. First,
define H̄±

(1) = H̄± + λδ±
(1). This gives us

H(1) = H + λ(δ+
(1) + δ−

(1) )

= Pσ x
n P + λ

(
Pσ x

n PP + PPσ x
n P

)
. (34)

In order to find the optimal perturbation strength λ, we maxi-
mize the first fidelity revival as a function of λ,

f0(λ) = f (λ, t0) = |〈ψ (0)|e−iH (λ)t0 |ψ (0)〉|2, (35)

where t0 is the time at which the first revival occurs. Note that
t0 is λ-dependent. Throughout this paper, the minimization
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(a) (b) (c)

(d)

(e)

FIG. 4. Z2 revival in PXP model. (a) Eigenstate overlap with the
Néel |Z2〉 state. (b) Eigenstate overlap after including the first order
su(2) correction [Eq. (34)]. (c) Eigenstate overlap after including
the second order su(2) correction [Eqs. (37)–(44)]. (d) Quantum
fidelity in Z2 quench, with and without perturbations. Perturbation
coefficients are those that maximize the first fidelity revival peak.
(e) Bipartite entropy, Eq. (36), of the eigenstates of PXP model
after including second order Z2 su(2) corrections. The states labeled
“Exact Scars” are exact diagonalization results identified from the
top band of states in (c). Red crosses in (a)–(c), and (e) indicate
approximate scar states obtained by projecting the Hamiltonian to
the broken su(2) basis and diagonalizing. Color scale in (a)–(c), and
(e) indicates the density of data points, with lighter regions being
more dense.

was carried out using the PYTHON SCIPY routine that em-
ploys the “sequential least squares programming” (SLSQP)
method. After optimization, we recover the perturbation that
was previously empirically found [49] to enhance the revivals
following a |Z2〉 quench with maximal f0 when λ = 0.108 (at
system size N = 18). It was previously demonstrated the PXP
model remains nonintegrable after including this perturbation
[50]. Note that the first-order perturbation improves all error
metrics of the broken representation, see Table I.

Second order perturbations can be obtained in a simi-
lar fashion, although algebraic manipulations become very
laborious to perform by hand. Our analytical results have
been tested against a custom-designed software for symbolic
computations of the nested commutators involving projectors
[60]. Figure 4 summarizes the differences between models
after including first- and second-order perturbations. We find
the scarred eigenstates become increasingly decoupled from
the thermal bulk and can also be characterized by their

TABLE I. Error metrics for the Z2 su(2) subspace of the PXP
model at various perturbation orders for N = 24. Subspace variance
σ is normalized by the dimension of the su(2) representation, N + 1.
See text for details of the perturbations.

Order 1 − f0 σ/Dsu(2) max(var(Hz )n) K

n = 0 2.853 × 10−1 1.116 × 10−1 2.711 × 10−1 9.310 × 100

n = 1 6.760 × 10−4 2.190 × 10−4 9.694 × 10−4 6.008 × 10−1

n = 2 3.113 × 10−6 3.303 × 10−6 2.355 × 10−5 8.090 × 10−2

anomalously low bipartite entanglement entropy S, defined in
the usual way

S = −Tr(ρA ln ρA), (36)

in terms of the reduced density matrix ρA = TrB|ψ〉〈ψ |,
obtained via partial trace over the subsystem B for some
bipartition of the total system into two halves, A and B, in
the computational basis.

Restricting to terms with only a single spin flip, we identify
the following second order error terms δ+

(2):

δ+
(2),1 = Pσ zPσ+

2nP + Pσ+
2nPσ zP

+ Pσ zPσ−
2n+1P + Pσ−

2n+1Pσ zP, (37)

δ+
(2),2 = Pσ+

2nPPP + PPPσ+
2nP

+ Pσ−
2n+1PPP + PPPσ−

2n+1P, (38)

δ+
(2),3 = PPσ+

2nPP + PPσ−
2n+1PP, (39)

δ+
(2),4 = PPσ+

2nPσ zP + Pσ zPσ+
2nPP

+ PPσ−
2n+1Pσ zP + Pσ zPσ−

2n+1PP, (40)

δ+
(2),5 = PPPσ+

2nPP + PPσ+
2nPPP

+ PPPσ−
2n+1PP + PPσ−

2n+1PPP, (41)

δ+
(2),6 = Pσ+

2nPσ zPP + PPσ zPσ+
2nP

+ PPσ zPσ−
2n+1P + Pσ−

2n+1Pσ zPP, (42)

δ+
(2),7 = PPPPσ+

2nP + Pσ+
2nPPPP

+ PPPPσ−
2n+1P + Pσ−

2n+1PPPP, (43)

δ+
(2),8 = PPσ+

2nPσ zPP + PPσ zPσ+
2nPP

+ PPσ−
2n+1Pσ zPP + PPσ zPσ−

2n+1PP. (44)

Putting these terms together, we obtain the second-order
perturbations, H̄+

(2) = H̄+ + λ0δ
+
(1) + ∑8

i=1 λiδ
+
(2),i and H̄−

(2) =
H̄− + λ0δ

−
(1) + ∑8

i=1 λiδ
−
(2),i, which in turn define H(2) =

H̄+
(2) + H̄−

(2). Coefficients optimizing fidelity were found to
be

λ∗
i = [0.11135, 0.000217,−0.000287,−0.00717, (45)

