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We propose a single-site mean-field description, an analog of Weiss mean-field theory, suitable for narrow-
band systems with correlation-induced hybridization at finite temperatures. Presently, this approach, based on
the notion of a fluctuating onsite density matrix (OSDM), is developed for the case of extended Falicov-Kimball
model (EFKM). In an EFKM, an excitonic insulator phase can be stabilized at zero temperature. With increasing
temperature, the excitonic order parameter (interaction-induced hybridization onsite, characterized by the
absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at
higher T ) its absolute value. In order to build an adequate finite-temperature description, it is important to clarify
the nature of degrees of freedom associated with the phase and absolute value of the induced hybridization, and
correctly account for the corresponding phase-space volume. We show that the OSDM-based treatment of the
local fluctuations indeed provides an intuitive and concise description (including the phase-space integration
measure). This allows to describe both the lower-temperature regime where phase fluctuations destroy the
long-range order, and the higher-temperature crossover corresponding to a decrease of the absolute value of
hybridization. In spite of the rapid progress in the studies of excitonic insulators, a unified picture of this kind
has not been available to date. We briefly discuss recent experiments on Ta2NiSe5 and also address the amplitude
mode of collective excitations in relation to the measurements reported for 1T -TiSe2. Both the overall scenario
and the theoretical framework are also expected to be relevant in other contexts, including the Kondo lattice
model.
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I. INTRODUCTION

Interaction-induced pairing commonly occurs in many dif-
ferent contexts including excitonic and Kondo insulators and
superconductivity. This can involve either particle-hole or
particle-particle pairs, and gives rise to an induced hybridiza-
tion or to a superconducting pairing amplitude, both of which
can be viewed as scalar products between formerly orthogonal
many-body states, i.e., as off-diagonal elements of some den-
sity matrix. The corresponding systems are characterized by
the ratio of the induced spectral gap (or pair binding energy)
to the bandwidth energy scales. The case of small binding
energy (weak interaction) corresponds to the well-known BCS
picture, where the crucial role is played by restructuring of the
quasiparticle spectra in the vicinity of the Fermi level only.
Broadly speaking, this case is amenable to a long-wavelength
perturbative treatment, leading to the familiar results. The
opposite limiting case, which is commonly referred to as that
of BEC (Bose-Einstein condensation), is typically realized in
the narrow-band systems and continues to command much
attention from experimental and theoretical standpoints. It
has been suggested that this BEC physics might be relevant
for Kondo lattices and heavy-fermion compounds [1,2], for
high-temperature superconductors (“preformed pairs” sce-
nario [3–5]), as well as for various aspects of excitonic-
insulating behavior in narrow-band systems [6–8] (including
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“electronic ferroelectricity” [9]). One may also note a rather
direct connection with much discussed “Higgs bosons” in
correlated electron systems [10], due to the difference in
the energy cost of phase and amplitude fluctuations of, e.g.,
induced hybridization.

In the BEC regime, there are two distinct energy scales,
corresponding to the energy of strongly bound excitons or
pairs and to their interaction with each other. This gives
rise to a peculiar evolution of the system with increasing
temperature, as will be further discussed below. Importantly,
the BEC pairing is not a phenomenon which concerns only
the carriers in the vicinity of the Fermi level, and new theo-
retical tools are needed (and were indeed suggested, see, e.g.,
Refs. [1,4,5,11]) in order to study the behavior of a system
in this regime. Owing to a small spatial size of an exciton
or a pair, it appears highly desirable to construct a simplified
local mean-field description of a single-site type, an analog
of an elementary Weiss mean-field approach familiar from
the theory of magnets. Hitherto, this important benchmark
appears to be missing, and our present objective is to begin
filling this gap.

Arguably, the simplest situation where this BEC regime
arises is that of the excitonic insulating state in an extended
spinless Falicov-Kimball model (EFKM). In this paper, we
develop a single-site mean-field description for this case,
while adaptation of the method and of the insights to other
systems is relegated to future work. It should be noted that
Falicov-Kimball model throughout its history attracted a mas-
sive research effort [12], owing to its simplicity, peculiarity,
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and physical relevance. The possibility of an ordered excitonic
state in this model was originally conjectured some 43 years
ago [13], and a brief review of more recent literature can be
found, e.g., in Ref. [14]. In particular, variegated analytical
and numerical methods were employed to investigate exci-
ton condensation [15,16], and more generally the BCS-BEC
crossover [17], in the EFKM.

The spinless Falicov-Kimball model proper [18] involves
fermions di and ci in the localized and itinerant bands, inter-
acting via a Coulomb repulsion U onsite:

H = − t

2

∑
〈i j〉

(c†i c j + c†j ci ) + Ed

∑
i

d†
i di + U

∑
i

c†i d†
i dici,

(1)
where Ed is the bare energy of the localized band. We are
interested in the case where U is, broadly speaking, of the
same order of magnitude as the bare hopping amplitude t ,
and we choose the units where t and the period of the (d-
dimensional hypercubic) lattice are equal to unity. We also set
h̄ = kB = 1.

In order to stabilize the state with a large onsite hybridiza-
tion at T = 0,

�i ≡ |�i|eiϕi = 〈c†i di〉, (2)

one must extend the Falicov-Kimball model by adding a
perturbation of general form [14,19–21]

δH =
⎧⎨
⎩− t ′

2

∑
〈i j〉

d†
i d j + V0

∑
i

c†i di − V1

2

∑
〈i j〉

(c†i d j + c†j di )

− V2

2

∑
〈i j〉

([ �Rj − �Ri] · ��)(c†i d j − c†j di )

⎫⎬
⎭+ H.c., (3)

where t ′ is the d-band hopping and V0 the bare onsite
hybridization. V1 (V2) is the spatially even (odd) nearest-
neighbor hybridization, as appropriate for the case where the
two original bands have the same (opposite) parity. �Ri is the
radius vector of a site i, and �� =∑d

α=1 x̂α , sum of Cartesian
unit vectors. For t ′ = 0, the net Hamiltonians, Eqs. (1) and
(3), coincide with that of a spinless periodic Anderson model,
while in the opposite case of V0,1,2 = 0 the EFKM becomes
identical with the asymmetric Hubbard model, where the
hopping coefficients for spin-up (ci) and spin-down (di) elec-
trons differ, and Ed in Eq. (1) is proportional to the Zeeman
splitting.

In a broad range of values of parameters of Eq. (1),
including any of the four terms in Eq. (3) with an appropriate
sign (i.e., t ′ < 0, V0 < 0, V1 with V1Ed < 0, or V2 of any sign)
would result at T = 0 in an ordered excitonic state with a
uniform |�i| = � and ϕi = 0 (when only t ′ differs from 0,
ϕi can take any constant value; we choose the latter to be
equal to zero). This is a mixed-valence state with uniform
band occupancies

nc,i ≡ 〈c†i ci〉 = nc , nd,i ≡ 〈d†
i di〉 = nd . (4)

The absolute value of the corresponding perturbation param-
eter must be larger than a certain critical value (|t ′

cr |, etc.).
Depending on the parameters of the Hamiltonian (3), the
value of � (at least at half-filling, n = nc + nd = 1) may be

large, � � 1
2 . With decreasing perturbation strength (e.g., the

parameter |t ′| is decreased toward |t ′
cr |) the value of � does

not tend to zero. Rather, at a critical point (such as |t ′| = |t ′
cr |)

a new, presumably charge-ordering order parameter arises via
a second-order phase transition [11,14,19], destroying the uni-
formly ordered excitonic state. The critical value t ′

cr [as well
as critical values of the hybridizations V0, V1, or (V2)2] turns
out to be numerically small, some two orders of magnitude
smaller than the bare hopping t . Therefore, a useful insight
can often be gained by either treating δH perturbatively or
even technically neglecting its effects by keeping only the
leading-order term in the calculation.

The behavior of the system at finite T is crucially de-
pendent on the two energy scales characterizing the ordered
excitonic state at T = 0. The first one is the hybridization-
induced energy gap, notably the indirect one, which in cases
where U is not very large can be roughly estimated as

G ∼ 2U 2�2/d (5)

(see Sec. II; note that the bandwidth of the unhybridized
itinerant band equals 2d , twice dimensionality of the system),
and can be an order of magnitude smaller than the direct gap

u = 2U�. (6)

While the value of G at T = 0 determines the crossover
temperature T∗, a much smaller scale of the low-lying col-
lective excitations [14,22] controls critical temperature Tcr of
the ordering transition (corresponding to the Bose-Einstein
condensation of the excitonic gas). The value of Tcr can be es-
timated [14] as (Tcr )2 ∼ |t ′|(|t ′| − |t ′

cr ) [or (Tcr )2 ∼ V 2
2 (V 2

2 −
V 2

2,cr ), etc., when hybridization [23] dominates δH]. While the
excitonic long-range order is lost already at T = Tcr (where
the phases ϕi become disordered), the average value �(T )
of |�i| remains finite, and the state of the system can be
termed disordered electronic insulator. It is also variously
called “excitonic liquid” or “excitonic gas” (as opposed to
“excitonic condensate” at T < Tcr), as the relatively stable
excitons persist in equilibrium without a condensate. Since
this state is not associated with a symmetry breaking, it fades
away via a smooth crossover with increasing T beyond T∗,
when the thermal fluctuations of |�i| become comparable to
�(T ). Above T∗, excitons can no longer be considered stable,
as they are being formed and destroyed rapidly in the course
of fluctuations.

Historically, the investigations of EFKM at finite temper-
atures started with extending the pioneering Hartree-Fock
decoupling approach of Ref. [13] to finite T . However, this
method misses the lower energy scale altogether (also at
T = 0), yielding a second-order phase transition at a certain
T∗ ∼ G, above which �(T ) vanishes (see, e.g., Ref. [21]).
On the other hand, qualitative picture outlined in the pre-
vious paragraph is substantiated by a more advanced self-
consistent treatment of Ref. [11]. Still, it appears that due to
the restrictions of a specific mean-field approach used in the
latter reference (involving functional integrals technique with
certain topological complications stemming from the nature
of the phase variable ϕi), its conclusions imply a distinct
transition at |T∗|, as opposed to a smooth crossover expected
on symmetry grounds.
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As already mentioned, it appears highly desirable to try
and construct a more intuitive treatment of a single-site type.
In addition, one expects that the behavior of the system in
the most interesting crossover regime around T∗ is strongly
affected by the short-range fluctuations, which might not be
dealt with accurately within the long-wavelength (continuum)
approach of Ref. [11]. Finally, one can anticipate that once
an adequate single-site mean-field scheme is developed for
the EFKM, it can be adapted for the entire family of related
systems, as discussed in the beginning of this section.

In constructing our finite-temperature single-site mean-
field approach, we make use of the known properties of
the conventional Hartree-Fock solution [13,14,19,21] for the
EFKM. These are summarized in Sec. II, where we also out-
line our general strategy, which requires taking into account
thermal fluctuations of the local quantities �i and nd,i. While
the values of hybridization and band occupancies can be
deduced from the (fluctuating) onsite density matrix (OSDM),
our Hamiltonian is nonlocal, and in order to calculate the
energy cost of a local fluctuation one needs a fuller knowledge
of the quantum state of the system. The form of the wave
functions corresponding to such local fluctuations is obtained,
under broad assumptions, in Sec. III. The emergent correspon-
dence between the OSDM and the states of the system is also
used in order to find the phase-space volume corresponding
to a local fluctuation. While finding the suitable integration
measure in the space of quantum states appears complicated,
an established notion [24] of measure in the space of den-
sity matrices (Bures measure) can be readily adapted to the
case at hand. This is accomplished in Sec. IV, completing
the description of our mean-field scheme. We note that the
development in Secs. III and IV appears rather general, and
may prove useful beyond the Hartree-Fock approximation for
the wave functions, utilized elsewhere throughout the paper.

The actual application of the technique introduced in
Secs. II–IV begins in Sec. V with the analysis of the low-
temperature behavior, including the ordering transition at
Tcr . While in this case one does not expect any single-site
approach to yield an accurate description, we do find a second-
order phase transition with the value of Tcr controlled by the
parameters of the perturbation, Eq. (3).

The behavior of the EFKM in the high-temperature phase-
disordered state, including the crossover region at T ∼ T∗,
is considered in Sec. VI. It appears that the results obtained
there are both reliable (except when the approach fails due to
the underlying Hartree-Fock approximation becoming invalid,
Sec. VI A) and new, providing the first quantitative description
of the crossover region in the EFKM. This description of
the phase-disordered state appears rather workable from the
point of view of, e.g., prospective calculation of the transport
properties.

In Sec. VII, the emerging picture is discussed in the
context of the ongoing experimental search for excitonic
insulators. While the experimental situation is still uncertain
(see, e.g., a brief review of recent literature on Ta2NiSe5 in
Sec. VII A), this is likely to change in the near future, enabling
a more meaningful comparison with the theoretical insights.
We also include a rather qualitative treatment of collective
excitations (amplitude mode, Sec. VII B) in light of recent
experiments [8].

One can expect that potential applications of the technique
developed in this paper extend beyond those rather limited
aspects considered in Secs. VI and VII, both for the EFKM
and in the context of other systems. This issue is, among
others, discussed in Sec. VIII.

The reader interested mostly in our results for the behavior
of the EFKM at finite temperature might want to skip the
description of the formalism in Secs. III–IV. On the other
hand, those interested specifically in the OSDM-based mean-
field technique could, at a first reading, proceed directly from
Sec. IV to Sec. VIII.

Overall, the discussion in the paper is rather self-contained,
as the Appendices supply necessary technical details for
Secs. III, V, and VI. While some preliminary considerations
were reported earlier in Ref. [25], the technique used there is
largely inadequate. Hence, Ref. [25] is completely superseded
by the present paper.

II. SINGLE-SITE MEAN-FIELD SCHEME AND THE
HARTREE-FOCK SOLUTION

An ordered excitonic insulator state at T = 0 is character-
ized by the uniform values of nc,i, nd,i, and (real positive) �i.
At a finite temperature, these begin to fluctuate, and as long
as T is not too low, can be treated as classical fluctuating
quantities (see further discussion in Sec. IV below). Given
any distribution of local phases ϕi, we can perform a gauge
transformation

di = d̃ie
iϕi , (7)

which yields real 〈c†i d̃i〉 while leaving the unperturbed
Falicov-Kimball Hamiltonian (1) invariant. The perturbation
(3) now reads as

δH = − t ′

2

∑
〈i j〉

d̃†
i d̃ je

i(ϕ j−ϕi ) + V0

∑
i

c†i d̃ie
iϕi

− V1

2

∑
〈i j〉

(c†i d̃ je
iϕ j + c†j d̃ie

iϕi )

− e
V2

2

∑
〈i j〉

{( �Rj − �Ri ) · ��}(c†i d̃ je
iϕ j − c†j d̃ie

iϕi ) + H.c.

