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We computed the Compton profile of solid and liquid lithium using quantum Monte Carlo (QMC) and
compared it with recent experimental measurements, obtaining good agreement. Importantly, we find it crucial
to account for proper core-valence orthogonalization and to address density differences when comparing with
experiment. To account for disorder effects, we sampled finite-temperature configurations using molecular dy-
namics, then performed diffusion Monte Carlo (DMC) simulations on each configuration. We used Slater-Jastrow
wave functions and grand-canonical twist-averaged boundary conditions. A QMC pseudopotential correction,
derived from an all-electron DMC simulation of the perfect crystal, was also used. Our calculations provide an
all-electron QMC benchmark for the Compton profile of lithium crystal and pseudopotential-corrected QMC
Compton profiles for both the liquid and solid.
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I. INTRODUCTION

The Compton profile is a bulk-sensitive probe of the
electronic structure of a material accessible to both theory
and experiment. Using the “impulse approximation” [1], the
double-differential cross section of inelastic light scattering
is directly proportional to the Compton profile, the Radon
transform of the electronic momentum distribution along the
scattering vector:

J (pz ) =
∫∫

dkxdky n(kx, ky, kz = pz ), (1)

where n(k) is the electronic momentum distribution. Since the
pioneering work of Eisenberger et al. [1,2], Compton scatter-
ing experiments have been performed on simple metals such
as Li [3–7], Be [8,9], and Na [10], as well as more compli-
cated materials. Accompanying the scattering experiments are
numerous theoretical calculations using different electronic
structure theories, including density functional theory (DFT)
[3,4,7,11–16], quantum Monte Carlo (QMC) [10,17], and GW
[18–21]. The Compton profiles in Refs. [3,4] were compared
to DFT results using the local-density approximation (LDA)
with the Lam-Platzman correlation correction [22]. While the
Lam-Platzman correction has been shown to be accurate by
QMC [13,17,23], the theoretical Compton profile is still larger
at low momenta and smaller at high momenta compared with
experiment. In other words, the predicted Compton profile is
typically narrower than observed.

Both theoretical approximations and experimental proce-
dures may be responsible for a significant fraction of the
aforementioned discrepancy. In the experiment, finite mo-
mentum resolution and final-state effects [24,25] broaden
the measured Compton profile. In the theoretical calcu-
lations, the lack of electronic correlation and the use of

pseudopotentials both narrow the computed Compton pro-
file. Furthermore, many subtle complications may also be
responsible for part of the discrepancy. Examples include
multiple-scattering corrections, background subtraction, ther-
mal expansion, electron-phonon coupling, and relativistic
effects.

In this paper, we present much improved QMC calcula-
tions on the solid and liquid states of lithium. First, we use
grand-canonical twist averaging [26,27] to access the momen-
tum distribution at arbitrary momentum while preserving a
sharp Fermi surface. We obtain a momentum resolution of
0.040 a.u., which is higher than the 0.068 a.u. achieved previ-
ously [17] (it is straightforward to further increase momentum
resolution given more computational resources). Second, we
perform diffusion Monte Carlo (DMC) to remove effects
of the trial wave function. Third, we use all-electron QMC
to explore the pseudopotential bias in the Compton profile.
We find that the pseudopotential bias is responsible for the
majority of the discrepancy between pseudopotential QMC
and experimental Compton profiles away from the Fermi
surface. Fourth and finally, we apply finite-size corrections
[28,29] to obtain the momentum distribution in the thermody-
namic limit. Using these improved procedures, we calculate
the disorder-averaged Compton profiles for polycrystal and
liquid lithium and obtain good agreement with a recent high-
resolution synchrotron experiment [30].