0.00827, 0.00336, 0.00429, 0.0103, 0.00118], (46)
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where the first value is the optimal coefficient for the first
order term Eq. (32), while the remaining coefficients corre-
spond to the terms in order of appearance in Eqs. (37)-(44).
These values have been found via numerical optimization at
system size N = 16. Note that previous work in Ref. [50] only
considered PXPIP + PIPXP as a second order perturbation
to HPXP. By including all spin flip terms obtained from the Lie
algebra error, fidelity can be enhanced to 1 − f0 ≈ O(10−6),
while if we only retain PXPIP + PIPXP we obtain infi-
delity that is a few orders of magnitude higher, 1 − f0 ≈
O(10−3) (data for N = 16). In Ref. [50], fidelity on the
order 1 − f0 ≈ O(10−6) was found by including only terms
Pn−1XnPn+1Pn+d + Pn−d Pn−1XnPn+1 up to high order d � 10,
which are expected to arise as corrections in higher orders of
our method. While these terms alone appear sufficient to reach
very high fidelity values, our analysis suggests that, strictly
speaking, these terms do not fully fix the su(2) algebra.

The decomposition of HPXP = H̄+ + H̄− used to identify
the broken su(2) algebra assosciated with Z2 revivals is not
unique. In the following sections, we discuss further decom-
positions leading to additional su(2) representations which
can be enhanced to fix revivals from |Z3〉 and |Z4〉 initial
states.

VI. Z3 REVIVALS FROM su(2) ALGEBRA

In addition to Z2 revivals, PXP model was also shown
numerically to exhibit wave function revivals following a
quench from |Z3〉 = |100100 . . . 〉 state [25,48]. (Somewhat
more robust revivals are in fact seen from a weakly entangled
initial state “close” to |Z3〉 [45].) Unlike Z2 state, the revivals
from Z3 sharply decay even in numerical simulations on fairly
small systems [48], suggesting the model is even further away
from any exact Lie algebra representation furnished by |Z3〉
state.

The Z3 revivals originate from 2N/3 + 1 scarred eigen-
states with enhanced support on the |Z3〉 state. We stress
that out of these 2N/3 + 1 scarred eigenstates, only two
eigenstates coincide with the N + 1 scarred eigenstates with
enhanced support on Z2, which are the ground and most
excited eigenstates of the model. Thus we interpret the Z3

scarred subspace as a distinct loosely embedded su(2) sub-
space as compared to the Z2 scarred subspace. There has been
no FSA method to describe the 2N/3 + 1 Z3 scar states and,
consequently, the perturbations that improve the Z3 revival
are not known. Here we demonstrate that it is possible to
deform the PXP model to stabilize a different su(2) algebra
representation compared to the Z2 case, which results in
robust Z3 revivals.

We follow our general approach and start by introducing
raising and lowering operators compatible with |Z3〉 state:

H̄+ =
∑

n

(σ̃−
3n + σ̃+

3n+1 + σ̃+
3n+2), (47)

H̄− =
∑

n

(σ̃+
3n + σ̃−

3n+1 + σ̃−
3n+2), (48)

where, as before, we have HPXP = H̄+ + H̄−. The su(2) diag-
onal generator is then given by H̄ z = 1

2 [H̄+, H̄−], which can

be shown to take the form

H̄ z =
∑

n

−σ̃ z
3n+σ̃ z

3n+1+σ̃ z
3n+2+ 1

2

∑
n

(P3nσ
+
3n+1σ

−
3n+2P3n+3

+ P3nσ
−
3n+1σ

+
3n+2P3n+3). (49)

The lowest weight state of H̄ z is |Z3〉, as it should be, although
it is degenerate. The first order perturbation will lift this
degeneracy such that |Z3〉 is the unique ground state of H̄ z

(1).
We find the H̄ z, H̄+, H̄− obey the commutation relations:

[H̄ z, H̄+] = H̄+ + δ+
(1), (50)

δ+
(1) = −1

2

∑
n

(P3n−1P3nσ
+
3n+1P3n+2

+ P3n−2σ
+
3n−1P3nP3n+1 + P3n−1σ

−
3nP3n+1P3n+2

+ P3n+1P3n+2σ
−
3n+3P3n+4)

+ 1

2

∑
n

(P3n−1σ
−
3nσ

+
3n+1σ

−
3n+2P3n+3

+ P3nσ
−
3n+1σ

+
3n+2σ

−
3n+3P3n+4)

+
∑

n

(P3nσ
+
3n+1P3n+2P3n+3

+ P3nP3n+1σ
+
3n+2P3n+3). (51)

Similarly, we find [H̄ z, H̄−] = −H̄− + δ−
(1), such that

{H̄ z, H̄+, H̄−} form a broken representation of su(2). We
identify the following first order perturbations to the PXP
model which improve the representation:

V1 =
∑

n

(
P3n−2σ

x
3n−1P3nP3n+1 + P3n−1P3nσ

x
3n+1P3n+2

+ P3n−1σ
x
3nP3n+1P3n+2 + P3n−2P3n−1σ

x
3nP3n+1

)
, (52)

V2 =
∑

n

(
P3nP3n+1σ

x
3n+2P3n+3 + P3nσ

x
3n+1P3n+2P3n+3

)
, (53)

V3 =
∑

n

(
P3nσ

x
3n+1σ

x
3n+2σ

x
3n+3P3n+4

+ P3n−1σ
x
3nσ

x
3n+1σ

x
3n+2P3n+3

)
. (54)

We emphasize that perturbations that improve Z3 revival, even
at first order, break the full translation symmetry of the model
to a subgroup of translations by a unit cell of size 3. This is
different from Z2 revivals where the first-order corrections
respect the full translation symmetry of the chain. We next
discuss two interesting limits, corresponding to weak and
strong magnitude of these perturbations.