(8)

We now proceed with the standard Hartree-Fock decoupling
of the interaction term in Eq. (1), replacing

H → Hm f = − t

2

∑
〈i j〉

(c†i c j + c†j ci ) + Ed

∑
i

d̃†
i d̃i

+U
∑

i

{nd,ic
†
i ci + nc,id̃

†
i d̃i

− |�i|(c†i d̃i + d̃†
i ci ) − nd,i} (9)

with the double occupancy onsite,

nd,i ≡ 〈c†i d†
i dici〉, (10)

given by the mean-field expression nd,i = nd,inc,i − |�i|2.
This yields a quadratic Hamiltonian with fluctuating local
parameters. While these fluctuations will be taken into ac-
count later in a self-consistent way, presently we make use
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of virtual-crystal approximation, averaging both Eqs. (1) and
(8) over the thermal fluctuations of nc,i, nd,i, |�i|, and ϕi. In
the spirit of a single-site mean-field theory, we assume that
fluctuations on different sites are mutually uncorrelated. The
latter implies that, for example,

〈ei(ϕ j−ϕi )〉T = cos2 κ, (11)

where

cos κ ≡ 〈cos ϕi〉T , (12)

and the subscript T in 〈. . . 〉T denotes averaging over the local
thermal fluctuations.

The resultant uniform virtual crystal will play the role of
our mean-field background. The net virtual-crystal Hamilto-
nian [including the perturbation (8)] is readily diagonalized as

Hvc =
∑

�k

[(
ε

(1)
�k − μ

)
f †
1,�k f1,�k + (ε (2)

�k − μ
)

f †
2,�k f2,�k

]− UN〈nd〉T .

(13)

Here, μ is the chemical potential, N is the number of sites
in the lattice, and 〈nd〉T ≡ 〈nd,i〉T , average double occupancy
nd,i onsite. The mean-field energies are given by

ε
(1,2)
�k = 1

2
(Ed + Un + ε�k + t ′ε�k cos2 κ ) ∓ W�k

2
, (14)

W�k =
√

(ξ�k + t ′ε�k cos2 κ )2 + 4|U� − V�k|2, (15)

with � = 〈|�i|〉T ,

ε�k = −
d∑

α=1

cos kα, ξ�k = Erd − ε�k, (16)

and Erd = Ed + U (nc − nd ) (here again, nc,d = 〈nc,d;i〉T ),
renormalized relative energy of the localized band. The
Fourier component of effective bare hybridization is given by

V�k = cos κ ×
{

V0 + V1ε�k, even
iV2λ�k, odd , λ�k = −

d∑
α=1

sin kα

(17)

(depending on the relative parity of the orbitals). The value of
the indirect gap G in the virtual-crystal spectrum is obtained
as a difference between ε2 at �k = 0 and ε1 at the corner of the
Brillouin zone. Neglecting the perturbation δH, we find

G= 1
2 [
√

(Erd − d )2 + 4U 2�2+
√

(Erd + d )2 + 4U 2�2] − d,

(18)

which in the limit of |Erd |,U� � d yields Eq. (5).
The original fermionic operators

ci = 1√
N

∑
�k

ei�k· �Ri c�k, di = 1√
N

eiϕi
∑

�k
ei�k· �Ri d̃�k (19)

are expressed in terms of the mean-field quasiparticle opera-
tors f1,�k and f1,�k with the help of

c�k =
√

η+(�k) f1,�k +
√

η−(�k) f2,�k, (20)

d̃�k
U� − V�k
|U� − V�k|

=
√

η−(�k) f1,�k −
√

η+(�k) f2,�k, (21)

where

η±(�k) = 1

2

(
1 ± ξ�k + t ′ε�k cos2 κ

W�k

)
.

We now readily find the average values over the canonical
ensemble of mean-field fermions (i.e., over the Fermi distri-
bution of the mean-field carriers), denoted 〈. . . 〉F :

�
(0)
i ≡ 〈c†i di〉F = eiϕi�(0) = eiϕi

1

N

∑
�k

��k,

��k =
U� − V ∗

�k
W�k

(
n1

�k − n2
�k
)
, (22)

n(0)
c ≡ 〈c†i ci〉F = 1

N

∑
�k

nc
�k, nc

�k = η+(�k)n1
�k + η−(�k)n2

�k,

(23)

n(0)
d ≡ 〈d†

i di〉F = 1

N

∑
�k

nd
�k , nd

�k = η−(�k)n1
�k + η+(�k)n2

�k,

(24)

where

n1,2
�k = (e ε

(1,2)
�k −μ

T + 1
)−1

are the Fermi distribution functions in two quasiparticle
bands. The actual values of parameters |�i|, nc,i, and nd,i

onsite fluctuate: |�i| = �(0) + δ|�i|, etc. The mean-field self-
consistency conditions for the average quantities �, nc, and
nd [which enter the right-hand side of Eqs. (22)–(24)] take the
form

� = �(0) + 〈δ|�|〉T , nc,d = n(0)
c,d + 〈δnc,d〉T . (25)

Together with Eq. (12) this closes the mean-field scheme
[26]. The procedure for evaluating the probability of an onsite
fluctuation and calculating thermal average values will be
outlined in the following Secs. III–IV. If one is interested in
reviewing the results of this approach, he or she should now
proceed to Sec. V.

It is worthwhile to remind the reader that here we encoun-
tered three distinct types of average values: in addition to 〈. . .〉
(quantum mechanical average), we also used 〈. . .〉F (canonical
average over distribution of Hartree-Fock quasiparticles) and
〈. . .〉T (average over the thermal fluctuations onsite). We will
be using this notation throughout the rest of the paper.

III. LOCAL FLUCTUATIONS AND THE ONSITE
DENSITY MATRIX

Let us consider a single site (located at origin) in the
virtual-crystal background. There are four quantum states |sn〉
available onsite:

|s1〉 ≡ |c〉 = c†0|0〉, |s2〉 ≡ |d〉 = d†
0 |0〉,

(26)
|s3〉 = |0〉, |s4〉 ≡ |cd〉 = c†0d†

0 |0〉,
including two singly occupied states, vacuum state |0〉, and
the doubly occupied state |cd〉. In the absence of thermal fluc-
tuations of the onsite parameters, the thermal onsite density
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matrix (OSDM) is given by

ρ (0)
mn = 〈ρQM

mn

〉
F ≡

∑
|
〉

ρQM
mn (
)P(
). (27)

Here, the summation is over all basic many-body eigenfunc-
tions |
〉 of the averaged Hamiltonian. Presently, we can
choose these to be eigenfunctions of both the virtual-crystal
(i.e., averaged Hartree-Fock) Hamiltonian (13), and of the net
particle number operator N̂ . The matrix

ρQM
mn (
) = 〈
(|sn〉〈sm|)
〉 (28)

is the regular quantum-mechanical OSDM calculated for the
state |
〉, and

P(
) = 1

Z
〈
|e−Hvc−μN̂

T |
〉 (29)

is the canonical probability of this state. Z is the partition
function.

Each eigenvector |
〉 can be represented as a sum of four
mutually orthogonal terms

|
〉 = Ac(
)|c〉|�c(
)〉 + Ad (
)|d〉|�d (
)〉
+ A0(
)|0〉|�0(
)〉 + Acd (
)|cd〉|�cd (
)〉, (30)

where |�i〉 are |
〉-dependent normalized wave functions
defined on all the N − 1 sites away from our central site 0, and
|Ac|2 + |Ad |2 + |A0|2 + |Acd |2 = 1. Owing to the different net
electron numbers on these sites, we have

〈�0|�cd〉 = 〈�0|�c,d〉 = 〈�cd |�c,d〉 = 0. (31)

Therefore, multiplying A0, Acd , or both Ac and Ad by a phase
factor does not affect ρ̂ (0); only the relative phase of the first
and second terms on the right-hand side of Eq. (30) appears in
the OSDM. An obvious equality

d0d†
0 c†0c0 + c0c†0d†

0 d0 + d0c0c†0d†
0 + c†0d†

0 d0c0 = 1 (32)

allows to perform the decomposition (30) explicitly by writing

Ac|c〉|�c〉 = d0d†
0 c†0c0|
〉, (33)

etc. Indeed, each term in Eq. (32) projects upon a single local
state |si〉, and the right-hand side of Eq. (33) contains all those
terms in |
〉 which correspond to the site 0 being occupied by
a c-band electron in the absence of a d-band one. It follows
that

Ac|0〉|�c〉 = c0d0d†
0 |
〉, Ad |0〉|�d〉 = d0c0c†0|
〉, (34)

A0|0〉|�0〉 = d0c0c†0d†
0 |
〉, Acd |0〉|�cd〉 = d0c0|
〉. (35)

Substituting Eq. (30) into Eq. (27) and using anticommutation
relationships for the fermion operators onsite yields

n(0)
c − n

(0)
d = ρ

(0)
11 = 〈|Ac|2〉F , (36)

n(0)
d − n

(0)
d = ρ

(0)
22 = 〈|Ad |2〉F , (37)

n
(0)
d = ρ

(0)
44 = 〈|Acd |2〉F , (38)

ρ
(0)
33 = 〈|A0|2〉F = 1 + n

(0)
d − n(0)

c − n(0)
d , (39)

�0 = eiϕ0�(0) = ρ
(0)
21 = 〈A∗

cAd (〈�c|�d〉)〉F . (40)

Here, the subscript “F” again implies canonical average over
all virtual-crystal eigenstates |
〉. In the Hartree-Fock approx-
imation, the states |
〉 are merely products of operators f †

1,�k
and f †

2,�k acting on the overall vacuum |vac〉 of the system, and
Eqs. (36)–(40) are readily verified with the help of Eqs. (19)–
(21), (22)–(24), (34), and (35). It is equally easy to obtain the
standard Hartree-Fock result

n
(0)
d = n(0)

c n(0)
d − [�(0)]2. (41)

In writing Eq. (40), we made allowance for a phase-
disordered state with an arbitrary phase ϕ0 of 〈c†0d0〉, which
perhaps needs a clarification. The operators d̃†

i are obtained
from f †

(1,2),�k (used to construct the state |
〉) with the help

of Eq. (21), followed by a Fourier transform. The phases ϕi

of the operators di can then be assigned arbitrarily accord-
ing to Eq. (7), or alternatively one can continue working
in terms of operators d̃i, inserting the same values of ϕi in
Eq. (8). The state |
〉 is an eigenstate of the full mean-field
Hamiltonian Hm f + δH [see Eqs. (8) and (9)] averaged over
thermal fluctuations of these phases and of other parame-
ters [which is but a site representation of the virtual-crystal
Hamiltonian (13)].

Since the Hartree-Fock quasiparticles form an ideal Fermi
gas, the fluctuations of all the onsite quantities over the
canonical distribution of the many-body eigenfunctions |
〉
vanish in a large system (i.e., for N → ∞; see Appendix A).
Hence, at least in the Hartree-Fock approximation, we can use
Eqs. (36)–(40) to substitute in Eq. (30)

Ac → A(0)
c ≡

√
〈|Ac|2〉F , Ad → A(0)

d ≡ eiϕ0
√

〈|Ad |2〉F ,

A0 → A(0)
0 ≡

√
〈|A0|2〉F , Acd → A(0)

cd ≡ eiϕ0
√

〈|Acd |2〉F .

(42)

Here, our choice of relative phases, which corresponds to a
real 〈�c|�d〉F , is a matter of convenience and reflects the
choice of phases of the states |�i〉. Once the latter are fixed,
this also fixes all the relative phases of Ai. This is because
the Hamiltonian H + δH is a nonlocal operator (unlike the
OSDM). We will see that varying the phases of Ai generally
affects the average energy.

From Eqs. (36)–(40) we observe that single-site thermal
fluctuations (distinct from the Fermi-distribution fluctuations
discussed in the previous paragraph), i.e., deviations of the
OSDM from ρ̂ (0) of Eq. (27), are obtained by varying both
the complex coefficients Ai in Eq. (30), and the scalar product
〈�c|�d〉F . The latter, however, is inconvenient as it implies
changes to states |�c,d〉 and makes the procedure convoluted.
Therefore, it is expedient to use operators a† and b† which
diagonalize ρ̂ (0):

c†0 = cos
β (0)

2
a† − sin

β (0)

2
b†, (43)

d†
0 ≡ e−iϕ0 d̃†

0 = e−iϕ0 sin
β (0)

2
a† + e−iϕ0 cos

β (0)

2
b†, (44)

tan β (0) = 2�(0)

n(0)
c − n(0)

d

. (45)
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While obviously |ab〉 ≡ a†b†|0〉 = exp (iϕ0)|cd〉, the singly
occupied part of the decomposition (30) is rewritten as

Ac|c〉|�c〉 + Ad |d〉|�d〉
= Aa(
)|a〉|�a(
)〉 + Ab(
)|b〉|�b(
)〉 (46)

with |a〉 = a†|0〉 and |b〉 = b†|0〉. This in turn yields(
A(0)

a,b

)2 ≡ 〈|Aa,b|2〉F = 1
2

(
n(0)

c + n(0)
d − 2n(0)

d

)
± 1

2

√(
n(0)

c − n(0)
d

)2 + 4[�(0)]2, (47)

〈A∗
aAb(〈�a|�b〉)〉F = 0, (48)

where the last equation implies that |�a〉 and |�b〉 are
orthogonal “on average” (again with vanishing canonical

fluctuations), which is precisely what is needed. Finally, the
first two terms on the right-hand side of Eq. (30) can be
reexpressed with the help of

A(0)
a |0〉|�a〉 =

(
cos

β (0)

2
c0d0d†

0 + e−iϕ0 sin
β (0)

2
d0c0c†0

)
|
〉,

(49)

A(0)
b |0〉|�b〉 =

(
e−iϕ0 cos

β (0)

2
d0c0c†0 − sin

β (0)

2
c0d0d†

0

)
|
〉

(50)

[cf. Eqs. (34) and (35)], resulting in

|
〉 = |c〉
(

cos
β (0)

2
A(0)

a |�a〉 − sin
β (0)

2
A(0)

b |�b〉
)

+ eiϕ0 |d〉
(

sin
β (0)

2
A(0)

a |�a〉 + cos
β (0)

2
A(0)

b |�b〉
)

+ A(0)
0 |0〉|�0〉 + A(0)

cd |cd〉|�cd〉. (51)

The vectors |�a,b(
)〉 on the right-hand side can be expressed directly via Eqs. (47), (49), and (50), whereas |�0〉 and |�cd〉 are
similarly calculated using Eqs. (35), (38), and (39).

A single-site fluctuation (a fluctuation of OSDM at site 0) corresponds to a change of coefficients in Eq. (51), as detailed in
Appendix B. For every state |
〉 this yields a perturbed state |
̃〉, characterized by the parameters β, φ, θi, and γi:

|
̃(β, φ, θ1, θ2, θ3, γ1, γ2, γ3)〉 = eiγ1 cos θ2 cos θ3

[
|c〉
(

eiγ2 cos
β

2
cos

θ1

2
|�a(
)〉 − e−iγ2 sin

β

2
sin

θ1

2
|�b(
)〉

)
+ eiφ |d〉

×
(

eiγ2 sin
β

2
cos

θ1

2
|�a(
)〉 + e−iγ2 cos

β

2
sin

θ1

2
|�b(
)〉

)]

+ sin θ2 cos θ3|0〉|�0(
)〉 + ei(2γ1+φ+γ3 ) sin θ3|cd〉|�cd (
)〉, (52)

with 0 � β � π , 0 � φ, γ1,3 � 2π , and 0 � θ1,2,3, |γ2| � π/2 (see Appendix B). Here, we will be interested for the most part
in the case of half-filling, considering only fluctuations |
̃〉 that preserve the site occupancy n = nc + nd = 1 (see Sec. IV for
further discussion). This implies |A0| = |Acd | for both |
〉 and |
̃〉, i.e., sin θ2 = tan θ3. In this case, Eq. (52) takes a simpler
form

|
̃(β, φ, θ1, θ3, γ1, γ2, γ3)〉 = eiγ1
√

cos 2θ3

[
|c〉
(

eiγ2 cos
β

2
cos

θ1

2
|�a(
)〉 − e−iγ2 sin

β

2
sin

θ1

2
|�b(
)〉

)
+ eiφ |d〉

×
(

eiγ2 sin
β

2
cos

θ1

2
|�a(
)〉 + e−iγ2 cos

β

2
sin

θ1

2
|�b(
)〉

)]

+ sin θ3[|0〉|�0(
)〉 + ei(2γ1+φ+γ3 )|cd〉|�cd (
)〉], (53)

where 0 � β � π , 0 � φ, γ1,3 � 2π , 0 � θ1, |γ2| � π/2,
and 0 � θ3 � π/4. As explained in Appendix B, Eq. (52)
is obtained using an SU(4) transformation in the four-
dimensional space of vectors |a〉|�a〉, |b〉|�b〉, |0〉|�0〉, and
|cd〉|�cd〉, followed by an SU(2) transformation of the onsite
states |a〉 and |b〉. Equation (52) [or similarly Eq. (53)] can be
rewritten in the form

|
̃(β, φ, θ1, θ2, θ3, γ1, γ2, γ3)〉
= Ŝ(β, φ, θ1, θ2, θ3, γ1, γ2, γ3)|
〉, (54)

with the expression for the operator Ŝ given in Appendix C.
The operator Ŝ is unitary “on average,” 〈
|Ŝ†Ŝ|
〉F = 1,
which can be verified directly.