This paper is organized as follows. In Sec. II, we describe
the simulation methods used to obtain the QMC momentum
distributions. In Sec. III, we show the QMC momentum dis-
tributions and the resulting Compton profiles in comparison
with experiment. In Sec. IV, we discuss the influence of
various physical effects on the momentum distribution in an
attempt to explain the remaining discrepancy between QMC
and experiment.
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II. METHOD

Full-core and pseudopotential QMC calculations have been
performed on both the perfect crystal and disordered lithium
configurations. We use the Slater-Jastrow trial wave function

�T = D↑D↓ exp

⎡
⎣−

N∑
i< j

u(ri − r j ) −
N∑

i=1

χ (ri )

⎤
⎦, (2)

where u(r) is the electron-electron Jastrow pair function,
χ (r) is the electron-ion Jastrow pair function, and ri is the
position of the ith electron. The Slater determinant D↑/↓ is
composed of single-particle orbitals obtained using Kohn-
Sham DFT with the LDA functional. In the full-core calcu-
lation, we remove the approximate electron-ion cusp from
the orbitals and reintroduce the exact cusp condition in the
Jastrow function [31]. The electron-ion Jastrow pair function
is split into a sum of core and valence pieces. A flexible
B-spline with 16 adjustable knots is used for the core piece
(r < 2 bohrs). An electron-electron-ion three-body Jastrow
consisting of cubic terms in separations with a cutoff of 4
bohrs further improves the all-electron wave function [32]. In
the pseudopotential calculation, we treat the lithium atoms as
pseudoions of charge +1. The core, screened by 1s electrons,
is replaced by the Burkatzki-Filippi-Dolg pseudopotential
[33]. The electron-electron Jastrow pair function is expressed
as a sum of real-space and reciprocal-space parts to accurately
describe long-range plasmon fluctuations.

In variational Monte Carlo, we sample |ψT |2 using
Metropolis Monte Carlo and directly calculate properties
from the many-body wave function. The momentum distri-
bution is calculated using the direct estimator in reciprocal
space [34]. In DMC, an ensemble of electron configurations
evolves according to the Green’s function of the nonrelativis-
tic Schrödinger equation in imaginary time. Using the trial
wave function ψT as the guiding function and phase reference,
the long-time solution samples the mixed distribution ψ∗

T ψFP,
in the small time step limit. ψFP is the fixed-phase ground-
state wave function. If the phase of ψT were exact, then
ψFP would be the exact ground-state wave function [35]. The
difference between the expectation value of an observable
in the fixed phase and the mixed distributions is the mixed-
estimator bias. We gauge simulation quality by monitoring
kinetic, potential, and total energies as well as pair correlation
functions and the momentum distribution. We observe fast
equilibration, small variance, and small mixed-estimator bias
in all monitored quantities. The DMC momentum distribution
is linearly extrapolated to remove the mixed-estimator bias.
For more details on the computational methods and data
processing, see the Supplemental Material [36].

We use grand-canonical twist average boundary condition
to improve the momentum distribution [28,37]. A previous
QMC calculation [17] used real wave functions and the
canonical twist average boundary condition (CTABC); each
boundary condition (twist) had the same number of electrons.
Use of real trial functions restricted the accessible momenta
to those commensurate with the simulation cell. CTABC can
occupy states outside of the Fermi surface at certain twists,
which artificially smears the Fermi surface. In contrast, the
grand-canonical twist average technique enforces a constant

chemical potential at all twists. We adjust the number of
electrons at each twist such that no state outside the Fermi
surface is occupied. This allows us to sample the momentum
distribution at momenta arbitrarily close to the Fermi surface
while maintaining a sharp Fermi surface. In practice, we
impose the occupation of the orbitals in the Slater determinant
according to the LDA Fermi energy. In principle, one might
modify the Fermi surface by estimating the chemical potential
directly within QMC [38]. However, this is much more com-
putationally demanding and is beyond the scope of the current
study and not thought to be necessary for lithium based
on comparison with de Haas–van Alphen estimations of the
anisotropy of the Fermi surface. As discussed in Sec. IV, we
have determined that the DFT Fermi surface is quite accurate.

In the perfect crystal, the full-core simulation contains 54
lithium atoms, while the pseudopotential simulations contain
54 or 432 atoms. We use molecular dynamics (MD) with the
modified embedded-atom potential [39] to generate the dis-
ordered configurations. The MD temperatures were elevated
to model quantum fluctuations of the nuclei [40]. We sample
the canonical distribution with 432 lithium atoms at 330 and
500 K for experiments at 298 and 493 K, respectively.