A. Weak limit

By numerical optimization of the revival amplitude un-
der perturbations in Eqs. (52)–(54), bounding coefficients to
satisfy |λi| < 0.5, we find that revivals from |Z3〉 can be
enhanced with optimal perturbation coefficients

λ∗ = [0.18244,−0.10390, 0.05445]. (55)

Similar to |Z2〉 revival, we can find second order perturba-
tions which improve revivals further (see Appendix B for
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(e)

(d)

(a) (b) (c)

FIG. 5. Improving the Z3 revival in the PXP model. (a) Eigen-
state overlap with |Z3〉 state for PXP model. (b) Eigenstate overlap
after including first order correction in Eq. (52)–(54). (c) Eigen-
state overlap after including second order perturbations listed in
Appendix B. (d) Quantum fidelity when the system is quenched
from |Z3〉 state at various perturbation orders. The perturbation
coefficients are those which maximize the first fidelity revival peak.
(e) Bipartite entropy [Eq. (36)] of eigenstates of the PXP model after
including second order Z3 su(2) corrections. Points labeled “Exact
Scars” are exact diagonalization results identified from the top band
of states in (c). Red crosses in (a)–(c), and (e) indicate approxima-
tions to the scar states obtained by projecting the Hamiltonian to the
broken representation basis and diagonalizing. Color scale in (a)–(c),
and (e) indicates the density of data points, with lighter regions being
more dense.

the terms and optimal coefficients). A summary of the effect
of succesive perturbations on |Z3〉 is given in Fig. 5, while
error metrics at various orders are given in Table II. Despite
long-lived coherent oscillations when the system is initialized
in the |Z3〉 state, we verify the model including second order
perturbations is still ergodic by calculating the mean level

TABLE II. Error metrics for the Z3 su(2) subspace of the
PXP model at various perturbation orders for system size N = 24.
Subspace variance σ is normalized by the dimension of the su(2)
representation, 2N/3 + 1. See text for details of the perturbations.

Order 1 − f0 σ/Dsu(2) max(var(Hz )n) K

n = 0 6.397 × 10−1 3.358 × 10−1 9.300 × 10−1 1.234 × 101

n = 1 1.338 × 10−2 3.349 × 10−2 1.717 × 10−1 4.957 × 100

n = 2 1.852 × 10−5 7.082 × 10−3 2.357 × 10−2 2.124 × 100

spacing [61] 〈r〉 = 0.5256 at N = 24, consistent with the
Wigner-Dyson distribution one would expect in an ergodic
system.

B. Strong limit: exact dynamical symmetry

A curious feature of Z3 revivals is that the su(2) algebra
can be made exact for the model

H =
∑

n

σ̃ x
n − V1, (56)

which is the PXP model from which we subtracted the V1

perturbation defined previously in Eq. (52). As the strength
of V1 is order unity, this model should not be called a “per-
turbation” to the PXP model. For the model in Eq. (56), the
raising operator is

H̄+ =
∑

n

((I − (P3n−2 + P3n+2))σ̄−
3n

+ (I − P3n−1)σ̄+
3n+1 + (I − P3n+4)σ̄+

3n+2), (57)

and, as before, H̄− = (H̄+)†, H̄ z = 1
2 [H̄+, H̄−], H = H̄+ +

H̄−. By inspection, it is easy to see the projectors (I −
P3n−1), (I − P3n+4) evaluate to zero when H̄+ is applied to
|Z3〉 = |100100 . . . 〉. Thus the terms containing σ̄+

3n+1, σ̄
+
3n+2

never generate a spin flip and spins pointing down at these
sites are frozen. It follows that the action of H̄+ on |Z3〉 is
equivalent to:

(H̄+)n|Z3〉 =
(

−
∑

n

σ̃−
3n

)n

|Z3〉, (58)

which implies that, within this subspace, the su(2) alge-
bra is exact. Dynamics is just a free precession of spins
located at positions 3n along the chain, |100100 . . . 〉 →
|000000 . . . 〉 → |100100..〉 → . . . . The model now possesses
an exact dynamical symmetry within the su(2) subspace,
namely

[P†
su(2)HPsu(2), P†

su(2)Q
+Psu(2)] = P†

su(2)Q
+Psu(2), (59)

Q+ = e−i π
2 H̄y

H̄+ei π
2 H̄y

, H̄y = 1

2i
(H̄+ − H̄−), (60)

where Psu(2) is the basis transformation which projects to the
subspace spanned by the su(2) basis states |n〉 = (H̄+)n|Z3〉.

The Hamiltonian in Eq. (56) fractures the Hilbert space
in the computational basis even further than the pure PXP
model. We find the number of sectors grows exponentially
with system size, in a similar fashion to fractonic systems
[40]. While one sector is the desired embedded representation
of su(2), various other sectors emerge due to the projectors
blocking access from one configuration to another based on
the decomposition of the state into unit cells of three consist-
ing of {|000〉, |001〉, |010〉, |100〉, |101〉}.