The values of parameters β, φ, and θi are the same for all
unperturbed eigenstates |
〉. For the n = 1 case of Eq. (53) the
unperturbed states |
〉 are recovered, |
̃〉 = |
〉, at γ1,2,3 =
0, β = β (0), φ = ϕ0, θ1,3 = θ

(0)
1,3, where

cos θ
(0)
1 =

√(
1 − 2n(0)

d

)2 + 4(�(0) )2

1 − 2n(0)
d

,

(55)

sin θ
(0)
3 =

√
n

(0)
d

[for the n �= 1 case, see Eqs. (B5) and (B6)]. The fluctuation
of wave functions is translated into a fluctuation of OSDM,

165130-6



ONSITE DENSITY MATRIX DESCRIPTION OF THE … PHYSICAL REVIEW B 101, 165130 (2020)

which is calculated as [cf. Eq. (27)]

ρmn(β, φ, θi, γi ) =
∑
|
〉

ρQM
mn (
̃ )P(
). (56)

We readily find that the form of OSDM, corresponding to
Eq. (52) or (53), coincides with expressions given below in
Sec. IV [see Eqs. (69) and (78), respectively; the physical
meaning of quantities γi, which do not affect the density
matrix, will be discussed in Sec. VI A]. As for the energy cost
of the local fluctuation, it can be evaluated via

δE (β, φ, θi, γi ) = 〈
̃|Hm f + δH|
̃〉T ′,ϕ0

−〈
|Hm f + δH|
〉T ′,ϕ0 . (57)

Here, the average 〈. . .〉T ′ includes, in addition to the Fermi
distribution averaging 〈. . .〉F , also taking the average value
over thermal fluctuations of the background, i.e., over thermal
fluctuations on all sites other than our central site. In addition,
it is convenient to add to the 〈. . .〉T ′ also an averaging over the
phase ϕ0, which is random and obeys Eq. (12). We recall that
ϕ0 is the value of φ at site 0 before the fluctuation; it enters
Eqs. (52) and (53) via |�a,b〉 (see Appendix C for details).

Note that Eq. (57) is written for the mean-field Hamil-
tonian Hm f + δH. In the first term in Eq. (57), the average
values which enter the Hartree-Fock expression for the inter-
action energy in Eq. (9) should be evaluated in the perturbed
state |
̃〉.

In the important case when the fluctuation does not change
the values of the three angles θi, i.e., when θi = θ

(0)
i , the

operator Ŝ is unitary not only “on average” (see above), but
also precisely [27]: Ŝ†Ŝ = 1. In this situation, Eq. (57) can be
conveniently recast as

δE
(
β, φ, θ

(0)
i , γi

) = 〈
|Ŝ†[H + δH, Ŝ]|
〉T ′,ϕ0 . (58)

Furthermore, in this case Ŝ both commutes with the inter-
action term in H [Eq. (1)] and does not change the average
value of the mean-field interaction term in Eq. (9), which term
therefore does not contribute to δE .

In the opposite case of Ŝ†Ŝ �= 1 (when the thermal fluc-
tuations of θi are taken into account), taking the average
over thermal fluctuations of the background in Eq. (57) is
problematic because fluctuations on different sites are no
longer fully independent (a fluctuation of the OSDM at site i
affects the value of the OSDM at site j). However, in Sec. VI
below we will provide a tentative argument to the effect that
this averaging almost does not affect the mean-field solution,
so that one can use a simpler equation

δE ≈ 〈
̃|Hm f + δH|
̃〉F,ϕ − 〈
|Hm f + δH|
〉F,ϕ, (59)

where the average is taken only over the thermal fluctuations
of the phases ϕi at all sites and over the Fermi distribution.
We recall that the phases ϕi are detached from the fermionic
degree of freedom of the Hartree-Fock quasiparticles [see
Sec. II, beginning with Eq. (7)], hence, we did not need to
fully take the phase degree of freedom into account when
constructing the representation (51) of an eigenstate |
〉
(where we, however, made allowance for an arbitrary ϕ0).
These phases do affect the energy via δH [Eq. (8)].

Let us pause and briefly discuss the meaning of Eqs. (52)–
(57). It will be expedient to consider first the case of a half-

filled EFKM (n = 1) at a relatively low temperature T � G
[see Eq. (18)], when the lower quasiparticle band is filled and
thermal excitations of quasiparticles across the gap freeze out.
Then there remains only one term in the sum on the right-
hand side of Eq. (27), corresponding to a fully occupied lower
mean-field band

|
〉 = |
0〉 ≡
∏

�k
f †
1,�k|vac〉, (60)

which can be decomposed according to Eq. (51). The states
|sn〉|�n′ 〉, which appear on the right-hand side, are eigenstates
of the particle number operator, and their structure is very
similar to that of the original state |
0〉. In fact, they are
very close to being eigenfunctions of the Hamiltonian, solving
the real-space Schrödinger equation everywhere except at the
central site i = 0 and at neighboring sites. In the case of the
correct eigenfunction |
0〉, the contributions of all such states
should be “stitched together” at i = 0, which is achieved by
the proper choice of coefficients in Eq. (51). In general, these
coefficients determine the OSDM, and vice versa. Hence,
Eqs. (52) and (53) correspond to a situation whereby OSDM
fluctuates while the average energy per site away from the
central site (and neighboring sites) stays constant, and the
fundamental “building blocks” |�n〉 of the wave function |
0〉
are kept intact. The state |
̃〉 is not an eigenstate of the
Hamiltonian, i.e., quantum mechanics dictates that the defect
created at i = 0 should eventually spread and dissipate, but
we assume that this process (which involves redistribution of
slow-moving fermions d) is slow in comparison to the thermal
fluctuations of OSDM. The energy of this variational state
can still be calculated on average [see Eq. (57)]. We note
that calculating a quantum-mechanical density matrix (28)
for any state (and not only for an eigenstate) is a legitimate
operation. Overall, we conjecture that this kind of procedure
is the closest analog of a Weiss-type mean field for the case
when itinerant carriers are present.

Away from half-filling, or when temperature is sufficiently
high to allow for quasiparticles populating the upper band, the
system (in the absence of single-site fluctuations) can be found
in one of the possible eigenstates |
〉 with a probability P(
),
as given by Eq. (29). Once an onsite fluctuation occurs (adia-
batically), this state is deformed according to Eq. (52), and we
wish to calculate the momentary value of the OSDM before
the (deformed) state |
̃〉 evolves quantum mechanically, and
certainly before the statistical probability of this evolving state
is adjusted via thermalization. Thus, the contribution of the
state |
̃〉 to the (thermal) OSDM [Eq. (56)] clearly comes with
the original weight P(
). Finally, the fact that the values of
parameters β, φ, and θi in Eq. (52) are the same for all |
〉
ensures that the thermal distribution away from the central
site (relative contributions of different original |
〉’s to the
mutually orthogonal “sectors” |�n〉) remains undisturbed.

To summarize, our results in this section establish a one-
to-one correspondence between the local fluctuations (i.e.,
thermal fluctuations of the OSDM) and the deformations
of the many-body wave functions. This allows to calculate
the energy cost δE of a given fluctuation, and hence the
probability of such fluctuation w ∝ exp(−δE/T ). However,
we still need to know the phase volume corresponding to each
fluctuation, or, in other words, the integration measure in the
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space of parameters β, φ, and θi. This issue will be addressed
in the following section.

IV. DENSITY MATRIX PARAMETRIZATION
AND THE BURES MEASURE

Our objective is to construct a single-site mean-field de-
scription for the EFKM at finite temperatures. To this end,
in the previous section we analyzed the fluctuations of the
onsite density matrix in the mean-field background. In order
to proceed with the calculation of the average values, we need
to determine the corresponding integration measure. In other
words, we must learn to integrate over fluctuating variables,
when these variables are elements of a density matrix, i.e.,
form a peculiar mathematical object.

In Sec. III we also saw that the local fluctuations of the
many-body wave functions, and hence of the OSDM, can
be described in terms of angular parameters β, φ, and θ1,2,3

(additional wave-function parameters γ1,2,3 do not affect the
OSDM). Here, we will arrive at exactly the same parametriza-
tion of the OSDM [Eqs. (69) and (78)] in a direct way, without
analyzing the wave functions of the system.

Taking into account that this is not a very familiar subject,
we will first mention some general notions and results [24],
and then show how these are adapted to the case at hand.
An N × N positive-definite Hermitian matrix M̂ can be
parametrized as

M̂ = Û�̂ Û†, (61)

where �̂ is a diagonal matrix of positive eigenvalues λi (i =
1, . . . ,N ), and Û is an SU(N ) unitary matrix. While the
question how to perform an integration over the elements of
Û in principle has a ready answer, due to the existence of a
well-defined Haar measure d�H

N in SU(N ), integration over
the eigenvalues λi does present a difficulty. It is immediately
clear that the corresponding integration measure must show
a nontrivial dependence on the eigenvalues λi, vanishing
whenever any two eigenvalues coincide, λm = λn. This is
due to the fact that the matrix �̂ (and hence M̂) will then
be invariant under the action of the corresponding SU(2)
subgroup of the SU(N ) (acting on these two eigenvalues only;
this corresponds to an invariance of a 2 × 2 unity matrix under
unitary transformations). The presence of these “inefficient”
(in terms of varying M̂) transformations should then be
compensated by the measure of the λi integration vanishing
at the point λm = λn.

The appropriate Bures measure d�B for integration in the
space of matrices M̂ is constructed based on an assumption
that an infinitesimal distance dsB between two matrices M̂
and M̂ + δM̂ is given by the Bures metric [28], which can be
cast in the form [29]

(dsB)2 =
N∑
j=1

(dλ j )2

λ j
+ 4

∑
j<k

(λi − λk )2

λi + λk
[(dx jk )2 + (dy jk )2].

(62)

Here, the quantities dx jk and dy jk are real and imaginary
parts of the matrix element U jk in Eq. (61) for the case of
an infinitesimal unitary transformation, and the basis j, k is
chosen in such a way that M̂ is diagonal. If we also add a

requirement that the trace of the matrix M̂ should be equal to
unity,

∑
i λi = 1 (which merely introduces the delta function

in the following equation [29–31]), the expression for the
Bures measure reads as [29,32]

d�B = δ

( N∑
i=1

λi − 1

) ⎡
⎣∏

j<k

4
(λi − λk )2

λi + λk

⎤
⎦[ N∏

i=1

dλi√
λi

]
d�H

N .

(63)

In our case, the density matrix ρ̂ is a 4 × 4 one, built on the
local states |c〉, |d〉, |0〉, and |cd〉 (in this order). Furthermore,
our Hamiltonian preserves the total number of electrons, and
we are using the basic wave functions of the whole system,
which diagonalize the particle number operator (unlike, e.g.,
the BCS wave functions). In this case, those off-diagonal
elements of ρ̂ which involve at least one of the states |0〉
and |cd〉, being also off diagonal in the electron number
onsite, must vanish. Hence, the only off-diagonal elements of
ρ̂ which may be present are ρ12 and ρ21 = ρ∗

12. Therefore, the
matrix Û in Eq. (61) must take the form

Û =

⎛
⎜⎜⎝

e−iφ/2 cos β

2 −e−iφ/2 sin β

2 0 0

eiφ/2 sin β

2 eiφ/2 cos β

2 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (64)

with an SU(2) matrix (omitting the additional phase parameter
which cancels out in the final expression for ρ̂) in the upper
left quadrant. The Bures distance then reads as

(dsB)2 =
4∑

j=1

(dλ j )2

λ j
+ 4

(λ1 − λ2)2

λ1 + λ2
[(dx12)2 + (dy12)2],

(65)
and the first product on the right-hand side of Eq. (63) is
replaced with a single factor

4
(λ1 − λ2)2

λ1 + λ2
.

We then parametrize the four eigenvalues according to

λ1 = r cos2 θ3 cos2 θ2 cos2 θ1

2
,

λ2 = r cos2 θ3 cos2 θ2 sin2 θ1

2
, (66)

λ3 = r cos2 θ3 sin2 θ2, λ4 = r sin2 θ3.

Substituting these into Eq. (63), working out the Jacobian and
performing the integration over real positive r, we arrive at

d�B = 32

π3
cos4 θ3 cos3 θ2 cos2 θ1 sin βd θ1dθ2dθ3dβ dφ.

(67)
The five angles in Eq. (67) vary within the ranges

0 � θ1, θ2, θ3 � π

2
, 0 � β � π, 0 � φ � 2π, (68)

and in writing Eq. (67) we renormalized the overall pre-factor
in such a way that

∫
d�B = 4, the net number of states onsite.
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Equation (61) yields the OSDM in the form

ρ̂ =

⎛
⎜⎜⎜⎜⎝

1
2 cos2 θ3 cos2 θ2(1 + cos θ1 cos β ) 1

2 e−iφ cos2 θ3 cos2 θ2 cos θ1 sin β 0 0

1
2 eiφ cos2 θ3 cos2 θ2 cos θ1 sin β 1

2 cos2 θ3 cos2 θ2(1 − cos θ1 cos β ) 0 0
0 0 cos2 θ3 sin2 θ2 0
0 0 0 sin2 θ3

⎞
⎟⎟⎟⎟⎠. (69)

The angles θ1,2,3, β, and φ will be treated as fluctuating
classical variables, akin to Euler angles in the familiar spin-
coherent states technique [33] for an insulating magnet. This
is expected to be qualitatively correct as long as thermal
fluctuations are sufficiently strong. We note that at very low
temperatures (well below the ordering temperature Tcr) any
single-site treatment would be inadequate.

For given values of the angles, the quantum average value
of an onsite operator Ô can be read off Eq. (69) according to

O(β, φ, θ1, θ2, θ3) =
4∑

i, j=1

ρi jO ji. (70)

For example,

ñc(β, θ1, θ2, θ3) = ρ11 + ρ44

= 1
2 cos2 θ3 cos2 θ2(1 + cos θ1 cos β ) + sin2 θ3, (71)

ñd (β, θ1, θ2, θ3) = ρ22 + ρ44

= 1
2 cos2 θ3 cos2 θ2(1 − cos θ1 cos β ) + sin2 θ3, (72)

etc. Thermal fluctuations of the OSDM lead to fluctuations
of the band occupancies onsite, and the tilde accents on the
left-hand side of Eqs. (71) and (72) serve to distinguish these
fluctuating quantities from their average values [see Eq. (25)].