All calculations have been performed at the same density
rs = 3.25, consistent with the previous QMC study [17]. After
obtaining QMC results at rs = 3.25, we rescale the density of
QMC Compton profiles to match the experimental densities:
rs = 3.31 for the liquid and rs = 3.265 for the solid.

In both QMC and experiment, we assume that the mo-
mentum distribution of the core electrons remains unmodified
from that in the isolated atom. The atomic core orbital is
calculated using Hartree-Fock (HF) and removed from all-
electron results to produce valence electron contributions.

We convolved our QMC Compton profile with a broad-
ening function to model instrument resolution and final-state
interaction. For this we used the extended Lorentzian

b(x) = 1

�̃

1

a0 + a1
(

2x
�

)2 + a2
(

2x
�

)4 , (3)

with � = 0.024 a.u., a0 = 1, a1 = 0.85, and a2 = 0.15 chosen
to fit the convolution of the elastic line in the x-ray experiment
and the spectral density function of the electrons and �̃ such
that

∫
dx b(x) = 1.

We used LAMMPS [41] for the MD simulations, QUANTUM

ESPRESSO [42,43] for DFT, PYSCF [44] for HF, and QMCPACK

[45] for QMC. The disordered calculations have been auto-
mated using the NEXUS suite of tools [46].

III. RESULTS

Figure 1 shows the valence Compton profiles of solid and
liquid lithium from experiment and processed QMC data. The
raw QMC data have been processed to account for finite-
size effects, thermal disorder, pseudopotential bias, density
change, final-state effects, and instrument resolution. The
QMC Compton profiles agree with experiment immediately
inside the Fermi surface (0.2 a.u. < p < 0.4 a.u.) and at
large momenta (p > 0.9 a.u.). However, the QMC Compton
profiles show a smaller high-momentum component immedi-
ately outside the Fermi surface and a too big low-momentum
component. Both the theoretical and experimental valence
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FIG. 1. Valence electronic Compton profiles of solid (solid line)
and liquid (dashed line) lithium from QMC (thin lines) and experi-
ment (thick lines). The top panel shows the Compton profiles on an
absolute scale. The bottom panel shows �J (p) = JQMC − Jexpt.

Compton profiles satisfy the normalization sum rule
(
∫ ∞
−∞ J (p)d p = 1) to better than 0.3%. The difference be-

tween QMC and experiment Compton profiles can be inter-
preted as a shift of momentum density from zero to slightly
above the Fermi momentum.

Figure 2 shows the change in the Compton profile when
the liquid freezes into a solid. The systematic difference
between QMC calculations and experiment is almost identical
in the solid and liquid. Thus, cancellation of error allows
us to capture the difference between the solid and liquid
Compton profiles almost perfectly. The main change is a
density-induced outward shift of the Fermi surface. This shift
manifests in Fig. 2 as a peak at the solid Fermi momentum
pF ≈ 0.578 a.u. and a parabolic dip centered around p = 0.
Another important difference is the emergence of secondary
Fermi surfaces due to umklapp scattering in the solid. We ex-
pect secondary Fermi surfaces to center around the reciprocal

FIG. 2. Difference between solid and liquid valence electronic
Compton profiles.

FIG. 3. Momentum distribution of valence electrons in lithium
bcc crystal. (a) compares pseudopotential (crosses) to full-core (dots)
results. (b) compares 54-atom (crosses) to 432-atom (pluses) pseu-
dopotential results.

lattice of the lithium crystal. Crystalline lithium is bcc with a
lattice constant of ∼6.63 bohrs, so its reciprocal lattice is fcc
with a lattice constant of ∼1.895 a.u. The nearest neighbor
to � is p1 = 1.34 a.u. along [110]. Therefore, the closest
secondary Fermi surface is located at p1 − pF = 0.762 a.u.,
which is exactly where we observe a small peak in Fig. 2.