We find it is also possible for a model to feature an exactly
embedded su(2) representation for which the computational
basis does not fracture into exponentially many sectors as
seen in the Z3 case. In the following section, we discuss one
embedded su(2) representation which allows us to identify
such a model.
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VII. Z4 REVIVALS FROM su(2) ALGEBRA

Unlike |Z2〉 and |Z3〉, quenches from |Z4〉 =
|10001000 . . . 〉 do not result in a reviving wave function
beyond system size N � 20 and expectation values of local
observables equilibrate as expected from the ETH, such that
there appear to be no scarred eigenstates with enhanced
support on |Z4〉. Nevertheless, in this section, we show that
our Lie algebra approach identifies deformations to the PXP
model which fixes a new su(2) algebra, engineered such that
|Z4〉 is the lowest weight eigenstate of some H̄ z, rather than
|Z2〉, |Z3〉 as seen previously. While the subspace variance of
this representation is too large to witness observable revivals
in the PXP model, by fixing the algebra we realize new
models which do exhibit Z4 revivals.

In direct analogy with the previous cases, we define the
raising and lowering operators as

H̄+ =
∑

n

(σ̃−
4n + σ̃+

4n+1 + σ̃+
4n+2 + σ̃+

4n+3), (61)

H̄− =
∑

n

(σ̃+
4n + σ̃−

4n+1 + σ̃−
4n+2 + σ̃−

4n+3), (62)

which, in turn, define H̄ z = 1
2 [H̄+, H̄−] that evaluates to

H̄ z =
∑

n

(−σ̃ z
4n + σ̃ z

4n+1 + σ̃ z
4n+2 + σ̃ z

4n+3

)

+ 1

2

∑
n

(P4nσ
+
4n+1σ

−
4n+2P4n+3

+ P4nσ
−
4n+1σ

+
4n+2P4n+3 + P4n+1σ

+
4n+2σ

−
4n+3P4n+4

+ P4n+1σ
−
4n+2σ

+
4n+3P4n+4). (63)

Similar to previous cases, |Z4〉 is the lowest weight state of H̄ z

and it is found that {H̄ z, H̄+, H̄−} form a broken representa-
tion of su(2). Errors in the root structure (Appendix C) suggest
the following perturbations to PXP model are necessary to
stabilize Z4 revival:

V1 =
∑

n

P4nσ
x
4n+1σ

x
4n+2σ

x
4n+3P4n+4, (64)

V2 =
∑

n

(
P4n−1σ

x
4nσ

x
4n+1σ

x
4n+2P4n+3

+ P4n+1σ
x
4n+2σ

x
4n+3σ

x
4n+4P4n+5

)
, (65)

V3 =
∑

n

(
P4nP4n+1σ

x
4n+2P4n+3 + P4nσ

x
4n+1P4n+2P4n+3

+ P4n+1P4n+2σ
x
4n+3P4n+4 + P4n+1σ

x
4n+2P4n+3P4n+4

)
,

(66)

V4 =
∑

n

(
P4n−2σ

x
4n−1P4nP4n+1 + P4n−1P4nσ

x
4n+1P4n+2

+ P4n−1σ
x
4nP4n+1P4n+2 + P4n+2P4n+3σ

x
4n+4P4n+5

)
.

(67)

In contrast to our previous example of Z3 revival, explicit op-
timization finds that the terms in Eqs. (64)–(69) can stabilize
Z4 revivals, but some of the resulting optimal coefficients turn
out to be of the order unity. Thus, similar to the special Z3 case

(a) (c)

(d)

(e)

(b)

FIG. 6. Z4 revival in PXP model. (a) Eigenstate overlap with
|Z4〉 state for PXP model. (b) Eigenstate overlap with |Z4〉 state after
including first order su(2) corrections, Eqs. (64), (65). (c) Eigenstate
overlap after including second order su(2) corrections (Appendix C).
(d) Z4 quench fidelity. |Z4〉 state does not revive in pure PXP model,
but it does revive in the new model obtained by correcting the su(2)
algebra. (e) Bipartite entropy [Eq. (36)] of eigenstates of the PXP
model after including second order Z4 su(2) corrections. Points la-
beled “Exact Scars” are exact diagonalization results identified from
the top band of states in (c). Red crosses in (a)–(c), and (e) indicate
approximate scar states obtained by projecting the Hamiltonian to the
broken representation basis and diagonalizing. Color scale in (a)–(c),
and (e) indicates the density of data points, with lighter regions being
more dense.

discussed above, we arrive at a model that cannot be viewed as
a small deformation of PXP, but rather a new model in its own
right. Specifically, optimizing Vi coefficients λi for fidelity, we
find (at N = 16)

λ∗
i = [0.0008,−1.43, 0.0979, 0.0980], (68)

where we see the coefficient of optimal V2 is ∼O(1). Once
again, second order perturbations can be identified from the
Lie algebra and revivals enhanced further (see Appendix C
for details of the 36 terms and optimal coefficients—note only
three terms contribute significantly with O(1) coefficient after
optimizing for revivals). The effect of these perturbations is
summarized in Fig. 6. Error metrics at various perturbation
orders are given in Table III. As in the previous examples,
the second order deformations leave the model nonintegrable,
which we verify from the mean level spacing 〈r〉 = 0.5271 at
N = 24, consistent with an ergodic system.
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TABLE III. Error metrics for the Z4 su(2) subspace of the PXP
model at various perturbation orders for N = 24. Subspace variance
σ is normalized by the dimension of the su(2) representation, N/2 +
1. See text for details of the perturbations. Errors at n = 0 are much
worse than n = 0 Z2,Z3 errors (compare with Tables I and II),
consistent with there being no revivals or Z4 scars in pure PXP
model.