It can be assumed that local fluctuations of the net carrier
occupancy onsite ñ = ñc + ñd are suppressed by a strong
electrostatic interaction (not explicitly included in our model),
hence we only need to consider those fluctuations which do

not disturb the value of n, with the integration measure

d�B(n) = δ(cos2 θ3 cos2 θ2 + 2 sin2 θ3 − n)d�B. (73)

We find that the total number of states onsite available for a
given n is

I (n) ≡
∫

d�B(n) = 8

π
log

∣∣∣∣∣
√

2 − n + √
n√

2 − n − √
n

∣∣∣∣∣− 8

π

√
n
√

2 − n.

(74)
Throughout the rest of this paper we shall restrict ourselves
to the half-filled case n = 1. Then, the value of θ2 in the
integrand should be substituted according to

sin θ2 = tan θ3, (75)

whereas the integration measure d� ≡ d�B(1) can be ob-
tained by performing the integral over θ2 in Eq. (73):

d� = 1

A(τ )
cot 2θ3 cos2 θ3 cos2 θ1 sin β dθ1dθ3dβ dφ,

A(τ ) = 1

4
π2(2| log τ | − log 2 − 1). (76)

The integration should be performed over the range

0 � θ1 � π

2
, τ � θ3 � π

4
, 0 � β � π, 0 � φ � 2π

(77)
for a small but finite value of τ > 0, which then should be
taken to zero in the final expressions for thermal average
values. This procedure is required due to a logarithmic di-
vergence arising from the singularity of the measure d� at
θ3 → 0; the latter in turn reflects the logarithmic singularity of
the quantity I (n) [Eq. (74)] at n = 1. The measure in Eq. (76)
has been renormalized according to

∫
d� = 1.

Using Eq. (75), we find the final expression for the OSDM

ρ̂ =

⎛
⎜⎜⎜⎜⎝

1
2 cos 2θ3(1 + cos θ1 cos β ) 1

2 e−iφ cos 2θ3 cos θ1 sin β 0 0

1
2 eiφ cos 2θ3 cos θ1 sin β 1

2 cos 2θ3(1 − cos θ1 cos β ) 0 0
0 0 sin2 θ3 0
0 0 0 sin2 θ3

⎞
⎟⎟⎟⎟⎠, (78)

and hence for the (fluctuating) local physical quantities at n = 1:

〈c†0c0〉 ≡ ñc(β, θ1, θ3) = 1
2 + 1

2 cos 2θ3 cos θ1 cos β, (79)

〈d†
0 d0〉 ≡ ñd (β, θ1, θ3) = 1

2 − 1
2 cos 2θ3 cos θ1 cos β, (80)

〈c†0d0〉 ≡ eiϕ�̃(β, θ1, θ3) = ρ21

= 1
2 eiφ cos 2θ3 cos θ1 sin β, (81)

〈c†0d†
0 d0c0〉 ≡ ñd(β, θ1, θ3) = ρ44 = sin2 θ3. (82)
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Should one desire to consider only those fluctuations which
respect the Hartree-Fock condition ñd = ñcñd − �̃2, an addi-
tional restriction is introduced, fixing the value of θ3:

sin2 θ3 = sin θ1 − sin2 θ1

2 cos2 θ1
. (83)

The integration measure (76) is then multiplied by an appro-
priate delta function. A more mathematically rigorous proce-
dure might yield also an additional θ1-dependent prefactor,
but since, in the regime of interest, the average value of θ1

is typically mid-range (away from potential singularities), this
is unlikely to affect the results.

We are finally in a position to complete our mean-field
scheme, as outlined in Sec. II. At a fixed density n = 1, there
are only three [26] independent mean-field parameters: �,
cos κ , and nd (with nc = 1 − nd ). We first note that the three
phases γi in Eq. (53) do not affect the density matrix and
should be integrated over, with the measure and ranges

d� = dγ1dγ2dγ3

4π3
, 0 � γ1,3 � 2π, −π

2
� γ2 � π

2
(84)

(see Appendix B). Writing the probability of a local fluctua-
tion of the OSDM as

w(β, φ, θ1, θ3) = 1

Q

∫
e− 1

T δE (β,φ,θ1,θ3,γ1,γ2,γ3 )d�, (85)

Q ≡
∫

e− 1
T δE d� d� (86)

[see Eqs. (57), (76), and (77)], we can substitute in Eqs. (12)
and (25)

cos κ =
∫

cos φ w(β, φ, θ1, θ3)d�, (87)

〈δ|�|〉T =
∫

[�̃(β, θ1, θ3) − �(0)]w(β, φ, θ1, θ3)d�, (88)

〈δnd〉T =
∫ [

ñd (β, θ1, θ3) − n(0)
d

]
w(β, φ, θ1, θ3)d�. (89)

Self-consistency is ensured due to the dependence of �(0) and
n(0)

d [as well as δE , which is affected due to the structure of
wave functions in the averaging procedure in Eq. (57)] on �,
cos κ , and nd [see Eqs. (22), (24), and (25)].

We shall now turn to implementing this approach and
studying the properties of resultant mean-field solution in
two different temperature regimes. In the simplified treatment
which follows, we will be interested only in the thermal
fluctuations of the phase φ and of the angle β (the latter
affecting in turn the quantity nc − nd and the absolute value �

of the hybridization), while assuming that all other variables
are frozen at their respective virtual-crystal values θi = θ

(0)
i

and (except in Sec. VI A) γi = 0. Formally, this corresponds
to multiplying the integration measure by the appropriate delta
functions. Since the values θ

(0)
i lie somewhere in the middle

of the integration range (i.e., away from any singularities) and
the measure of integration over γi, Eq. (84), is featureless, we
can expect that no qualitatively important effects are left out of
our results for �(T ) and cos κ . Nevertheless, these neglected
fluctuations can result in an additional T -dependent term in
the specific heat.

V. LOW-TEMPERATURE ORDERING TRANSITION

We begin with the low-temperature regime of T � Tcr . In
this region, only fluctuations of the phase ϕi are expected
to be appreciable (and therefore there are altogether three
self-consistency equations to solve, for nd , �, and ϕ). Never-
theless, in order to provide connection with the discussion of
the high-temperature regime we will also allow for small fluc-
tuations of β [which in turn lead to fluctuations of the absolute
value � of hybridization 〈c†0d0〉, see Eq. (81)]. Neglecting the
small fluctuations of both θi and γi, we use Eqs. (58), (C11),
and (C12) to find the energy cost δE of a single-site fluctuation
of φ and β:

δE = 2(cos κ − cos φ)
[
t ′l (0)

d cos κ − V0�
(0) + V1l (0)

� + V2m
]

+ δβ(cos κ − cos φ)
[
V1l (0)

c + t ′l (0)
� cos κ − V0

× (n(0)
c − n(0)

d

)]+ 1
4 (δβ )2[l (0)

c + Ed
(
n(0)

c − n(0)
d

)]
, (90)

where δβ ≡ β − β (0) is assumed small. In writing the (small)
second and third terms in Eq. (90), we omitted contributions
of higher order in t ′ and Vi. The four real quantities l (0)

c , l (0)
d ,

l (0)
� , and m are defined as

l (0)
c,d = − 1

N

∑
�k

nc,d
�k ε�k, l (0)

� = − 1

N

∑
�k

��kε�k,

m = − i

N

∑
�k

��kλ�k (91)

[see Eqs. (16), (17), and (22)–(24)]. As for the phase-space
integration measure [Eq. (76)], to leading order it reduces to
just dφ dβ.

We begin with discussing the first term in Eq. (90), i.e., the
δβ = 0 case. The expression in square brackets is of the first
order in parameters t ′, V0, and V1, and of second order in V2.
The latter is so because in the expression for m the quantity
��k is even in momentum at V2 = 0 [see Eq. (22)] whereas λ�k
is always odd, hence, to leading order m is proportional to V2:

m = V2m̃ cos κ, m̃ = 1

N

∑
�k

(λ�k )2

W�k

(
n1

�k − n2
�k
)

(92)

[see Eq. (15)]. Accordingly, the first three terms in the brack-
ets can be readily obtained within the first-order perturbation
theory in δH, although strictly speaking, our expression in
Eq. (90) includes self-consistent corrections (note that the
perturbation δH also gives rise to small changes in l (0)

c,d and
�(0)). The V2 term, however, can not be obtained as a second-
order perturbative correction, as the latter includes the effects
of wave-function readjustment away from our central site
and therefore cannot be used to construct a viable single-site
mean-field scheme.

We also note that the first term in Eq. (90) is similar to that
obtained in a Weiss description of an XY magnet. Specifically,
cos κ plays the role of magnetization, the sum of exchange
terms is loosely paralleled by

J = 2t ′l (0)
d + 2V 2

2 m̃, (93)

and

H = −2V0�
(0) + 2V1l (0)

� (94)

165130-10



ONSITE DENSITY MATRIX DESCRIPTION OF THE … PHYSICAL REVIEW B 101, 165130 (2020)

Δn  ,   ,Tcrd

dE
0.001

0.01

0.1

1

−1 −0.5 0 0.5 1

FIG. 1. The mean-field critical temperature Tcr for a 2D EFKM
at half-filling (n = 1) with U = 1 and the perturbation t ′ = −0.045
(dotted line) or V2 = 0.15 (dashed-dotted line). Solid and dashed
lines show the unperturbed values of � and nd at T = 0. The BEC
scenario is realized as long as Tcr is much smaller than crossover
temperature T∗, which implies also Tcr � U�.

is the “external field.” This similarity is an expected one, given
the U(1) nature of the order parameter ϕ, yet we note that
the direct correspondence between the EFKM and an XY
magnet, as outlined above, occurs in the single-site treatment
to leading order in δH, but not necessarily beyond that.

Analyzing Eq. (90) to leading order in δH, it is easy to see
that the effect of the second term is negligible (in particular,
〈δβ〉T → 0), hence, this term can be omitted. Furthermore, at
low T one can neglect the difference between �(0) and �, etc.,
and also write [using Eqs. (22)–(24)]

l (0)
� ≈ −Ed�. (95)

The self-consistent conditions of the mean-field theory are
given by Eqs. (25) at zero T (when the fluctuation terms on the
right-hand side vanish), supplemented with Eq. (12) for cos κ .
All the statistical properties (such as average values and stan-
dard deviations of φ and δβ) are readily expressed in terms
of imaginary-argument Bessel functions In. For example, the
partition function takes the form

Z0 = const × I0

(
J cos κ + H

T

)√
T

lc + Ed (nc − nd )

× exp

{
−(J cos κ + H )

cos κ

T

}
(96)

[where the prefactor includes also the constants originating
from the integration measure (76)], etc. We find

〈(δβ )2〉T = 2T

l (0)
c + Ed (nc − nd )

, (97)

an expected linear (in T ) behavior. At H = 0, an ordering
transition takes place at Tcr = J/2 (see Fig. 1), with cos κ

vanishing above Tcr and

cos κ =
(

2
Tcr − T

Tcr

)1/2

, 0 <
Tcr − T

Tcr
� 1.

At H > 0, the phase transition is replaced by a smooth
crossover, with cos κ asymptotically vanishing at high

κcos

T
0

0.2

0.4

0.6

0.8

0 0.01 0.02 0.03 0.04 0.05

C

T
0.5

1

1.5

2

0 0.01 0.02 0.03 0.04 0.05

(a)

(b)

FIG. 2. Mean-field temperature dependence of cos κ (a) and
specific heat (b) for a 2D EFKM with U = 1 and Ed = 0.2 at n = 1
in the low-temperature regime. Solid and dashed lines correspond,
respectively, to t ′ = −0.045 (Tcr ≈ 0.014) and V2 = 0.15 (Tcr ≈
0.024). Dashed-dotted line corresponds to V0 = −0.008, and the
dotted one to combined t ′ = −0.045 and V1 = −0.04; from Eq. (94)
one finds that for both of the latter two cases H ≈ 0.005.

temperatures:

cos κ ≈ H

2T − J
, T � J, H (98)

(note the similarity to the Curie-Weiss law). More generally
(but still to leading order in δH), cos κ throughout the T � T∗
range solves the equation

I0

(
J cos κ + H

T

)
cos κ = I1

(
J cos κ + H

T

)
, (99)

and should be found numerically [see Fig. 2(a)].
At low temperatures T � Tcr , and for n = 1 (when the

excitonic gap is present at the chemical potential), the con-
tribution of fermionic degrees of freedom to entropy is expo-
nentially small and can be neglected. Thus, the entropy can be
evaluated as S = log Z0 [see Eq. (96)], and the specific heat as
C = T ∂S/∂T . Using also Eq. (99), we find

C = −(J cos κ + H )
∂ cos κ

∂T
+ 1

2
. (100)
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At H = 0, it suffers a negative jump of �C = −2 at Tcr ,
whereas at H > 0 and at temperatures T � J, H ,

C ≈ 4T H2

(2T − J )3
+ 1

2
. (101)

Numerical results for C are shown in Fig. 2(b). The finite
value of C = 1 obtained at T → 0 is an expected artifact
of treating the φ and β degrees of freedom classically. This
value includes a T -independent (at T � T∗) contribution of
1
2 , originating from the small fluctuations of β [see Eq. (97)].
Taking into account small fluctuations of other classical de-
grees of freedom, which were assumed frozen [such as θi

and γi in Eq. (52)] will yield additional constant terms in
the specific heat. On the other hand, treating all the degrees
of freedom as quantum would not affect the value of C at
higher T , whereas at T → 0 one would obtain the correct
result C → 0. Obviously, a proper description in the latter
regime should be based on the analysis of the low-energy,
long-wavelength excitations (cf. Ref. [14]), rather than on a
single-site approach as considered presently.

The numerical results shown in Fig. 2 were obtained as
outlined above. First, the T = 0 mean-field equations in the
absence of δH were solved, producing the values of � and
nc,d (see Fig. 1). These are substituted into the leading-
order Eq. (99), yielding cos κ as a function of tempera-
ture [Fig. 2(a)], and Eq. (100) then gives the specific heat
[Fig. 2(b)].

A more exact solution to the mean-field equations would
require taking into account the subleading terms in powers
of δH, which in turn depend on cos κ both directly and self-
consistently. However, such treatment is unwarranted here, in
view of the obvious limitations of our approach at low T .
In reality, the results obtained in this section are in any case
only as good as a single-site description of an XY model in
the low-temperature and critical regions would be (note also
that the competition [14,19,34] between different phases at
T = 0 implies that the system is frustrated). In other words,
they have a rough qualitative validity, missing a number of
important features and strongly overestimating the stability of
the ordered phase (and the value of Tcr).

Indeed, for the values of U and Ed used in Fig. 2, the anal-
ysis [14] of low-energy spectra at T = 0 gives the minimal
absolute value of t ′ required to stabilize a uniform ordered
phase as |t ′

cr | ≈ 0.04. Hence, we estimate that for t ′ = 0.045,
which barely exceeds this, the actual value of Tcr should
be at least an order of magnitude smaller than Tcr ≈ 0.014
shown in Fig. 2. The critical values of hybridizations [14]
V0,cr ≈ −0.096 and V2,cr ≈ 0.21 are greater than those used in
Fig. 2, implying that in reality the ordering transition (which
perhaps also takes place at a much lower temperature) is a
transition into a competing charge-ordered state, and not into
the uniform phase.