As mentioned at the beginning of this section, we process
the raw QMC data in several steps to make them comparable
to experiment. In the following, we present perfect lithium
crystal QMC calculations, which we use to validate the pro-
cessing steps.

In Fig. 3, one-dimensional slices of the QMC valence
momentum distributions are shown. The momentum distribu-
tion is free-electron-like along the [100] and [111] directions.
Along the [110] direction, however, there is a pronounced sec-
ondary Fermi surface. The valence profile from the full-core
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calculation is flatter inside the Fermi surface and has enhanced
secondary features when compared to the pseudopotential
calculation.

To obtain the valence momentum distribution from the
full-core QMC calculation, we remove the momentum dis-
tribution of the 1s core electrons. The 1s orbital of the neu-
tral lithium atom is calculated using HF with a correlation-
consistent polarized valence five zeta (cc-pV5Z) basis. The
most pronounced effect of the pseudopotential is to increase
the electronic momentum density inside the Fermi surface,
raising n(0) by more than 5%. In contrast, the effect of
increasing system size peaks at the Fermi momentum. The
main effect of finite system size is to increase the magnitude
of the discontinuity at the Fermi momentum. The effects of
pseudopotential and finite system size can be better shown in
the momentum distribution differences.

In Fig. 4, we show two sets of momentum distribution
differences in direct correspondence with Fig. 3. The first
is the difference between full-core and pseudopotential mo-
mentum distributions. This difference can be considered a
pseudopotential correction (PPC). The PPC is largest inside
the Fermi surface. It has a parabolic shape and is mostly neg-
ative along the [100] and [111] directions. However, it shows
positive peaks near the secondary Fermi surface along the
[110] direction. The PPC is spherically averaged and applied
to the momentum distributions of the disordered structures.

Now consider how the finite size of our supercell affects
the results: the finite-size correction (FSC). Figure 4(b) shows
the difference between the 432-atom and 54-atom pseudopo-
tential calculations. The difference peaks at the Fermi surface
and goes to zero at high momenta. The FSC results shown here
are used to validate the approach outlined in Refs. [28,29].

In Fig. 5, we show our best QMC Compton profile in the
crystal as the red line. It is the spherically averaged Compton
profile from the 432-atom pseudopotential calculation with
PPC and FSC applied. Further, we rescaled the QMC data to
change density from rs = 3.25 to rs = 3.265 and convolved
the QMC Compton profile with Eq. (3) to approximately
account for experimental resolution and final-state effects.
The full-core QMC profiles agree well with the most recent
experiment away from the Fermi surface.

The Compton profile reported by Filippi and Ceperley [17]
is closer to our full-core result than to our pseudopotential
result. This is because they accounted for proper core-valence
orthogonalization using full-core LDA. Pseudopotential QMC
was used to estimate the correlation correction, rather than
directly provide the Compton profile.

Taking our best QMC Compton profiles (thin lines in
Fig. 1) as a reference, we show the remaining difference
between the QMC and the experiment Compton profiles as
the black curves in Fig. 6. We also show the effect of each
processing step in the calculation of J (p). Finite-size and
convolution corrections both peak at the Fermi momentum
and are small at the scale of the remaining discrepancy. The
density correction is small in the solid but substantial in the
liquid because QMC calculations have been performed close
to the solid density. In both cases, the density correction
contracts the Fermi sphere and has little effect above the
Fermi momentum. In contrast, the pseudopotential correction
nearly vanishes at the Fermi momentum, smoothly transfers

FIG. 4. Momentum distribution differences. (a) is the difference
between full-core and pseudopotential results. (b) is the difference
between the 432-atom and 54-atom pseudopotential results. The
shaded region shows one standard deviation of statistical uncertainty.
These results are used to inform pseudopotential and finite-size
corrections.

low-momentum components to high momenta, and remains
nonzero well above the Fermi momentum. The n(k) tail
correction is needed to recover the normalization sum rule
because the QMC n(k) is truncated at a finite momentum kc.
The exact shape of the n(k) tail may not be accurate above kc

because the assumed functional form is simple (see the Sup-
plemental Material [36]). Fortunately, the effect of the n(k)
tail within kc is simply to shift the entire Compton profile up
by a constant, as dictated by the normalization sum rule. The
tail and pseudopotential corrections are the only ones that can
change the high-momentum tail of the Compton profile.