Order 1 − f0 σ/Dsu(2) max(var(Hz )n) K

n = 0 9.993 × 10−1 3.333 × 100 2.779 × 100 4.323 × 100

n = 1 5.814 × 10−5 6.722 × 10−4 7.902 × 10−4 3.258 × 10−3

n = 2 3.351 × 10−9 9.746 × 10−6 2.753 × 10−4 1.534 × 10−3

A. Exact Z4 su(2) embedding

Finally, we mention that similar to Z3 case, there exists a
deformation of PXP such that |Z4〉 is the lowest weight state
of an exact su(2) representation. That model is obtained by
redefining the raising operator in Eq. (61) according to

H̄+ → H̄+ − V2

= H̄+ −
∑

n

(P4n+3σ
−
4n+4σ

+
4n+5σ

−
4n+6P4n+7

+ P4n+1σ
−
4n+2σ

+
4n+3σ

−
4n+4P4n+5), (69)

which yields the Hamiltonian:

H =
∑

n

Pn−1σ
x
n Pn+1 −

∑
n

(
P4n+3σ

x
4n+4σ

x
4n+5σ

x
4n+6P4n+7

+ P4n+1σ
x
4n+2σ

x
4n+3σ

x
4n+4P4n+5

)
. (70)

Similar to the Z3 case, this model features an exact dynamical
symmetry within the su(2) subspace, with the symmetry gen-
erator taking the same form as Eq. (59). However, unlike the
Z3 case, the computational basis which satisfies the Rydberg
constraint does not fracture into exponentially many sectors.
There still exists an exact Krylov subspace generated by
repeated application of the Hamiltonian on |Z4〉 which is
block diagonal with respect to the orthogonal thermalizing
subspace, such that this model exhibits type (b) scarring
described in Fig. 2 and the Krylov subspace is an exact su(2)
representation. We verify the model is still thermalizing in
the orthogonal subspace by verifying the mean level spacing
〈r〉 = 0.5365 at N = 24, consistent with level spacings obey-
ing the Wigner-Dyson distribution as expected for an ergodic
subspace.

As a consequence of the exact su(2) embedding the |Z4〉
state revives perfectly, whereas generic initial states from the
orthogonal sector still thermalize as expected from the ETH.
Thus, local observables and local autocorrelation functions,
which generically equilibrate, may exhibit long-lived nonsta-
tionary behavior following a quench from |Z4〉, Fig. 7.

VIII. CONCLUSIONS AND DISCUSSION

We have argued that, up to a rotation, many-body scars
in kinetically constrained spin models can be interpreted
as forming an approximate basis of a broken Lie algebra
representation. This results in a loosely embedded integrable

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−1.0

−0.5

0.0

0.5

1.0

〈σ
2i
(t

)σ
2i
(0

) 〉

PXP Z4 Strong deformation, N = 20

|00000000...〉
|10000000...〉
|10001000...〉

FIG. 7. Local autocorrelation function 〈σ z
2i(t )σ z

2i(0)〉 of the
model given by Eq. (70), for various initial states given in the
legend. Results are for N = 20. We consider sites 2i as the translation
symmetry of Eq. (70) is broken to a subgroup corresponding to trans-
lations by two units. Generic initial states such as the polarized state
|000 . . . 〉 equilibrate, whereas the autocorrelation function exhibits
non stationary behavior for all times when the system is initialized in
the |Z4〉 = |10001000 . . . 〉 state.

subspace with approximate dynamical symmetry, which acts
as an approximate representation of the Lie algebra. Seeking
deformations of the Hamiltonian which improve this broken
Lie algebra we have identified several models related to the
PXP model describing a chain of Rydberg atoms, which
exhibit many-body scars and feature near perfect revivals
from the simple product states |Z2〉, |Z3〉, |Z4〉. Further, we
have constructed two models with exactly embedded su(2)
representations, thus obtaining “exact scars” in a similar spirit
to “Krylov-restricted thermalization” [56] and “projector em-
bedded” scar states [29].

The identification of embedded su(2) subspaces followed
from identifying decompositions of the Hamiltonian H =
H̄+ + H̄−, with H̄− = (H̄+)†. Thus, the representation is
fixed by the choice of H̄+. Obviously, this choice is not
unique and many other possible decompositions of H exist,
but many of these decompositions would result in embed-
ded representations whose subspace variance is too large to
give rise to scarred dynamics. However, from the examples
considered above, it appears that aspects of an su(2) algebra
can generically be improved in certain models like PXP, no
matter how broken the representation is to begin with, by
considering errors of a suitably defined broken representation
(e.g., Z4 case). An obvious question is “how broken” can these
representations be such that we would see signatures of su(2)
dynamics (revivals) following quenches from states in the
su(2) subspace. In the examples considered in the main text,
subspace variance of the approximate representation basis
seems to be the best indicator that one would see scarred
dynamics.