Physically, the reason for these inaccuracies is that in
this regime an important role is played by the low-energy,
long-wavelength collective excitations [14] (phase mode, as
opposed to the amplitude mode discussed in Sec. VII B
below), which cannot be treated adequately within a single-
site approach. Furthermore, the actual behavior may depend
on the dimensionality of the system (as it does for the XY

model, with 2D being a special case due to the possibility of
vertex formation [35]), which is also overlooked in a single-
site treatment. Noting that these shortcomings are shared by
the available descriptions of the EFKM ordering transition,
including Refs. [11,16], we omit further discussion of the
literature.

However, we expect that these complications are restricted
to the low-temperature range of T � Tcr , whereas at higher T
(where short-range fluctuations become more prominent) one
can hope to obtain a more faithful picture.

VI. PHASE-DISORDERED EXCITONIC INSULATOR AND
THE HIGH-TEMPERATURE CROSSOVER

Presently, we will consider the high-temperature regime of
a fully phase-disordered excitonic insulator at T � Tcr . In this
case, cos κ → 0 [see Eq. (98)] and therefore the perturbation
δH vanishes on average 〈δH〉T = 0 (the latter equality holds
to leading order in Tcr/T and becomes exact in the case
where V0 = V1 = 0). Hence, formally δH does not affect
the virtual-crystal Hamiltonian (13), nor indeed any quantity
arising in our single-site mean-field description. While this
author believes that physically the perturbation is nevertheless
essential for the validity of the qualitative scenario presented
here, this is not the place for an in-depth discussion of this
potentially controversial issue. Very briefly, we expect that
the actual physical situation is reminiscent of that at T = 0,
when a finite, but small, value of t ′ or V0,1,2 in Eq. (3) is
required [14,19] to stabilize the state with a uniform value
of � > 0 and a uniform φ, yet once such a state is stable,
the higher-energy properties of the mean-field solution (such
as the magnitude of �) to leading order do not depend on
the perturbation. The difference here is that in the case of
disordered φ the actual phase transition at the critical value
of a perturbation parameter [14,19] (found to take place at
T = 0) should be replaced by a smooth crossover (where
the value of � > 0 saturates once the perturbation strength
exceeds a certain characteristic scale) since the system does
not undergo a symmetry change.

We further note that even if the perturbation is not suffi-
ciently strong to stabilize a uniform ordered excitonic insu-
lator at T = 0 and additional charge ordering appears at low
temperatures (i.e., if the value of the corresponding perturba-
tion parameter is less than the critical one), the analysis in
this section is still likely to be relevant for the behavior of the
system at higher T , when both phase and charge orders melt.
While this issue merits further study, it also falls beyond the
scope of this work.

As we already mentioned in the Introduction, the phase-
disordered excitonic insulator state does not break any sym-
metry, and therefore increasing temperature further should
result in a decrease of � = 1

2 〈cos 2θ3 cos θ1 sin β〉T [see
Eq. (81)] via a smooth crossover. We are not specifically
interested in the situation where the average value of θ1 ap-
proaches 0 [corresponding to a band insulator without mixed
valence, see Eqs. (82) and (83)] or π/2 (this corresponds
to the high-temperature limit of the two equally populated
bands and � → 0, see below). Elsewhere, weak or moderate
fluctuations of θ1 around its average value do not affect the
average values of � or nd and add little to the qualitative
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picture. Treating these fluctuations would also necessitate a
straightforward but cumbersome calculation, as one cannot
use a simpler formula, Eq. (58). Therefore, we will treat the
angles θ1 and θ3 as frozen at their virtual-crystal values θ

(0)
i .

Fluctuations of the angle β, on the contrary, can affect the
average value of �, decreasing it when the average β is close
to π/2 and increasing � whenever the end points 0 or π are
approached.

We also assume that the values of phases γi in Eq. (53)
are still frozen at γi = 0; the effect of fluctuations of γi

will be discussed in Sec. VI A. Then, the energy cost of a
single-site fluctuation of the angle β can be deduced from
Eq. (C11) as

δE (β ) = 4lc sin2 β − β0

4
+ 2l� sin

β − β0

2

+ Ed

2

√
n2 − 4n(0)

d (cos β (0) − cos β ). (102)

By construction, the value of δE vanishes at β = β (0) (un-
perturbed virtual crystal). The quantities lc and l� obey the
self-consistency conditions

lc =
∫ π

0

(
−l (0)

� sin
β − β (0)

2
+ l (0)

c cos
β − β (0)

2

)
×w(β ) sin β dβ, (103)

l� =
∫ π

0

(
−l (0)

d sin
β − β (0)

2
+ l (0)

� cos
β − β (0)

2

)
×w(β ) sin β dβ (104)

[see Appendix C, Eqs. (C17) and (C18)], with the values of
l (0)
c,d,�

given by Eqs. (91), and

w(β ) = 1

Q
e−δE (β )/T , Q =

∫ π

0
e−δE (β )/T sin β dβ. (105)

Here, the integration measure sin β dβ again comes from
Eq. (76).

As the temperature is lowered toward Tcr , the fluctuations
of β become small, and one can expand Eq. (102) in powers
of δβ = β − β (0). At the same time, the quantities lc and l�
approach their respective virtual-crystal values l (0)

c and l (0)
� .

Using also Eq. (95), we find for this low-T region of the
phase-disordered state

δE (δβ ) ≈ 1
4

[
l (0)
c + Ed

(
n(0)

c − n(0)
d

)]
(δβ )2, (106)

matching the last term in Eq. (90).
For all temperatures above Tcr , we can now use Eqs. (102)

and (105) to explicitly write Eqs. (88) and (89) as

〈δ�〉T = 1

2

√
n2 − 4n(0)

d

∫ π

0
(sinβ − sin β (0) )

×w(β ) sin β dβ, (107)

〈δnd〉T = 1

2

√
n2 − 4n(0)

d

∫ π

0
(cos β (0) − cos β )

×w(β ) sin β dβ. (108)

Standard deviations of � and nd from their average values,

σ� = [〈(δ� − 〈δ�〉T )2〉T ]1/2, (109)

σd = [〈(δnd − 〈δnd〉T )2〉T ]1/2, (110)

can be evaluated in a similar way. The mean-field scheme is
closed by substituting (107) and (108) into Eqs. (25). The four
resultant self-consistency equations [including also Eqs. (103)
and (104)] are readily solved numerically.

Typical results, obtained for a two-dimensional system at
n = 1 are shown in Fig. 3. Since the ordering transition tem-
perature is determined by the parameters of the perturbation
δH (see Sec. V) and, at least within the present approach,
can be arbitrarily small, we may carry out our computation
for the phase-disordered state at any finite T while assuming
T � Tcr . The three values of U used in Fig. 3 correspond
to the cases of weak, intermediate, and strong coupling. The
latter terminology refers not to the ratio between the crossover
temperature T∗ and Tcr , but rather to the properties of the
uniform mean-field solution of the pure FKM at T → 0,
specifically to the value of the double occupancy onsite n

(0)
d

[Eq. (41)]. For U = 0.5, 1, and 2 we obtain, respectively,
n

(0)
d ≈ 0.21, 0.13, and 0.04 in the limit of low T .

Neglecting thermal fluctuations of the OSDM [36], one
obtains a purely Hartree-Fock result for �(T ), which in
Figs. 3(a)–3(c) is represented by the dotted line. It incor-
rectly predicts a second-order phase transition at a certain
temperature, which we will instead identify as the crossover
temperature T∗. We find T∗ ≈ 0.0042 for U = 0.5, T∗ ≈ 0.067
for U = 1, and T∗ ≈ 0.29 for U = 2. As expected, the value of
the indirect gap G at T = 0 [G ≈ 0.00525, 0.102, and 0.647,
respectively, see Eq. (18)] yields a correct order-of-magnitude
estimate of T∗, although it is worth noting that the fit worsens
with increasing U . The latter is due to the fact that for larger
U , the dominant contribution to the temperature dependence
of energy comes not from the smearing of the Fermi distri-
bution and the resultant particle-hole excitations across the
gap, but rather from the changes of the average interaction en-
ergy per site, Und = Un

(0)
d = U (n(0)

c n(0)
d − |�(0)|2). Indeed,

for U = 1 and 2 the quantity

〈�Eint〉F ∼ U
(
n

(0)
d (T∗) − n

(0)
d (0)

)
(111)

(the fluctuation-induced increase of the interaction energy
from T = 0 to T = T∗) gives a perfect estimate for T∗. On the
other hand, it is actually negative for the weakly interacting
case of U = 0.5, where the net energy change is dominated
by the effects of Fermi distribution smearing, and hence
the single-particle gap G yields a rather accurate estimate
for T∗.

The values of �(T ) and nd (T ), obtained within our single-
site mean-field approach, are illustrated by the solid and
dashed lines, respectively, with the value of �(T ) showing
a smooth downturn in a broad region around T∗. In the U =
0.5 case [Fig. 3(a)], this is followed by an upturn, due to
the increasing thermal fluctuations. Since the contribution of
the small-� region is suppressed by the factor sin β in the
measure [see Eq. (107)], these lead to the overall increase
in �. Indeed, in this region we see the increase of both
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FIG. 3. Single-site mean-field solution for a 2D EFKM at n = 1 in the phase-disordered region T > Tcr , for Ed = 0.2 and U = 0.5 (a),
(d), U = 1 (b), (e), and U = 2 (c), (f). In (a)–(c), the solid and dashed lines show the values of � and nd , with the error bars corresponding
to the standard deviations. The dashed-dotted lines represent the virtual-crystal contributions �(0) and n(0)

d , whereas the dotted lines show the
Hartree-Fock solution for � which neglects the effect of thermal fluctuations onsite. In (d)–(f), solid lines show the specific heat C obtained
for the full mean-field solution, whereas the dotted lines correspond to neglecting the thermal fluctuations.

the standard deviation, Eq. (109) (shown by the error bars),
and of the difference 〈δ�〉T between the net � and its
virtual-crystal part �(0) represented by the dashed-dotted line.
Then, the value of �(T ) passes through a broad maximum
and begins its decrease to a higher-temperature mean-field
solution, where both orbitals are equally populated [note that
the monotonously increasing nd (T ) is now approaching 1

2 ]
while � vanishes (whereby nd will reach its maximal value of
1
4 ). This regime is formally possible only at T >Ed . Indeed, in
the absence of �, there are two unhybridized Hartree bands,
dispersive and localized, and if these are equally populated
the energy difference between their respective centers equals
Ed ; on the other hand, the two band occupancies can approach
each other only when the temperature is large in comparison
with this energy difference. Due to suppression of the fluctu-
ations of �, this configuration minimizes the free energy at
sufficiently high T .

Yet, it is clear that this “high-temperature limit” with
� → 0 and σ� → 0 is an artifact of our assumption that the
fluctuations of θi can be omitted. Indeed, we observe that the
case of nc = nd and � = 0 corresponds to θ

(0)
1 = π/2 [see

Eqs. (55) and (78)]. Since this is an end point of the variation
range for θ1, the thermal fluctuations of this parameter will
be asymmetric and will shift its average to lower values,
increasing the difference nc − nd and the fluctuations (and
hence the average value) of �. Moreover, an additional factor

of cos2 θ1 in the phase-space measure, Eq. (76), which reduces
the relative contribution of the region near θ1 = π/2 to the
partition function, guarantees that the fluctuations of θ1 will
be large, once T becomes comparable to the energy scale as-
sociated with such fluctuations (which should be the largest of
Ed and U , possibly with a prefactor). Thus, we expect that the
value of �(T ) passes through a minimum at T �max(Ed ,U )
and begins to increase due to an overall increase of the
thermal fluctuations at higher T . However, as explained in
Sec. VI A below, this region is in any case out of reach
for us, at least within the present version of our mean-field
approach.

Interestingly, the increase of nd (T ) and decrease of �(T )
at T < T∗ lead to the value of n(0)

d (T∗) being about the same,
n

(0)
d = 0.21 ± 0.01, in all three cases of U = 0.5, 1, and 2.

At T > T∗, the intermediate region of increasing �(T ) is
absent at higher U [Figs. 3(b) and 3(c)], for the following two
reasons: (i) the corresponding values of T are much larger,
due to higher T∗, and therefore closer to the high-temperature
regime, where the present calculation predicts a strong de-
crease of � (see the discussion above); (ii) the value of �

is larger, therefore thermal fluctuations are nearly symmetric
(the β = 0 point is far away), and their contribution 〈δ�〉T to
the net value of � is much smaller than in the low-energy case
(and actually changes sign in the region above T∗). We note,
however, that our results for higher U (especially for U = 2)
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become quantitatively unreliable in this region due to strong
fluctuations of γi (see Sec. VI A below).

The specific heat is calculated as C = ∂〈E〉T /∂T . Here, the
average energy per site

〈E〉T = 〈H〉F + 〈δE〉T = −l (0)
c + Ed n(0)

d + Un(0)
c n(0)

d

−U (�(0) )2 +
∫ π

0
δE (β )w(β ) sin β dβ (112)

[see Eqs. (91)] is the sum of the virtual-crystal contribution
and the average fluctuation energy 〈δE〉T . The calculated
values of C [solid lines in Figs. 3(d)–3(f)] approach 0.5 in the
low-temperature limit [corresponding to the presence of one
classical degree of freedom β, and, in the case of Fig. 3(e), to
the higher-T part of Fig. 2(b)], show a broad maximum in the
crossover region T ∼ T∗, and decrease at high temperatures
[mirroring the decrease of �(T )]. In the weakly interacting
case of Fig. 3(d), the initial increase following the peak at
T ∼ T∗ corresponds to increasing �(T ) in this region (see
above). The dotted lines represent the Hartree-Fock results
[36] [as described above for Figs. 3(a)–3(c)], including only
the contributions from fermionic degrees of freedom and from
the temperature dependence of the Hartree-Fock values of �

and nd . As expected, there is a negative jump at T = T∗, an
artifact of neglecting the thermal fluctuations of the OSDM.
It appears possible that the low-temperature limiting value
C → 0.5 is again an artifact of the classical treatment of the
fluctuations of β and a proper quantum treatment would yield
C → 0 at T → 0 both for T � Tcr (see Sec. V) and for the
phase-disordered case of T � Tcr → 0 (but certainly not for
T ∼ Tcr). At all events, the classical description of β becomes
more adequate with increasing T , and should be appropriate
for most of the temperature range in Fig. 3 (where the relevant
scale is that of T∗).

Finally, we are now in a position to clarify the importance
of the self-consistency conditions (103) and (104). As exem-
plified in Fig. 4, the self-consistent renormalization δlc,� =
lc,� − l (0)

c,� of the quantities lc,� is rather small, its relative
size increases moderately in the high-temperature region well
above T∗. Importantly, if the self-consistency conditions (103)
and (104) are omitted altogether, and one solves only two
mean-field equations (25) for nd and � (substituting for lc,�
the values of l (0)

c,�, calculated for the same nd and �), this
leads to a small shift in the resultant mean-field solution nd (T )
and �(T ). This small change, which peaks in the region of
T ∼ T∗, appears negligible for all practical purposes.

It seems reasonable to expect that this unimportance of
Eqs. (103) and (104) is a general property. While presently we
had no difficulty carrying out the full self-consistent calcula-
tion, this would have been problematic had we included also
the fluctuations of θi (see Sec. III for discussion). However,
if the error introduced by substituting l (0)

c,� in place of lc,� is
indeed insignificant, this would justify the use of a simpler
Eq. (59) in place of a difficult Eq. (57).