IV. DISCUSSION

In the following, we discuss possible explanations for the
remaining discrepancy in Fig. 1, which is shown separately
for the solid and liquid in Fig. 6.

165125-4



QUANTUM MONTE CARLO COMPTON PROFILES OF SOLID … PHYSICAL REVIEW B 101, 165125 (2020)

FIG. 5. Spherical average of the valence Compton profile of the
lithium bcc crystal at rs = 3.25. The red solid line is the best QMC
result with all processing steps applied. The red dotted curve is
our pseudopotential QMC result. The black curve is experiment on
polycrystal lithium.

Electron-ion interaction. The crystal lattice introduces in-
homogeneity to an otherwise homogeneous valence electron
density. Umklapp processes send electronic momentum den-
sity to secondary Fermi surfaces, thereby enhancing the high-
momentum components of the momentum distribution and
reducing the momentum distribution inside the Fermi surface.
Further, its discontinuity at the Fermi surface is reduced [2]. In
the absence of other interactions, the ground-state electronic
density will be exact if the electron-ion interaction is perfectly
captured. DFT is designed to obtain the correct ground-state
electronic density, so we expect it to treat electron-ion in-
teraction well. However, pseudopotential is not designed to
faithfully reproduce the charge inhomogeneity of the valence
orbital in the core region. Therefore, pseudopotential intro-
duces a bias in the valence momentum distribution.

The qualitative effect of the pseudopotential is clear from
its construction. When designing a pseudopotential, one
smooths the valence orbital inside the core region. This will
decrease the electronic momentum density at high momenta
and increase it at low momenta. Indeed, one can reproduce the
pseudopotential correction semiquantitatively by considering
the smoothing of the pseudized valence orbital in the lithium
atom (Fig. 7). We see that augmented plane wave calculations
[12,13,47,48] tend to reproduce the experimental Compton
profiles better at low momenta than pseudopotential calcula-
tions.

Our pseudopotential correction is not perfect. It was de-
rived in the perfect crystal, then applied to the disordered con-
figurations. Ideally, one would directly perform all-electron
QMC on the disordered configurations. However, this is com-
putationally expensive. We do not consider all-electron calcu-
lation to be necessary in the solid phase because the effect
of disorder is small. The current PPC does overcorrect the
liquid Compton profile at high momenta because the correc-
tions meant for the secondary Fermi surfaces are extraneous.
Nevertheless, we think the pseudopotential bias is mostly
captured, i.e., at the scale of Fig. 7. The corrected Compton

FIG. 6. Valence Compton profile corrections. The solid black
curve is experiment relative to “best” theory. The dotted black curve
is experiment relative to the pseudopotential QMC result with no
correction. Each colored curve shows the effect of neglecting a
processing step from the theoretical Compton profile. When added
to the processed result (solid black curve), the sum of all colored
curves approximately recovers the unprocessed result (dotted black
curve).

profile in Fig. 5 is in better agreement with experiment than
its pseudopotential counterpart, especially at p = 0. We do not
think the pseudopotential bias is responsible for the remaining
discrepancy because the PPC is concentrated around p = 0. If
it were underestimated, then the remaining correction would
lower J (0) much more than it would raise J (pF ), worsening
the agreement with experiment.

Disorder. Disorder mostly reduces the effect of the crystal
lattice because deviations from the perfect lattice weaken
umklapp processes. Confirmation was obtained when Sterne-
mann et al. reproduced the temperature effect on the Compton
profile of lithium by smearing out the pseudopotential with a
Debye-Waller factor [6].