While the focus of this paper has been on deformations of
the PXP model resulting in embedded su(2) representations,
we note our construction can be readily applied to arbitrary
spin chains. An interesting question for future work is if it is
possible to engineer approximate dynamical symmetries in a
subspace without making use of a Lie algebra, but perhaps
more general algebraic structures such as the quantum group
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Uq(sl2). Indeed, exact dynamical symmetry of the Hamilto-
nian which does not rely on a Lie algebra root structure has
already been observed in the AKLT model [31]. The model
possesses a dynamical symmetry [HAKLT, K+] = ωK+ and,
while the operators {K+, K− = (K+)†, Hz = 1

2 [K+, (K+)†]}
form an exact representation of su(2), the AKLT Hamiltonian
itself HAKLT is not a linear combination of the su(2) genera-
tors. Therefore the dynamical symmetry does not trivially fol-
low from the root structure and further the scarred subspace,
generated by repeated application of K± on the AKLT ground
state, does not act as a representation of su(2) [31]. Moreover,
we have not considered embeddings of higher order su(n)
Lie algebras throughout this paper, instead restricting only
to su(2). We expect this to be increasingly more difficult
compared to su(2), due to the presence of more than one set
of raising operators, resulting in multiple error sources where
there is no guarantee that improving errors of one set of raising
operators will not exasperate errors in another set.

An important open question relates to the closure of the
broken Lie algebra—will recursively feeding higher order
error terms back into the broken generators result in an exact
representation? Indeed, we have identified two cases where an
su(2) algebra can be made exact (|Z3〉, |Z4〉) after only con-
sidering first order error terms. Neglecting closure, we have
demonstrated that this integrable subspace need not be exactly
embedded, but can be loosely embedded with small enough
subspace variance such that signatures of the embedded group
are still realized in dynamics, as seen in the PXP model. Fi-
nally, it would be interesting to investigate generalizations of
loosely embedded Lie algebras in the context of open quantum
systems, where recent work has shown that dissipation can
give rise to the emergence of kinetic constraints [62] and
robust dynamical symmetry [63,64].

Note added. Recently, we became aware of Ref. [65],
which clarifies further the “exact scars” seen in models we
describe in Sec. III B.
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APPENDIX A: STABILIZING su(2) ALGEBRA
IN SPIN-1 PXP MODEL

The work by Ho et al. [26] pointed out that time-dependent
variational principle (TDVP) can elegantly describe the Z2

revival in the PXP model if TDVP is applied to a manifold
of matrix product states with low bond dimension, effectively
resulting in a semiclassical description of scarred many-body
dynamics. Furthermore, it was noticed that the same approach
can be directly generalized to describe the spin-1 PXP model
given by the the same Hamiltonian as in Eq. (1) where the flip

and projector terms now act on three-level systems (|0〉, |1〉
and |2〉) as follows:

σ x
n =

√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠, Pn =

⎛
⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎠. (A1)

As before, σ x is proportional to the standard spin-1 operator
in the x direction and P is the projector on the lowest weight
state in the z-direction (which we denote by |0〉). It has
been established [44] that the spin-1 PXP model contains
2N + 1 scarred eigenstates with enhanced support on the Néel
state |Z2〉 ≡ |0202 . . . 〉. In this Appendix, we demonstrate
the scarred subspace of the spin-1 PXP model also acts as
an approximate su(2) representation. Somewhat surprisingly,
correcting the broken Lie algebra results in a different optimal
perturbation as compared to the the spin-1 generalization of
the spin-1/2 correction PPXP+PXPP [Eq. (34)].

We fix the broken su(2) representation by defining

H̄+ =
∑

n

σ̃+
2n + σ̃−

2n−1, (A2)

H̄ z = 1

2
[H̄+, H̄−] =

∑
n

σ̃ z
2n − σ̃ z

2n−1, (A3)

using the same notation for σ̃ as in Eq. (28). The lowest
weight state of Hz is the Néel state, |0202 . . . 〉. Checking the
commutators, we arrive at the broken Lie algebra form

[H̄ z, H̄+] = H̄+ −
√

2(PP(σ01)+2nP + P(σ01)+2nPP

+ P(σ01)−2n+1PP + PP(σ01)−2n+1P), (A4)

[H̄ z, H̄−] = H̄− +
√

2(PP(σ01)−2nP + P(σ01)−2nPP

+ P(σ01)+2n+1PP + PP(σ01)+2n+1P), (A5)

where we have introduced the operators

σ+
01 =

⎛
⎜⎝

0 0 0

1 0 0

0 0 0

⎞
⎟⎠, σ−

01 =

⎛
⎜⎝

0 1 0

0 0 0

0 0 0

⎞
⎟⎠, (A6)

which we recognize as spin- 1
2 raising and lowering operators.