To summarize, our single-site mean-field approach yields
a physically transparent description of the phase-disordered
state of the EFKM above the low-temperature ordering tran-
sition. This includes, at least for the case of weak to moder-
ate interaction strength, the crossover region of T ∼ T∗ (see
Sec. VI A regarding larger values of U ). It appears that

Δdn  ,    ,l  c,Δ

* T

−0.1

0

0.1

0.2

0.3

0.01 T    0.1

FIG. 4. The effect of self-consistent renormalization of lc,� on
the mean-field solution. Dashed and dashed-dotted lines show, re-
spectively, the self-consistent values of lc and l� for a half-filled 2D
EFKM with U = 1 and Ed = 0.2. The adjacent dotted lines show
the unrenormalized virtual-crystal terms l (0)

c,� [Eqs. (91)] calculated
for the same self-consistent solution. The upper and lower solid
lines show the self-consistent values of nd and � [same data as in
Fig. 3(b)], whereas the adjacent dotted lines correspond to the case
where only two mean-field equations (25) are solved and the resultant
unrenormalized l (0)

c,� are substituted for lc,�.

previously such a description has been lacking, at least in the
context of the EFKM. Further discussion of results obtained
in this section will follow in Secs. VII and VIII.

A. Validity of the Hartree-Fock approximation for the
wave functions

The quantities γi are additional phase variables of the
SU(4) rotation (see Appendix B), which affect the wave
function |
̃〉 [Eqs. (52) and (53)], but not the corresponding
OSDM [Eqs. (69) and (78)]. When either γ1 or γ3 differ
from zero, an electron hopping to or from the central site
acquires an additional phase which depends on the specific
quantum state concerned (at the central site). Similarly, 2γ2 is
the phase difference between the two singly occupied states
which diagonalize the OSDM at the central site, and it affects
both the phase carried away by a hopping electron and the
hopping probability. Strong fluctuations of γi would suggest
a possibility of nontrivial phase-related phenomena, such as
strongly fluctuating flux through a plaquette.

Importantly, the fluctuations of γi cannot be incorporated
into our self-consistent scheme, which relies on the underly-
ing virtual crystal [Eq. (13)] and hence, on the corresponding
Hartree-Fock wave functions |
〉. The latter correspond to all
γi being equal to zero everywhere, and there is apparently no
way to include the fluctuations of γi by merely renormalizing
the parameters of the virtual crystal (and hence of |
〉), as we
did with the fluctuations of β above, and with fluctuations of
ϕ in Sec. V [or as can be done with the fluctuations of θ1,3

under restriction (83)].
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FIG. 5. Thermal fluctuations of phases γi for a 2D EFKM at n = 1, for Ed = 0.2 and U = 0.5 (a), U = 1 (b), and U = 2 (c). Solid, dashed,
and dotted lines show 〈cos γi〉T for i = 1, 2, and 3, respectively. Standard deviation is about 1 − 〈cos γi〉T in all cases.

On the other hand, there is no difficulty in calculating the
energy cost of a local fluctuation of both β and γi at site 0,
provided that all γi vanish elsewhere. In addition to δE (β )
[Eq. (102)], the energy of such a fluctuation acquires another
term, δEγ (β, γ1, γ2, γ3), given by Eq. (C19). One can proceed
one step further and calculate the average value of cos γi under
such fluctuations as

〈cos γi〉T =
∫ π

0
sin β dβ

∫ 2π

0
dγ1

∫ π/2

−π/2
dγ2

×
∫ 2π

0
dγ3w̃ cos γi,

w̃(β, γ1, γ2, γ3) = 1

Q̃
e−[δE (β )+δEγ (β,γ1,γ2,γ3 )]/T ,

Q̃ =
∫ π

0
sin β dβ

∫ 2π

0
dγ1

∫ π/2

−π/2
dγ2

×
∫ 2π

0
dγ3w̃(β, γ1, γ2, γ3). (113)

In Fig. 5, we plot the three quantities 〈cos γi〉T for the
three cases considered in Fig. 3 and corresponding to weak,
moderate, and strong interaction U . While in the limit of
T → 0 all three values of γi approach zero in all the three
cases (attesting to the consistency of the underlying Hartree-
Fock approximation at low T ), the behavior at increased
temperatures shows a marked dependence on the interaction
strength. In the weak-coupling case of Fig. 5(a), the values of
〈cos γi〉T remain above 0.65 throughout the entire range of the
plot, including also the crossover region (at T = T∗ we find
〈cos γi〉T ≈ 0.986 ± 0.003 for all i). With the fluctuations of
γi being either small or very moderate, we conclude that they
indeed can be neglected, and the Hartree-Fock virtual-crystal
treatment remains valid up to T∗ and beyond. At U = 1 [see
Fig. 5(b)], the values of 〈cos γi〉T at T∗ are 0.83, 0.88, and 0.73
for i = 1, 2, and 3, respectively, hence, we expect that the
Hartree-Fock picture remains valid and qualitatively reliable
up to T∗, but not much beyond that. Thus, one concludes that
in these two cases the consistency of our mean-field approach
at T � T∗ is not in danger.

The situation is different for the strong-coupling case of
U = 2 [shown in Fig. 5(c)], where the values of 〈cos γi〉T at
T∗ are approximately 0.34, 0.68, and 0.13, which suggests that
the fluctuations of γi are no longer negligible in any sense. The
Hartree-Fock description still remains applicable in the phase-
disordered state, but at much lower temperatures: for example,
at T = 0.03 (and for U = 2) we find 〈cos γi〉T ≈ 0.72, 0.76,
and 0.31 for i = 1, 2, and 3. The strong fluctuations of
〈cos γ3〉T do not constitute an immediate cause for concern,
as the phase γ3 affects only the doubly occupied component
of the perturbed wave function (53), and the relative weight of
this component at T = 0.03 is still fairly small, with n

(0)
d ≈

0.05. We speculate that the overall behavior suggested by
Fig. 3(c), which is in line with the reliable results obtained
for smaller U , is still probably correct, but this conjecture
certainly lacks a solid justification.

Finally, we note that although the phases γi do not directly
affect the OSDM (including the fluctuating values of nd and
�), taking into account the fluctuations of γi does modify
the probability distribution for the angle β, and hence does
affect the average values �(T ) and nd (T ) (as well as those
of lc,�). In the region where our theory is applicable, this
effect is not very strong, reaching up to 10% for �(T ), and
about 1 % for nd (T ). The difference is most pronounced in the
region where the fluctuations of �(T ) are largest, thus falling
well within the “error bars” on Figs. 3(a)–3(c). Likewise, the
relative change of the net lc,� seldom exceeds 15% (whereas
the values of δlc,�, see above, can become several times
larger or smaller). Accordingly, when one substitutes w̃ given
by Eq. (113) in place of w in Eqs. (107) and (108) of the
self-consistent calculation and includes additional integration
over γi, the resultant change of nd (T ) and �(T ) is within
10%, with no new features (we checked this for U = 1 and
T < 0.1).

VII. EXCITONIC INSULATORS:
EXPERIMENT AND THEORY

A. Experimental situation: The case of Ta2NiSe5

Experimentally, specific heat C was measured [37] in an
excitonic insulator candidate Ta2NiSe5. In this compound, a
phase transition is observed at T = 326 K, accompanied by
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a symmetry change and by a peak in the C(T ) dependence;
below the transition, the (direct) interband gap has a flattened
momentum dependence [38,39], suggestive of an excitonic
insulator. There is an ongoing discussion as to whether the
transition is primarily of electronic [40] or lattice [41] origin,
and it is clear that electronic and lattice degrees of freedom
are interdependent. Since the (long-range) lattice strain fields
are presumably coupled to the phase degree of freedom in the
electronic insulator (our ϕi), one expects that this increases the
energies of collective excitations in the low-T ordered phase.
This might in turn push the value of the ordering transition
temperature Tcr upward, shrinking or obliterating the phase-
disordered intermediate region Tcr < T < T∗, discussed in
Sec. VI above.

In is generally considered as plausible that the feature [37]
seen in C(T ) at 326 K corresponds to this increased value
of Tcr (excitonic condensation); the transition is still second
order, although modified (in comparison to the one discussed
in Sec. V) by a strong involvement of the lattice. The apparent
absence of hybridization above the transition [41,42] suggests
that there is no further high-temperature crossover (our T∗)
located in that region. Mutatis mutandis, this is a BCS-type
picture [42], which is also consistent with the expectation
[39,43] that the effective masses in the two bands are not
very different. Yet, we note that a phase-disordered excitonic
insulator with T∗ above 326 K, while characterized by a
small (fluctuating) hybridization gap, on average would not
violate the higher lattice symmetry; this opportunity, and the
corresponding BEC behavior, are discussed in Refs. [39,43],
which also identify the transition at 326 K as the excitonic
ordering temperature (our Tcr).

Another scenario would have the (lattice) transition at
326 K accompany (and perhaps sharpen) the excitonic
crossover [hence, T∗ ≈ 326 K, cf. the peak of C(T ) at T ∼ T∗
in Figs. 3(d)–3(f)], and the excitonic ordering take place at
a lower Tcr ; with the lattice symmetry breaking playing the
role of “external field” H in a corresponding XY model [cf.
Eq. (94)], the transition at T ∼ Tcr and the associated jump in
C would both be smeared and perhaps difficult to pinpoint
[44] [cf. the dotted line in Fig. 2(b), and the discussion in
Sec. V]. This would constitute a pronounced excitonic BEC
behavior with a weak or moderate coupling to the lattice
and T∗/Tcr � 1 or T∗/Tcr � 1. Note that (i) in principle, the
existence of the condensate extends all the way up to 326 K
[cf. Eq. (98); in our theoretical analysis in Sec. VI, carried out
for T � Tcr , this effect was neglected]; (ii) the latter is not
sufficient to identify 326 K as the excitonic BEC transition
temperature Tcr ; this is similar to magnetization being induced
by an external field in a ferromagnet above the Curie point.

Finally, if hybridization is dominated by the lattice ef-
fects at all temperatures, with excitonic pairing providing
a perturbative correction at low T , the system should not
be termed an excitonic insulator. The experimental results
[45,46], however, point to strong excitonic effects, which in
turn affect the properties of phonons.

We note that the value of excitonic order parameter directly
influences the electrostatic properties of the system. In the
case of Ta2NiSe5, the gap is direct, and uniform (�k = 0) mea-
surements of the appropriate electrostatic moment (possibly
quadrupole rather than dipole one, in contrast to a simpler

case considered in Refs. [9,15,47]) and of the corresponding
response should be performed in order to identify the correct
scenario. Dynamical measurements might allow to distinguish
between the lattice (slow) and excitonic (fast) contributions, as
suggested also in Ref. [40]. In addition, further assistance in
assigning the value of Tcr and (if distinct) of T∗ can be drawn
from studying the spectra of phase and amplitude collective
modes.

B. Amplitude mode and amplitude susceptibility

The presence of a nonzero absolute value � of the onsite
hybridization implies the existence of a collective mode, cor-
responding to its oscillations. Presently, this subject receives
much attention both in the framework of general interest in
such “Higgs mode” in solid state physics [10], and in a more
narrow context of prospective excitonic insulators. Indeed, an
important recent paper [8] is devoted to experimental identi-
fication of the amplitude mode in the case of dichalcogenide
1T -TiSe2; presence of such a mode was also reported [46]
for Ta2NiSe5, where its fingerprint is seen in the phonon dy-
namics. Therefore, it appears important to discuss the insight
which can be gained from our present work in this regard.

If one neglects thermal fluctuations of the OSDM (includ-
ing those of the phases ϕi; this is the “pure Hartree-Fock” case
discussed above, corresponding to the dotted lines in Fig. 3),
the spectrum ω�q of higher-energy plasmon excitation can be
calculated along the lines of Ref. [14]. To zeroth order in
δH and for the case of �q = 0, the secular equation takes the
form [48]

ω2{[J1(ω)]2 + (u2 − ω2)[J0(ω)]2} = 0 (114)

[see Eq. (6)], where for l = 0, 1

Jl (ω) = 1

N

∑
�k

��k
�

ξ l
�k

u2 − ω2 + ξ 2
�k

(115)

[see Eqs. (16) and (22); upon converting the right-hand side
of Eq. (115) to an integral, principal value of the latter should
be evaluated].

Equation (114) is valid below the Hartree-Fock critical
point T∗ and has two solutions. Of these, ω = 0 corresponds
to the phase mode, vanishing in the unperturbed case of
δH = 0 (for T = 0, the perturbed case is investigated in detail
in Ref. [14]). The other solution, which must correspond
to the amplitude mode, lies above the direct gap u = 2U�,
which means that it is likely to be strongly damped by the
particle-hole excitations. Typical behavior of ω2(T ) is plotted
in Figs. 6(a) and 6(b) with solid lines (left scale). As expected,
it vanishes at T → T∗.

For a relatively small U = 0.5, the value of ω closely
follows that of u [see Fig. 6(a)]. We note that smaller U results
also in smaller values of � (cf. Fig. 3), leading to a strong
overall decrease in u = 2U�. In this case, it appears that also
away from T∗ the nonzero solution of Eq. (114) is strongly
affected by a somewhat complex anomaly of J0 [Eq. (115)],
located at u, ω → 0. This is no longer the case for U = 1 [see
Fig. 6(b)], where ω is found to exceed u significantly.

Above T∗, the phase mode must disappear (as there
is no corresponding symmetry breaking), whereas the am-
plitude mode is expected to recover to higher energies
(see below). However, it can no longer be represented as
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FIG. 6. Solid line (left scale) shows the amplitude mode energy
squared for a half-filled 2D EFKM with Ed = 0.2 and U = 0.5 (a) or
U = 1 (b), calculated at �q = 0 and in the absence of the thermal
fluctuations of the density matrix [Hartree-Fock, see Eq. (114)]. The
dashed-dotted line (left scale) represents u2, square of the direct
energy gap. Dashed and dotted lines (right scale) correspond to an
inverse susceptibility, 1/χ . Dashed line includes the effect of thermal
fluctuations of the OSDM.

a linear combination of particle-hole excitations and hence
cannot be calculated within the approach of Ref. [14].

It is unclear whether this approach can be extended to
include the thermal fluctuations of the OSDM, and whether
the time-independent treatment of these, as constructed in
this paper, would be sufficient. At all events, the energy
scale of the amplitude fluctuations can be deduced from the
value of susceptibility χ = ∂�/∂F with respect to a fictitious
external scalar field F, coupled to the absolute value of the
hybridization. If the amplitude mode is present, its energy
squared ω2 can be expected to be roughly proportional to
1/χ , with the unknown T -dependent coefficient affected by
the quantization of the fluctuations of � and by the precise
form of the excitation wave function. In order to calculate χ ,
one must add the term

δFHm f = −1

2
F
∑

i

(c†i d̃i + d̃†
i ci )

= −1

2
F
∑

�k
(c†�k d�k + d†

�k c�k ) (116)

[cf. Eq. (7)] to the mean-field (virtual-crystal) Hamiltonian
[49], Eq. (13) [see also Eq. (9)], and

δFE (β ) = −F[�̃(β ) − �(0)]

= − 1
2F
√

n2 − nd(sin β − sin β (0) ) (117)

[see Eq. (81)] to the single-site fluctuation energy in the
phase-disordered state, Eq. (102). As before, our single-site
approach dictates that the contribution of δH [Eq. (3)] van-
ishes in the phase-disordered regime above Tcr , hence, δH can
be dropped altogether.