Thermal disorder is also unlikely to be responsible for the
remaining discrepancy because disorder correction is small at
the scale of the remaining correction. This can be seen by
comparing the discrepancy in the perfect crystal (Fig. 5) to the
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FIG. 7. Pseudopotential correction derived from QMC and HF.
The green curve is the same QMC pseudopotential correction as
shown in Fig. 6. The dashed blue curve is the pseudopotential
correction derived from the all-electron vs pseudized lithium atom
using HF. The gray vertical line marks the Fermi momentum.

discrepancy in the disordered solid (Fig. 1). The two remain-
ing discrepancies are similar in both shape and magnitude.

Electron-electron correlation. The effect of electron-
electron correlation on the momentum distribution is similar
to electron-ion interaction in that it increases high-momentum
components, decreases low-momentum components, and re-
duces the discontinuity at the Fermi surface. The Slater-
Jastrow wave function is a first-order modification of the
free-electron Slater determinant by the Coulomb interaction
[49], but it does not capture all correlation effects. However,
we expect the Slater-Jastrow wave function to be accurate
for simple metals. Further, it can be systematically improved,
for example, by using backflow transformations [50]. Cal-
culations on the homogeneous electron gas indicate a small
decrease of the discontinuity at the Fermi surface [29], reduc-
ing the discrepancy with experiment. Quantitative studies of
backflow effects on the lithium Compton profiles should be
addressed in the future.

Fermi surface. The Fermi surface of bcc lithium is
anisotropic with pronounced secondary features. The DFT
Fermi surface is used in the QMC simulation to determine
which momentum states to occupy. For solid lithium, the
Fermi surface is nearly spherical. Our DFT Fermi surface of
the bcc crystal has a maximum anisotropy of δ = 5.0%, where

δ ≡ k[110]
F − k[100]

F

kHEG
F

. (4)

This is in good agreement with the de Haas–van Alphen
experiment performed by Hunt et al. [51], which reported a
maximum anisotropy of δ = 4.8% ± 0.3%. Our DFT result
differs from previous calculations by MacDonald, δ = 3.3%
[52], and Bross, δ = 5.9% [13], likely due to differences in
the density functional and pseudopotential. While the DFT
Fermi surface may not be accurate in the crystal, a liquid is
isotropic and will have a spherical Fermi surface. Given that
our solid-liquid Compton profile difference agrees well with

experiment (Fig. 2), we do not consider Fermi surface shape
to be responsible for the remaining discrepancy.

Electron-phonon interaction. We capture disorder effects
due to phonons by averaging over thermal atomic configu-
rations. However, other phonon effects are absent from our
QMC simulations because the lithium ions are clamped.
Phonons scatter quasiparticles and decrease their lifetimes.
Thus, we expect the inclusion of electron-phonon interaction
to decrease the magnitude of the discontinuity in the momen-
tum distribution. Calculations of the coupled electron-phonon
system within the Einstein or Debye model [53] show that
the resulting broadening at zero temperature is essentially
given by the Debye frequency. The Debye temperature of
lithium (<400 K) is much lower than the Fermi temperature
of the electrons, so we expect the remaining electron-phonon
coupling (not included in our QMC calculations) to be limited
very close to the Fermi surface in momentum space, rendering
the effect invisible at the scale of Fig. 2.

Finite-size effects. Finite-size effects (FSEs) are more chal-
lenging to deal with in a many-body simulation than in an
effective one-particle theory such as DFT which is formulated
for an infinite lattice. In DFT, a calculation performed in
a larger simulation cell simply makes the momentum-space
grid denser. In contrast, finite system size increases the mag-
nitude of the discontinuity at the Fermi surface in QMC.
This effect was found to decrease slowly with system size in
the homogeneous electron gas [28]. This FSE was analyzed
and understood in the homogeneous electron gas [28,29].
We adopted the same approach here and found good results.
In particular, we corrected the FSE using the leading-order
expression

δn(1)
k =

∫ π/L

−π/L

d3q
(2π )3

[
uq(1 − Sq) − nu2

qSq
]
(nk+q − nk), (5)

where uq and Sq are the Jastrow pair function and the structure
factor in reciprocal space, which are assumed to take random-
phase approximation forms at small q, and n is the valence
electron density. The corrected n(k) from the 54-atom and
432-atom simulations agree well with each other, as shown in
Fig. 8. Therefore, we think finite-size error has been satisfac-
torily accounted for and is not responsible for the remaining
discrepancy.