From Eq. (A4), we see that {H̄ z, H̄+, H̄−} form a broken
representation of su(2). Lie algebra errors suggests the rep-
resentation can be improved by perturbing H with V :

V =
∑

n

Pn−2Pn−1(X01)nPn+1 + Pn−1(X01)nPn+1Pn+2, (A7)

X01 =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠. (A8)

Importantly, we see that this perturbation is not equal to
PPXP+PXPP (the first-order correction term from the spin- 1

2
PXP model). Indeed, this perturbation is found to enhance
revivals from the Néel state, with optimal coefficient λ =
0.21423 (at N = 12). The revivals are significantly enhanced
compared to the naïve perturbation ansatz PPXP+PXPP,
with optimized coefficient λPPXP = 0.05671, see Fig. 8 and
a summary of error metrics in Table IV.
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(a) (b) (c)

(d)

(e)

FIG. 8. |Z2〉 revival in PXP spin-1 model. (a) Eigenstate over-
lap with |Z2〉 for pure PXP model. (b) Eigenstate overlap in-
cluding the PPXP + PXPP perturbation inspired by spin- 1

2 PXP
model. (c) Eigenstate overlap including first order su(2) correction,
PPX01P + PX01PP. (d) |Z2〉 quench fidelity with the various pertur-
bations. (e). Bipartite entropy of PXP spin-1 after including the first
order Z2 su(2) correction PPX01P + PX01PP. Points labeled “Exact
Scars” are exact diagonalization results identified from the top band
of states in (c). Red crosses in (a)–(c), and (e) indicate approximate
scar states obtained by projecting the Hamiltonian to the broken
representation basis and diagonalizing. Color scale in (a)–(c), and (e)
indicates the density of data points, with lighter regions being more
dense.

APPENDIX B: PXP Z3 SECOND ORDER su(2)
PERTURBATION TERMS

Here we detail the second order corrections to the embed-
ded su(2) algebra which improves Z3 revivals, obtained by

TABLE IV. Error metrics for Z2 revival in spin-1 PXP model
after including two perturbations. PPXP + PXPP is the perturbation
one would expect to improve Z2 revivals based off PXP spin 1/2
results, whereas PPX01P + PX01PP is the actual su(2) correction
obtained from the broken root structure of the Lie algebra (see text
for details). Results for N = 16. Subspace variance σ normalized by
the dimension of the su(2) representation, 2N + 1.

1 − f0 σ/Dsu(2) max(var(Hz )n) K

No Pert 0.4330 0.4277 1.8711 22.3465
PPXP 0.3795 0.3118 1.3467 18.2751
PPX01P 0.1304 0.0757 0.4124 14.1952

our recursive scheme summarized in Fig. 3. The second order
perturbations to H+, Eq. (47), are the following terms:

δ+
(1),0 = PPσ−

3nP + Pσ−
3nPP + PPσ+

3n+1P + Pσ+
3n+2PP, (B1)

δ+
(2),1 = PPσ−

3nPP, (B2)

δ+
(2),2 = Pσ−

3nPσ zP + Pσ zPσ−
3nP, (B3)

δ+
(2),3 = Pσ−

3nPσ zPP + PPσ zPσ−
3nP, (B4)

δ+
(2),4 = Pσ+

3n+1PP + PPσ+
3n+2P, (B5)

δ+
(2),5 = PPσ+

3n+1PP + PPσ+
3n+2PP, (B6)

δ+
(2),6 = Pσ+

3n+1PPP + PPPσ+
3n+2P, (B7)

δ+
(2),7 = Pσ+

3n+1Pσ zP + Pσ zPσ+
3n+2P, (B8)

δ+
(2),8 = Pσ+

3n+1PQP + PQPσ+
3n+2P, (B9)

δ+
(2),9 = PPσ+

3n+1PPP + PPPσ+
3n+2PP, (B10)

δ+
(2),10 = PPσ+

3n+1Pσ zP + Pσ zPσ+
3n+2PP, (B11)

δ+
(2),11 = Pσ+

3n+1Pσ zPP + PPσ zPσ+
3n+2P (B12)

δ+
(2),12 = PPσ+

3n+1PQP + PQPσ+
3n+2PP, (B13)

δ+
(2),13 = PPσ+

3n+1Pσ zPP + PPσ zPσ+
3n+2PP, (B14)

δ+
(2),14 = PPPσ+

3n+1P + Pσ+
3n+2PPP, (B15)

where Q ≡ |1〉〈1|. Perturbations to the PXP Hamiltonian
follow from V(n),m = δ+

(n),m + (δ+
(n),m)†. Optimizing the coef-

ficients of these terms at N = 18, we find maximal wave-
function revivals occur for

λ∗
i = [0.1630, 0.1129, 0.0228, 0.0409,

− 0.0871, 0.0046,−0.0303,−0.0144,

− 0.0592, 0.0005, 0.0223,−0.0185,

− 0.0451, 0.0101, 0.0035]. (B16)

Thus, the dominant perturbations to the PXP Hamiltonian at
second order are

V1 = PPσ x
3nP + Pσ x

3nPP + PPσ x
3n+1P + Pσ x

3n+2PP, (B17)

V2 = PPσ x
3nPP. (B18)

APPENDIX C: PXP Z4 SECOND-ORDER su(2)
PERTURBATION TERMS

For completeness, here we provide the full list of the 36
second-order corrections to the embedded su(2) representa-
tion responsible for Z4 revivals. These terms are identified by
an iterative scheme summarized in Fig. 3. We do not consider
every term which contributes an error to the broken Lie
algebra but restrict to the subset of terms containing a single
spin flip. Note, at second order only three perturbations to H+
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[Eq. (61)] dominate with coefficient O(1) after optimizing for
Z4 revivals. These are found to be

δ+
1 = PPQPσ+

4n+3P + Pσ+
4n+1PQPP, (C1)

δ+
2 = PPσ+

4n+2PP, (C2)

δ+
3 = PPσ+

4n+2Pσ zPP + PPσ zPσ4n+1PP. (C3)