We first consider the purely Hartree-Fock case when the
thermal fluctuations are neglected [36], which corresponds
to the dotted lines in Figs. 6(a) and 6(b) (right scale). The
second-order phase transition is then located at T = T∗ (with
� being the order parameter), and the behavior of χ (T ) con-
forms to a simple Landau theory. At T < T∗, the free energy F
as a function of � has a minimum at � = �(0) > 0, resulting
in a finite χ . The value of �(0) decreases with temperature,
and both �(0) and ∂2F/∂�2 vanish at T∗, hence, 1/χ vanishes
[as does the actual value of ω2, available in this case from
Eq. (114)]. Thereafter, �(0) remains equal to zero, whereas
the second derivative becomes finite, leading to a recovery
of 1/χ .

When the thermal fluctuations of the OSDM are included,
the average � remains finite at all temperatures. Accordingly,
the zero of 1/χ at T = T∗ is replaced by a broad minimum
(see the dashed lines in Fig. 6). Note also a pronounced
hardening of amplitude fluctuations at higher T , due to the
increase of the corresponding derivative of F (the increase
of thermal fluctuations pushes the average � toward larger
values, where the dependence of the energy on hybridization
amplitude is more sharp).

Note that both curves merge in the limit of low T . This
illustrates the fact that, to leading order in δH, the value
of χ is unaffected by the phase ordering arising below Tcr .
The effect of the exciton condensation on χ is therefore con-
fined to a small correction (subleading term), which vanishes
above Tcr .

In terms of collective excitation energies in the presence
of thermal fluctuations, these results add up to a rather co-
herent qualitative picture. While the phase mode softens at
the low-temperature ordering transition T = Tcr , and is absent
anywhere above Tcr , the amplitude mode is only weakly
affected by the excitonic condensation taking place at Tcr . The
phase-mode spectrum at T < Tcr crucially depends [14] on
the perturbation, Eq. (3), yet the latter to leading order does
not affect the amplitude mode, yielding a small correction
[50] only. At higher T , the amplitude mode energy shows
a broad minimum in the crossover region T ≈ T∗, above
which it increases to the values which are higher than those
of the lower-temperature region T < T∗. As to whether the
amplitude excitation corresponds to an actual propagating
mode or to a broadened resonance-type feature, this depends
on the strength of damping and cannot be discussed here.

We are now in a position to compare these expectations to
the experimental results for 1T -TiSe2, reported in Ref. [8],
and to their suggested interpretation. The plasmon mode
described there is identified as the amplitude mode of an
excitonic insulator, whereas the phase mode is either absent
or not detectable. When the temperature increases toward
TC ≈ 190 K, the amplitude mode energy gradually decreases
toward that of the low-energy phonon and possibly vanishes
[51] at T = TC (the error bars are relatively large). At higher
temperatures it rebounds and becomes larger than in the low-
T region below TC . The suggested interpretation [8] is that

165130-18



ONSITE DENSITY MATRIX DESCRIPTION OF THE … PHYSICAL REVIEW B 101, 165130 (2020)

TC corresponds to a phase transition, specifically, to exciton
condensation. This implies the BCS (as opposed to BEC)
scenario, and appears plausible indeed, especially assuming
that the effective masses of the two bands are not too different
[52] (the opposite situation would likely lead to the BEC
physics).

However, positive identification of the excitonic conden-
sate based on its excitation spectrum requires detecting a
phase mode, which in this case would exist only below
TC , softening and vanishing at the transition point. As this
mode was not observed, it appears possible that the excitonic
transition, while lying low in energy, is preempted by a Peierls
one.

We further note that the observed amplitude mode spec-
trum may also suggest another possibility, viz., that of the
BEC scenario as discussed in this work. Then, the broad
minimum of the mode energy around TC would correspond
to the higher-temperature crossover (our T∗), and not to the
excitonic condensation (which might or might not take place
at a lower temperature Tcr , below which the phase-mode
energy would increase sharply). The superlattice reflections
observed below TC (see discussion in Ref. [8]) would then be
due to a structural change, perhaps with additional contribu-
tion from the stable exciton gas (as opposed to condensate),
which arises at T < T∗ (see discussion in Sec. I). If the
excitonic condensation temperature Tcr is indeed below TC ,
the former would again correspond to a smeared transition
(see Sec. VII A above; in this situation, one does not expect
the phase mode to completely disappear above Tcr , nor would
its energy exactly vanish at Tcr).

Although the present discussion of the amplitude mode
is clearly of a preliminary character, we expect that our
conclusions are solid at the qualitative level. This applies both
to the overall temperature dependence of the mode energy and
to the need for further measurements in order to clarify the
experimental situation reported in Ref. [8].

VIII. DISCUSSION AND OUTLOOK

Our mean-field treatment of the EFKM yields a phys-
ically transparent description of the excitonic insulator in
a broad range of temperatures and fully supports the gen-
eral expectations discussed in Sec. I. In particular, we were
able to characterize the phase-disordered state, including the
crossover region T ∼ T∗, and such a quantitative description
appears to represent a new development in the general con-
text of correlated electron systems with interaction-induced
pairing in the BEC regime. While at the low-temperature
region around the ordering transition (exciton condensation)
the theory has at best a rough qualitative accuracy due to
shortcomings expected of any single-site treatment at low T ,
there is ample reason to expect higher reliability at larger T ,
except in the high-temperature region for the case of strong
interactions. We therefore suggest that these results provide
a sound base for a more detailed description of the phase-
disordered excitonic insulator, including susceptibilities and
transport properties. Presently, our results lead to two conclu-
sions, and we suggest that these should be checked for those
compounds which are suggested as possible narrow-band (i.e.,
BEC rather than BCS) excitonic insulators.

First, in the phase-disordered state above the phase tran-
sition at Tcr there exists a crossover temperature T∗, corre-
sponding to a smooth decrease of the induced hybridization
�(T ) and to an equally smooth peak in the specific heat C(T ).
The order-of-magnitude estimate of T∗ is given by the value of
indirect energy gap G at T = 0 [Eqs. (18) or (5)] (but see fur-
ther discussion in Sec. VI). Second, while the value of �(T )
above T∗ is smaller than below, it is still of the same order of
magnitude (i.e., not small in absolute terms), and this situation
persists until much higher temperatures. This is due to the
thermal fluctuations of �, which increase with T and are natu-
rally asymmetric (with � being defined as a positive quantity,
its fluctuating value cannot dip below zero). In addition, the
phase space where these fluctuations occur is built in such a
way that the contribution of the small-� region is suppressed.
Technically, this is represented by the factor sin β in the inte-
gration measure in Eq. (107) [or in a more general Eq. (67)]
and may be interpreted as a reminder about the fact that while
within this temperature region the phase φ of the induced
hybridization is completely disordered, it is still present as a
physical variable. Indeed, had this not been the case, the mea-
sure of the fluctuations of � would correspond to O(1) rather
than to SU(2), leading to a replacement [25] sin β dβ → dβ.
Above T∗, the value of �(T ) initially continues to decrease
with increasing T ; it is expected to pass through a minimum
(possibly at rather high temperatures, when T becomes com-
parable to the band-structure energy scales, viz., T � Ed , see
Sec. VI), which is followed by an increase driven by the
increasing thermal fluctuations of the OSDM.

In recent years, both theoretical [16] and experimental
studies of purported excitonic insulators have been enjoy-
ing a pronounced renaissance. In most compounds where
the excitonic behavior was suggested (with a likely ex-
ception of Ta2NiSe5, see discussion in Sec. VII A and
Refs. [37–43,45,46]), it involves a narrow (or massive) band.
These candidate BEC excitonic insulators include, in addition
to the familiar samarium and thulium compounds [6,53], a
dichalcogenide semimetal [7,8] 1T -TiSe2, and also graphene
multilayers at high magnetic fields [54]. Recent theoretical
and experimental contributions are typically focused on the
ordered phase, or on the ordering transition (“exciton conden-
sation”), although it appears possible that the features seen in
some of the measurements actually correspond to the higher-
temperature crossover (T∗ rather than Tcr , see Secs. VII A
and VII B), and are incorrectly attributed to Tcr . While the
first experiments reporting observations of a disordered exci-
tonic insulator above Tcr are already available [52,55], neither
positive identification of this state nor a direct comparison
to our theory are possible at this stage. Experimentally, the
specific-heat measurements are still lacking for all compounds
apart from Ta2NiSe5, while the theory should be extended to
clarify the role of other degrees of freedom (spin, lattice, and
charge ordering), which are clearly important [16] at low T
and perhaps may significantly modify the system properties
also at higher temperatures. Given the rapid development of
the field, we expect a significant progress in the near future.

Importantly, we anticipate that the formalism, developed
in Secs. III and IV, can be generalized to other systems
with interaction-induced pairing. This includes both bulk
systems (such as Kondo lattice and related models for the
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heavy-fermion systems) and lattice impurity models. While
the latter are typically amenable to much more refined the-
oretical treatments, constructing an OSDM-based mean-field
approach still can be expected to yield new insights into
the properties of the method and possibly into those of the
physical system as well.

Therefore, comments are in order concerning some aspects
of the newly developed OSDM-based mean-field formal-
ism. Presently, we implemented it in Secs. V and VI in a
rather truncated form, only for the half-filled (n = 1) two-
dimensional case and omitting fluctuations of the eigenval-
ues of the OSDM (parameters θi) and (aside from a brief
qualitative discussion in Sec. VI A) those of the phases γi

[the three SU(4) phases which affect the wave function (53),
corresponding to a single-site fluctuation]. The dimensionality
of the system is hardly important at the mean-field level, and
especially in the phase-disordered state, where the short- to
medium-range correlations are expected to dominate. Regard-
ing the value of n, it appears that studying a system with
any carrier density (as long as it supports pairing) should not
present a difficulty, at least in principle. The same apparently
applies to treating the fluctuations of θi and γi in the case of
correlated impurity (Kondo, Anderson, etc.) problems. On the
other hand, fully including fluctuations of γi (or unrestricted
fluctuations of θ3) in a bulk system would require going
beyond the underlying Hartree-Fock approximation, and it is
presently unclear whether and how this could be performed.

The question of including fluctuations of θi which preserve
the Hartree-Fock condition nd = ncnd − |�|2 in the case of
EFKM [see Eq. (83), valid at n = 1] for a bulk system is
more subtle. Strictly speaking, in this case the fluctuations
of the OSDM on different sites are not mutually independent
(see Sec. III), which precludes full self-consistency of a
single-site mean-field approach. On the other hand, there is
a good reason to expect that the correction introduced by this
interdependency is small and can be neglected (see Sec. VI).
In this case, such fluctuations can be treated in a cumbersome
but straightforward way, using a reduced Eq. (59). Yet, we
suspect that such a calculation might not prove worthwhile,
as the weak to moderate symmetric fluctuations of θi about
their respective virtual-crystal average values are unlikely to
significantly affect the results in the region of interest, T � T∗.

One might also view this issue in a rather more pedantic
way: We set out to build an analog of the Weiss-type mean-
field theory for a system with itinerant carriers. Considering
all possible single-site fluctuations, we found that there exists
a subclass of these, which allows in principle for a full
self-consistency of this approach. This subclass includes the
fluctuations of the OSDM parameters β and φ (and also γi),
corresponding to ŜŜ† = 1 (see Sec. III). Hence, this technique
may prove useful in analyzing the physical systems where
fluctuations of the transverse component of the density matrix
are expected to play a role, including excitonic insulators,
heavy-fermion systems, superconductors, and perhaps also
spin-polarized systems where the (onsite) transverse spin
dynamics is important. As for the opposite case when the
OSDM is fully diagonal, the need for a Weiss-type treatment
there is doubtful, as such “longitudinal” problems are best
addressed by more conventional means, including the analysis
of plasmon spectra, etc.
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APPENDIX A: ONSITE FLUCTUATIONS IN A LATTICE
FERMI GAS

What follows is a rather obvious derivation, included here
for completeness. Consider for simplicity a single-band ideal
Fermi gas on a lattice, with an arbitrary dispersion law. Let F̂
be an onsite operator of the form

F̂ = 1

N

∑
�k

F (�k)n̂�k, (A1)

where n̂�k = g†�kg�k is the occupancy, g�k are the fermion annihi-
lation operators, and the summation is over the Brillouin zone.
Our local operators c†0c0, d†

0 d0, or c†0d0, whose average values
yield band occupancies or hybridization (see Secs. II and III),
all have the general form (A1). In these cases, the function
F (�k) contains also the coefficients of transformation from
the Hartree-Fock quasiparticle operators fa,�k to the original
fermions c�k , d�k [see Eqs. (20) and (21)]. We find

F̄ ≡ 〈F̂ 〉F = 1

N

∑
�k

F (�k)n�k,

where n�k is the Fermi distribution function, and likewise

〈δF 2〉F = 〈(F̂ )2 − (F̄ )2〉F

= 1

N2

∑
�k, �p

F (�k)F ( �p)〈n̂�kn̂ �p − n�kn �p〉F . (A2)

Since the occupancies for different momenta are statistically
independent, the nonzero contribution comes only from the
�k = �p terms [where one obtains the well-known formula [56]
for the occupancy fluctuation 〈(δn�k )2〉F = n�k (1 − n�k )]. Thus,

√
〈δF 2〉F =

⎧⎨
⎩ 1

N2

∑
�k

[F (�k)]2n�k (1 − n�k )

⎫⎬
⎭

1/2

∝ 1√
N

, (A3)

and vanishes in the N → ∞ limit. Generalization for a two-
band case and for higher-order local operators F̂ is straight-
forward.

We emphasize that Eq. (A2) applies to finite-temperature
fluctuations in a canonical ensemble, and not to quantum-
mechanical fluctuations of an observable in a given state |
〉.

APPENDIX B: ONSITE FLUCTUATIONS OF THE
MANY-BODY WAVE FUNCTION

We rewrite Eq. (30) as

|
〉 = A(0)
a |a〉|�a(
)〉 + A(0)

b |b〉|�b(
)〉
+ A(0)

0 |0〉|�0(
)〉 + ∣∣A(0)
cd

∣∣|ab〉|�cd (
)〉, (B1)
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where the states |�i(
)〉 are orthonormal. In the last term, we
introduced

|ab〉 ≡ a†b†|0〉 = eiϕ0 |cd〉 (B2)

[see Eqs. (42)–(44)]. The state of the system is affected by the
choice of the onsite states |c〉 and |d〉 relative to |a〉 and |b〉 [cf.
Eqs (43) and (44); this affects the values of ρ11, ρ22, and ρ12 =
ρ∗

21 but not the eigenvalues of the OSDM, ρ̂], and by varying
the coefficients Ai (which in turn changes the eigenvalues).

The states |�i〉 relate only to the rest of the system and are
unaffected by the onsite fluctuations.