Density change. The electronic density is a crucial parame-
ter since it determines the Fermi surface. It can change due to
thermal expansion and phase transition from solid to liquid.
We accounted for density change between our calculations
and experiment by rescaling our computed momentum dis-
tributions to the experimental densities by scaling the value
of k to match the Fermi momentum [kF = (9π/4)1/3/rs] and
then correcting the overall normalization. This brought the
Compton profile into excellent agreement with experiment, as
shown in Fig. 2. Of course, it would be possible to perform
additional QMC simulations at the experimental density.

Final-state effects. Finally, the “impulse approximation”
is known to be inaccurate for core electrons and to cause
asymmetry in the measured Compton profile [1,24,54]. To
go beyond the impulse approximation, one must consider the
interaction of the scattered electron with the rest of the system
in the final state. Final-state effects are often attributed to
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FIG. 8. Finite-size correction in the liquid phase. Dotted lines are
pseudopotential QMC n(k) with no correction. Colored lines encode
the number of lithium atoms in the simulation cell. The solid lines
correspond to the dotted lines in color and have been corrected using
the leading-order expression (5).

three physical interactions. The first is the interaction between
the excited quasiparticle with its surrounding medium (self-
energy). The second is the interaction between the excited
quasiparticle and the hole it leaves behind (vertex correc-
tion). The third is the interaction between the hole and a
plasmon (plasmaron). Sternemann et al. showed that the self-
energy combined with the vertex correction can satisfactorily
explain the asymmetry of the Compton profile [24]. The
effect of final-state interaction on the Compton profile can
be approximated by convolving the spectral density function
(SDF) of the excited electron with the ground-state Compton
profile [25]. This convolution smears out the derivative dis-
continuity of the Compton profile at the Fermi momentum.
Thus, the convolution correction also peaks at the Fermi
momentum.

We account for final-state effects by convolving the QMC
Compton profiles with the broadening function (3), which is
an accurate representation of the convolution of the experi-
mental resolution function and the SDF obtained by Soininen
et al. [25]. However, the SDF in Ref. [25] did not include plas-
maron or electron-hole effects. Further, we find near-perfect
agreement with experiment if the QMC profiles are broadened
using a Lorentzian having FWHM � = 0.026. In other words,
if the neglected final-state effects were to introduce long tails
into the SDF, then the QMC profiles would agree much better

with experiment. Therefore, the final-state effect is a plausible
explanation for much of the remaining discrepancy.

V. CONCLUSION AND OUTLOOK

Leveraging new algorithms and hardware, we improved
the QMC Compton profile of lithium and provided the first
QMC results in the disordered solid and liquid states. Our
QMC Compton profiles agree very well with the most recent
synchrotron experiment [30]. We resolved the discrepancy
between pseudopotential QMC and experiment at zero and
high momenta using an all-electron QMC calculation. We dis-
cussed potential explanations for the remaining discrepancy,
which is concentrated at the Fermi surface. Future studies
should consider final-state effects.

Current state-of-the-art QMC algorithms are ready to
aid synchrotron experiments in understanding the measured
Compton profiles. It would be interesting to revisit the chal-
lenging problem that is the three-dimensional reconstruction
of the momentum distribution from directional Compton
profiles [4,7]. Momentum resolution has been increased by
new techniques in both theory and experiment. Further, all-
electron QMC for lithium is feasible for perfect crystals in
supercells containing thousands of electrons. The comparison
between lithium and sodium will be particularly interesting
because they have the same crystal structure but very different
electron-ion interactions [2]. A detailed study of these systems
could shed more light on the nature of electron-ion and
perhaps the electron-phonon interactions in simple metals.

Finally, when sufficient accuracy has been achieved in both
theory and experiment, one will be able to study the difference
between ground-state (QMC) and final-state (experimental)
Compton profiles to extract information on the dynamic struc-
ture factor of the system.
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