Optimizing the coefficients of all 36 terms with respect to
Z4 fidelity revivals at N = 16 we find the coefficients of
the above three terms are [1.5621, 1.9337,−1.4312]. Before
listing the full set of perturbations, we first introduce the
following abbreviated notation:

ABC . . . , m =
∑

i

A4i+mB4i+m+1C4i+m+2 . . . ,

where m is the offset of the far left operator from sites located
at integer multiples of 4. Listing multiple terms for a given
perturbation is to be understood as implying addition with
coefficient 1. The complete set of second order Z4 su(2)
corrections to H+ are as follows:

δ+
(2),1 = PPσ+P, 3

Pσ+PP, 2

Pσ−PP, 3

PPσ−P, 2 (C4)

δ+
(2),2 = PPσ+PP, 3

PPσ+PP, 1 (C5)

δ+
(2),3 = PPPσ+P, 3

Pσ+PPP, 1 (C6)

δ+
(2),4 = PPQPσ+P, 3

Pσ+PQPP, 0 (C7)

δ+
(2),5 = Pσ−PQP, 3

PQPσ−P, 1 (C8)

δ+
(2),6 = Pσ−Pσ zP, 3

Pσ zPσ−P, 1 (C9)

δ+
(2),7 = Pσ−Pσ zPP, 3

PPσ zPσ−P, 0 (C10)

δ+
(2),8 = Pσ zPσ+P, 3

Pσ+Pσ zP, 1 (C11)

δ+
(2),9 = Pσ+PPP, 2

PPPσ+P, 2 (C12)

δ+
(2),10 = PPσ+PPP, 1

PPPσ+PP, 2 (C13)

δ+
(2),11 = Pσ zPσ+PP, 3

PPσ+Pσ zP, 0 (C14)

δ+
(2),12 = PPσ−PP, 2 (C15)

δ+
(2),13 = PPσ+P, 0

Pσ+PP, 0

PPσ+P, 1

Pσ+PP, 1 (C16)

δ+
(2),14 = PPσ+PP, 0 (C17)

δ+
(2),15 = Pσ+PPP, 0

PPPσ+P, 0 (C18)

δ+
(2),16 = Pσ+PQP, 0

PQPσ+P, 0 (C19)

δ+
(2),17 = PPQPσ−P, 0

Pσ−PQPP, 3 (C20)

δ+
(2),18 = PPσ+PPP, 0

PPPσ+PP, 3 (C21)

δ+
(2),19 = PQPσ+P, 3

Pσ+PQP, 1 (C22)

δ+
(2),20 = PPσ zPσ+P, 2

Pσ+Pσ zPP, 1 (C23)

δ+
(2),21 = Pσ−PPP, 3

PPPσ−P, 1 (C24)

δ+
(2),22 = Pσ zPσ+P, 0

Pσ+Pσ zP, 0 (C25)

δ+
(2),23 = Pσ zPσ+PP, 0

PPσ+Pσ zP, 3 (C26)

δ+
(2),24 = PPσ−PPP, 2

PPPσ−PP, 1 (C27)

δ+
(2),25 = Pσ+Pσ zPP, 0

PPσ zPσ+P, 1

PPσ zPσ+P, 3

Pσ+Pσ zPP, 2 (C28)

δ+
(2),26 = Pσ zPσ+P, 2

Pσ+Pσ zP, 2 (C29)
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δ+
(2),27 = PPσ+Pσ zP, 1

Pσ zPσ+PP, 2 (C30)

δ+
(2),28 = PPPσ+PP, 0

PPσ+PPP, 3 (C31)

δ+
(2),29 = PPσ−Pσ zP, 2

Pσ zPσ−PP, 1 (C32)

δ+
(2),30 = Pσ+PPPP, 0

PPPPσ+P, 3 (C33)

δ+
(2),31 = PPσ zPσ−PP, 0

PPσ−Pσ zPP, 2 (C34)

δ+
(2),32 = PPσ zPσ+PP, 1

PPσ+Pσ zPP, 1 (C35)

δ+
(2),33 = Pσ+PPPP, 2

PPPPσ+P, 1 (C36)

δ+
(2),34 = PPσ zPσ+PP, 3

PPσ+Pσ zPP, 3 (C37)

δ+
(2),35 = Pσ+PPPP, 1

PPPPσ+P, 2 (C38)

δ+
(2),36 = PPσ+Pσ zPP, 0

PPσ zPσ+PP, 2 (C39)

Perturbations to the PXP Hamiltonian [Eq. (1)] follow from

V(2),m = δ+
(2),m + (δ+

(2),m)†. Optimizing coefficients of these
terms at N = 16 with respect to the first maximum of
|〈Z4|e−iHt |Z4〉|2 at N = 16, we find

λ∗
i = [0.0888, 0.2559, 0.0796, 1.5621,

0.1776,−0.0028,−0.0325, 0.0099,

0.1333, 0.0321,−0.0148, 0.1490,

0.0728, 1.9337, 0.0001, 0.0587,

0.0902, 0.0001, 0.1109, 0.0104,

0.0468, 0.0277,−0.0023, 0.1046,

0.0667, 0.0299, 0.0437, 0,

0.0031, 0.0002,−0.0189, 0.0995,

0.1531, 0.0001, 0.0001,−1.4312]. (C40)
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Scarred Many-Body Dynamics in 1D Lattice Models, Phys.
Rev. Lett. 123, 030601 (2019).

[45] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and
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