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Cross derivative of the Gibbs free energy: A universal and efficient method for phase transitions in
classical spin models
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With an auxiliary weak external magnetic field, we reexamine the fundamental thermodynamic function,
Gibbs free energy G(T, h), to study phase transitions in classical spin lattice models. A cross derivative, i.e., the
second-order partial derivative of G(T, h) with respect to both temperature and field, is calculated to precisely
locate the critical temperature, which also reveals the nature of a transition. The strategy is efficient and universal,
as exemplified by the five-state clock model, two-dimensional (2D) and 3D Ising models, and the XY model, no
matter if a transition is trivial or exotic with complex excitations. More importantly, other conjugate pairs could
also be integrated into a similar cross derivative if necessary, which would greatly enrich our vision and means
to investigate phase transitions both theoretically and experimentally.
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I. INTRODUCTION

Phases of matter and phase transitions have always been
hot topics in statistical and condensed-matter physics. For
decades, Landau’s symmetry-breaking theory was believed
fully qualified to identify and describe different phases and
phase transitions in between. As a seminal illustration of the
spontaneous symmetry breaking, the classical Ising model
(Z2 symmetry) on the square lattice undergoes a typical order-
disorder phase transition. Its opposite extreme, the continuous
XY model [U (1) symmetry], involves the exotic topological
vortices excitation and a phase transition without symmetry
breaking, i.e., the so-called Kosterlitz-Thouless (KT) [1,2]
transition beyond Landau’s theory. Both types of transitions
can be easily probed by the magnetic susceptibility, which
reflects the system’s response to an external magnetic field
and behaves distinctively across the critical point.

One natural question is how the universality class evolves
with the symmetry of the models, which arouses intensive
interest in the intermediate q-state clock model with a finite
q. As is well known, when q is no bigger than 4, it has
one unique second-order phase transition; otherwise, there
are two separate transitions sandwiching a critical KT phase
with quasi-long-range order. So far, major debates focus on q
near 5 about the nature and universality classes of the phase
transitions.

Usually, Monte Carlo (MC), one of the principal meth-
ods for many-body problems, calculates the helicity modulus
[3–7] to characterize the KT transition. As in the continuous
XY model on the square lattice, it jumps abruptly from finite
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to zero at the critical point [8]. For the five-state clock model,
at the upper transition point, it behaves similarly to the XY
case. However, as to the lower one, inconsistent conclusions
about the transition type were claimed by different groups
with MC studies [5,6]. By proposing an extended universality
class theory with MC simulations, Lapilli et al. [3] even
declared both transitions are not KT type when q � 6, which
is supported by Ref. [9] from a Fisher zero analysis for the
q = 6 case. A recent Fisher zero study for q = 5, 6, 8, 10
[10] shows that the upper transition collapses onto the zero
trajectory of the KT case in the XY limit when q � 6, but
converges differently in the q = 5 case, indicating a different
mechanism.

Another powerful method, the renormalization group
(RG), predicted two KT transitions early [11], and a recent
density matrix renormalization group (DMRG) study [12]
favored this assertion by calculating the helicity modulus
with relatively small system sizes. The tensor network states,
generalized from DMRG to higher dimensional strongly cor-
related systems, have developed rapidly and been widely used
to investigate both the classical and the quantum systems.
Among those, the tensor renormalizaton group method based
on the higher-order singular value decomposition (HOTRG)
[13], has been successfully applied to study the 3D Ising
model [13], the Potts model [14,15], and the continuous
XY model [16]. Actually, it has also been utilized to
study the five-state clock model, where the magnetic sus-
ceptibility properly describes the upper phase transition,
but does not work well for the lower one [17], as also
presented in Fig. 1(b). Therefore, a gauge invariant fac-
tor from the fixed point tensor of the RG flow, pro-
posed in Ref. [18], was adopted to measure the de-
generacy of each phase, which also precisely estimates
the critical points of the six-state clock model [19].
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FIG. 1. (a) Gibbs free energy G (blue blank square) of five-state
clock model with a magnetic field h = 4.0 × 10−5; comparison of
−∂G/∂h (black empty circle) and m (red filled circle); (b) mag-
netic susceptibility ∂m/∂h (blue blank square), cross derivative
∂2G/∂T ∂h (black blank circle), −∂m/∂T (red filled circle), and
−∂S/∂h (green cross).

Nevertheless, some important information is still missing,
e.g., the reason why the magnetic susceptibility loses its
efficacy for the lower transition in this model, and the na-
ture of the transitions in particular, although much research
claimed both are KT transitions. A duality analysis by the
conformal field theory (CFT) deemed that two transitions
are of KT type but they still have some differences [20,21].
Recently, a universal entropy predicted by CFT on a Klein
bottle [22,23] has different values at these two critical points
[24], which is believed valuable to distinguish different CFTs.