The changes of Ai are described by SU(4) transformations
in the four-dimensional space of orthonormal vectors |a〉|�a〉,
|b〉|�b〉, |0〉|�0〉, and |ab〉|�cd〉 (matrix equations that follow
assume this order of basic vectors). While one could act
with an SU(4) transformation D on the original state (B1),
it is more convenient to choose a fixed initial state |ψ0〉 =
|ab〉|�cd (
)〉. As explained in Ref. [25] (see also Ref. [57]),
one can then use a reduced form D̃ of the SU(4) transforma-
tion matrix, depending only on 6 Euler angles (instead of 15):

D̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ei(α1+α2+α3 ) cos θ1
2 cos θ2 sin θ3 ei(α1−α2−α3 ) sin θ1

2 ei(α1+α2 ) cos θ1
2 sin θ2 ei(α1+α2+α3 ) cos θ1

2 cos θ2 cos θ3

−ei(−α1+α2+α3 ) sin θ1
2 cos θ2 sin θ3 e−i(α1+α2+α3 ) cos θ1

2 −ei(−α1+α2 ) sin θ1
2 sin θ2 −ei(−α1+α2+α3 ) sin θ1

2 cos θ2 cos θ3

−eiα3 sin θ2 sin θ3 0 cos θ2 −eiα3 sin θ2 cos θ3

− cos θ3 0 0 sin θ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(B3)
(with 0 � α1, θ1 � π , 0 � θ2,3 � π/2, and 0 � α2,3 � 2π ). We find [up to an inconsequential overall phase factor of
− exp(iα3)]

|ψ (θ1, θ2, θ3, γ1, γ2, γ3)〉 = D̃|ψ0〉 = ei(γ1+γ2 ) cos
θ1

2
cos θ2 cos θ3|a〉|�a〉 + ei(γ1−γ2 ) sin

θ1

2
cos θ2 cos θ3|b〉|�b〉

+ sin θ2 cos θ3|0〉|�0〉 + ei(2γ1+γ3 ) sin θ3|ab〉|�cd〉, (B4)

where γ1 = α2 − π/2, γ2 = α1 − π/2, and γ3 = −α3 − 2α2. Equation (B4) reduces to Eq. (B1) when the angles θi are given by

sin θ3 =
√
n

(0)
d , tan θ2 =

√√√√1 + n
(0)
d − n(0)

c − n(0)
d

n(0)
c + n(0)

d − 2n(0)
d

, (B5)

cos θ1 =
√(

n(0)
c − n(0)

d

)2 + 4(�(0) )2

n(0)
c + n(0)

d − 2n(0)
d

, (B6)

and γ1 = γ2 = γ3 = 0. Next, we perform a (modified) SU(2) rotation according to

|a〉 = eiζ

(
cos

β

2
|c〉 + eiφ sin

β

2
|d〉
)

, (B7)

|b〉 = e−iζ

(
− sin

β

2
|c〉 + eiφ cos

β

2
|d〉
)

, (B8)

implying also |ab〉 = eiφ|cd〉 [note that states |c〉, |d〉, and |cd〉 here are different from the original ones in Eqs. (30) or (B2)].
The parameter ζ in Eqs. (B7) and (B8) is additive with γ2 in Eq. (B4) and can be set to zero, whereas φ and β vary in the
ranges 0 < φ < 2π , 0 < β < π . Substituting Eqs. (B7) and (B8) into (B4), we finally obtain Eq. (52); in order to avoid double
counting, one must restrict the values of angle θ1 to the interval 0 � θ1 � π/2.

As noted in the Introduction, the issue of the integration over the space of quantum states is cumbersome. However, in the
specific case of phase factors in Eq. (B4) symmetry considerations dictate that the three quantities γ1 + γ2, γ1 − γ2, and 2γ1 + γ3

should all vary between 0 and 2π (the values differing by 2π are equivalent) with the uniform integration measure [agreeing
with the results for the Haar measure of the SU(4) transformation, Eq. (B3) (see Ref. [25])]. In this way, we arrive at Eq. (84).

APPENDIX C: ENERGY COST OF A SINGLE-SITE FLUCTUATION

Here, we will use Eq. (57) to derive the general expression for the energy cost of a fluctuation, without introducing any
restrictions on n. The case of n = 1, considered in Secs. V and VI, can be obtained with the help of Eq. (75).
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Using explicit expressions for states |�i〉 and coefficients A(0)
i (see the main text), the operator Ŝ in Eq. (54) can be written in

the form

Ŝ = X01̂ + X1e−iϕ0 c†0d0 + X2eiφd†
0 c0 + (X3 − X0)c†0c0 + (X4ei(φ−ϕ0 ) − X0)d†

0 d0 + ([X5 − X4]ei(φ−ϕ0 ) − X3 + X0)c†0d†
0 d0c0,

(C1)
where

X0 = cos θ2 cos θ3√
1 + n

(0)
d − n(0)

c − n(0)
d

, (C2)

X1 = eiγ1 cos θ2 cos θ3

(
eiγ2

A(0)
a

sin
β (0)

2
cos

β

2
cos

θ1

2
− e−iγ2

A(0)
b

cos
β (0)

2
sin

β

2
sin

θ1

2

)
, (C3)

X2 = eiγ1 cos θ2 cos θ3

(
eiγ2

A(0)
a

cos
β (0)

2
sin

β

2
cos

θ1

2
− e−iγ2

A(0)
b

sin
β (0)

2
cos

β

2
sin

θ1

2

)
, (C4)

X3 = eiγ1 cos θ2 cos θ3

(
eiγ2

A(0)
a

cos
β (0)

2
cos

β

2
cos

θ1

2
+ e−iγ2

A(0)
b

sin
β (0)

2
sin

β

2
sin

θ1

2

)
, (C5)

X4 = eiγ1 cos θ2 cos θ3

(
eiγ2

A(0)
a

sin
β (0)

2
sin

β

2
cos

θ1

2
+ e−iγ2

A(0)
b

cos
β (0)

2
cos

β

2
sin

θ1

2

)
, (C6)

and

X5 = ei(γ3+2γ1 ) sin θ3√
n

(0)
d

. (C7)

This expression for Ŝ should be substituted in Eq. (57), leading to a somewhat tedious calculation. For our purposes in this
paper, it will suffice to consider the case of θi = θ

(0)
i , when one may use a simpler expression (58). Since the latter involves

averaging over the Hartree-Fock wave functions |
〉, average values of the products of Fermi operators in each term of the
resultant expression decouple into pairwise averages, some of which contain operators at different sites, viz., at our central site
0 and at one of the neighboring sites a. When the operator at site a is either ca or c†a , the corresponding average does not involve
the phase ϕa of the operator da, and we readily find

1

2

∑
a

〈c†0ca〉F = l (0)
c ,

1

2

∑
a

〈d†
0 ca〉F = e−iϕ0 l (0)

� , (C8)

1

2

∑
a

�a · ��〈c†ad0〉F = −eiϕ0 m (C9)

[see Eqs. (91); the vector �� is defined following Eq. (3), and the vector �a connects the central site and the site a].
We begin with the low-temperature case of T � Tcr , when fluctuations of the quantities γi and β are very small. Averaging

over the thermal fluctuations of the background [included in 〈. . . 〉T ′ in Eqs. (57) and (58)] is then equivalent to averaging over
the phases ϕa on the neighboring sites, which in turn obey Eq. (12). In defining the coefficients Xi above, we explicitly factored
out the dependence on φ and ϕ0, in order to facilitate averaging over ϕi. It can be carried out in two stages:

(i) The operator Ŝ [Eq. (C1)] contains only the fermion operators at our central site 0. Taking into account the form of the
Hamiltonian H + δH, this implies that each term in the operator Ŝ†[H + δH, Ŝ] [see Eq. (57)] contains at most one of the
operators da or d†

a at one of the neighboring sites a. Therefore, we can readily take the average value over the fluctuations of ϕa,
replacing exp(±iϕa) with cos κ [see Eq. (12)]. Since 〈. . .〉T ′ is but a combination of canonical averaging 〈. . . 〉F and averaging
over ϕa, we find

1

2

∑
a

〈d†
a d0〉T ′ = eiϕ0 l (0)

d cos κ,
1

2

∑
a

〈d†
a c0〉T ′ = l (0)

� cos κ,

1

2

∑
a

�a · ��〈d†
a c0〉T ′ = m cos κ, (C10)

with l0)
d defined in Eqs. (91). In addition, we note that∑

a

〈c†0ca〉F �a · �� =
∑

a

〈d†
0 da〉T ′ �a · �� = 0.
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(ii) Now, inspecting every term in 〈
|Ŝ†[H + δH, Ŝ]|
〉T ′ we find that it is either independent of ϕ0 or linear in exp(±iϕ0).
In the latter case, averaging over fluctuations of ϕ0 amounts to replacing exp(±iϕ0) with cos κ . This completes the averaging
over the phases ϕi in Eq. (58).

In this way, we find the two terms in the expression (58) for δE (averaged over fluctuations of all ϕi):

〈
|Ŝ†[H, Ŝ]|
〉F,ϕ = [|X1|2 − |X2|2 − |X3 − X0|2 + |X4 − X5|2]
(
l (0)
c n(0)

d − l (0)
� �(0))+ [X2X ∗

4 − X1X ∗
3 ]
(
l (0)
� + Ed�

(0))
+ 2 Re{X ∗

1 (X0 − X3) + X ∗
2 (X5 − X4)}(l (0)

� n(0)
c − lc�

(0)
)+ 2 Re{X1(X ∗

3 − X0)}l (0)
�

+ [|X2|2 + |X3 − X0|2]l (0)
c + |X1|2Ed

(
n

(0)
d − n(0)

d

)− |X2|2Ed
(
n

(0)
d − n(0)

c

)
, (C11)

which does not depend on either φ or cos κ , and

〈
|Ŝ†[δH, Ŝ]|
〉F,ϕ

= {[(−X 2
0 − |X1|2 + |X2|2 + |X3|2 − |X4|2 + |X5|2

)
cos κ + 2 Re[(X0X4 − X5X ∗

3 )eiφ]
](

l (0)
d n(0)

c − l (0)
� �(0))

+ [(X1X ∗
3 + X4X ∗

2 ) cos κ − 2 Re(X0X2eiφ )]l (0)
� + [(X 2

0 + |X1|2 + |X4|2
)

cos κ − 2 Re(X0X4eiφ )
]
l (0)
d

+ 2 Re[(X0X2 + X5X ∗
1 )eiφ − (X1X ∗

3 + X2X ∗
4 ) cos κ]

(
l (0)
� n(0)

d − l (0)
d �(0)

)}
t ′ cos κ

+ {[2 Re(X2X ∗
3 eiφ ) − (X1X ∗

3 + X4X ∗
2 ) cos κ]

(
n(0)

c − n
(0)
d

)+ [2 Re(X4X ∗
1 eiφ ) − (X3X ∗

1 + X2X ∗
4 ) cos κ]

(
n(0)

d − n
(0)
d

)
+ [2 Re((X2X ∗

1 + X4X ∗
3 )eiφ ) − (|X1|2 + |X2|2 + |X3|2 + |X4|2) cos κ]�(0)

}
V0

+ {(X 2
0 − |X1|2 + |X2|2 + |X3 − X0|2 + |X4|2

)
cos κ − 2 Re(X0X4eiφ ) + [|X1|2 − |X2|2 − |X3 − X0|2 + |X4 − X5|2]

× n(0)
d cos κ + [(−X 2

0 + |X1|2 + |X2|2 + |X3|2 − |X4|2 + |X5|2
)

cos κ + 2 Re((X0X4 − X5X ∗
3 )eiφ )

]
n(0)

c

+ 2 Re[−(X0X2 + X5X ∗
1 )eiφ + (−X0X1 − 2X1X ∗

3 + 2X2X ∗
4 − X2X ∗

5 ) cos κ]�(0)}V2m, (C12)

where we omitted the (somewhat cumbersome) V1 term. Carrying out the algebra, we arrive at Eq. (90).
Turning now to the high-temperature, phase-disordered case of Sec. VI, we notice that the contribution of δH to δE , Eq. (58)

vanishes upon averaging over phase fluctuations [note that every term in Eq. (C12) contains at least one of cos κ or exp(iφ)]. The
contribution of H is derived in a similar way and 〈
|Ŝ†[H, Ŝ]|
〉T ′,ϕ0 is still given by the right-hand side of Eq. (C11), where
however one has to replace the Fermi-distribution averages l (0)

c,� [Eq. (C8)] with the quantities

lc = 1

2

∑
a

〈c†0ca〉T ′ = l (0)
c + δlc, (C13)

l� = 1

2
eiϕ0
∑

a

〈d†
0 ca〉T ′ = l (0)

� + δl�, (C14)

which are averaged over the thermal fluctuations of β on the neighboring sites a. In a direct analogy to the derivation of Eq. (58)
in Sec. III, we find

δlc = 1

2

∑
a

〈c†0S†
a [ca, Sa]〉T ′ , (C15)

δl� = 1

2
eiϕ0
∑

a

〈d†
0 Ŝ†

a [ca, Ŝa]〉T ′ , (C16)

where Ŝa is the operator of an onsite perturbation acting on site a. It is given by the same expression (C1)–(C7), but all the
fermion operators and angles now carry a site index a [instead of index 0, suppressed in Eqs. (C1)–(C7)]. Upon carrying out the
calculation in Eqs. (C15) and (C16), it is convenient to exchange the site indices 0 ↔ a, so that the averaging is again carried
out over the onsite thermal fluctuations at site 0, in our notation 〈. . . 〉T . We find

δlc = 〈l (0)
� X0X1 + l (0)

c X0(X3 − X0) + (l (0)
� �(0) − l (0)

c n(0)
d

)[|X1|2 + |X4|2 − X ∗
4 X5 + X0X3 − X 2

0

]
+ (l (0)

� n(0)
c − l (0)

c �(0)
)
[(X ∗

3 − X0)X1 + X ∗
2 (X4 − X5)]

〉
T
, (C17)

δl� = 〈l (0)
d X0X1 + l (0)

� X0(X3 − X0) + (l (0)
d �(0) − l (0)

� n(0)
d

)[|X1|2 + |X4|2 − X ∗
4 X5 + X0X3 − X 2

0

]
+ (l (0)

d n(0)
c − l (0)

� �(0))[(X ∗
3 − X0)X1 + X ∗

2 (X4 − X5)]
〉
T , (C18)

which at γi = 0 yields Eqs. (103) and (104) (note that both phases ϕ0 and φ cancel out).
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For the energy cost of a fluctuation, Eq. (C11) with l (0)
c,� → lc,�, at γi = 0 we find Eq. (102) [note that the value of n(0)

d in
Eq. (102) is given by the Hartree-Fock expression (41)]. If we allow for nonzero γi at site 0 only, there arises an additional term

δγ E = 4
(
l�n(0)

c − lc�
(0)) sin

γ3

2

[
cos

β

2
sin

β (0)

2
sin
(
γ1 + γ2 + γ3

2

)
− sin

β

2
cos

β (0)

2
sin
(
γ1 − γ2 + γ3

2

)]

+ 4
(
lcn(0)

d − l��(0)
)

sin
γ3

2

[
cos

β

2
cos

β (0)

2
sin
(
γ1 + γ2 + γ3

2

)
+ sin

β

2
sin

β (0)

2
sin
(
γ1 − γ2 + γ3

2

)]

+ 4l�

[
cos

β

2
sin

β (0)

2
sin2

(
γ1 + γ2

2

)
− sin

β

2
cos

β (0)

2
sin2

(
γ1 − γ2

2

)]

+ 4lc

[
cos

β

2
cos

β (0)

2
sin2

(
γ1 + γ2

2

)
+ sin

β

2
sin

β (0)

2
sin2

(
γ1 − γ2

2

)]
, (C19)

which should be added to δE (β ) [Eq. (102)]. Note that the angles θi are still assumed frozen at θi = θ
(0)
i .
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