Here, we intend to detect and clarify the nature/mechanism
of the classical phase transitions, within a unified frame, by
reexamining the fundamental thermodynamic function, Gibbs
free energy G, which is intrinsically a signpost of the universal
entropy increase of a spontaneous change [25], and contains
information about the phase transitions. However, the free
energy and its temperature derivatives, i.e., the internal energy
and the specific heat, are analytically continuous without any
singularity in the KT transition. So, besides the temperature,
we introduce an auxiliary stimulus, a weak external mag-
netic field, which interacts with spin degree of freedom and
provides us a convenient tool to investigate the dynamical
response of the system. By detailed analyses on the cross
derivative of G(T, h) with respect to both temperature and
field, we can easily identify and precisely locate the transition
points. Moreover, since the free energy is fundamental, this
idea is readily applied to any classical spin system, like Ising
or XY models with trivial or exotic transitions. In other words,
it is universal.

II. MODELS AND METHODS

First, we demonstrate this idea explicitly by the ferromag-
netic five-state clock model with an in-plane magnetic field,
whose Hamiltonian is written as

H = −J
∑
〈i j〉

cos(θi − θ j ) − h
∑

i

cos θi, (1)

where 〈i j〉 means summing over all nearest neighbors. θi is
the spin angle on lattice site i, selected from θ = 2πk/q, k =
0, 1, 2, . . . , q − 1. J is the nearest coupling. h is the applied
field in unit of J/μ, and μ is the magnetic moment of each
spin. Both J and μ are set as 1 for convenience.

Here, we employ the HOTRG method to compute the
desired physical quantities. Details about the algorithms are
in Refs. [13,16,17]. Its accuracy, like other RG algorithms, is
subject to the number of states kept during the RG process,
labeled by the bond dimension D. Initially, it equals q, then
expands exponentially along the RG process. Therefore, a
truncation is necessary to ensure further steps sustainable.

The free energy G(T, h1) with field h1 is presented in
Fig. 1(a), wherein −∂G/∂h and the magnetization m are also
shown. For comparison, the quantity −∂G/∂h is computed
directly from −[G(h2) − G(h1)]/(h2 − h1) by using two close
field strengths, and m is calculated by the impurity tensor
algorithm [13,16,17]. One can see they agree well with
each other as they should. For this model, as discussed in
Ref. [17], the magnetic susceptibility can clearly identify the
upper phase transition, but is not so capable for the lower
one. As shown in Fig. 1(b) by blue blank squares, an expo-
nential divergence clearly labels a phase transition near T =
1.0. Meanwhile, a broad shoulder-shape structure emerges
below, indicating something happens, but not as evident as the
upper one.

Instead, the cross derivative of the free energy with respect
to both temperature and field, i.e., ∂2G/∂T ∂h, is able to char-
acterize both transitions simultaneously. Clearly, as shown in
Fig. 1(b) by black blank circles, two separate sharp peaks
show up. In particular, the upper one is coincident perfectly
with the susceptibility curve for both the position and the
shape, although it decays exponentially from a much smaller
peak other than divergence as in the magnetic susceptibility.
The lower one, small but similarly obvious, locates near T =
0.90. Here, a relatively small bond dimension D = 40 is used
just for illustration.

As verified in Fig. 1(a), −∂G/∂h is just m, then the cross
derivative equals the temperature derivative of the magnetiza-
tion −∂m/∂T . As both shown in Fig. 1(b), they match up well
with each other. Equally, one can choose function −∂S/∂h,
as also presented in Fig. 1(b), because −∂G/∂T is just the
thermodynamic entropy S. Additionally, the Maxwell relation
[26] ∂S/∂h = ∂m/∂T is numerically verified by computing
S directly from the difference between Gibbs free energy
and the internal energy, because both terms essentially spring
from the cross derivative. For numerical simplicity and con-
venience, we adopt the notation −∂m/∂T hereafter, while
keeping in mind its physical origin.

Some may question the validity or the physical meaning
of this cross derivative. One can imagine slicing the 3D
curved surface G(T, h) along the h axis, then performing the
derivative ∂G/∂T for each h slice, and observing its evolution
along the h axis; or equivalently slicing G(T, h) along the
T axis and obtaining ∂G/∂h, then investigating its evolution
along the T axis. Thus, each captures the effects of both
temperature and field, and the system dynamics can be easily
deduced. This scheme may be elaborated by a formula

(
∂

∂T
+ ∂

∂h

)2

G = ∇2G + 2
∂2G

∂T ∂h
, (2)

where the left part in parentheses is a linear combination of
two derivative operators in the two-dimensional orthogonal
space expanded by temperature and field, and the Laplacian
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FIG. 2. (a) Illustration of the peak positions of −∂m/∂T versus
the magnetic fields for five-state clock model with D = 40, along
with a power-law fitting to extrapolate the transition temperature
as Tc1 = 0.9038 and Tc2 = 0.9557, respectively; (b) The transition
temperature versus the tensorial bond dimension D to obtain the
converged Tc as 0.9063 and 0.9557, respectively.

stands for the second-order derivatives with respect to each
individual parameter, i.e., the specific heat and the magnetic
susceptibility, respectively, while neither is adequate to char-
acterize the system dynamics comprehensively. We are also
informed that early MC studies [27–29] used similar cross
derivative quantities by applying the scaling hypothesis to
determine the transition temperature and the critical exponent
ν of the 3D Ising model and other models in same universality
class.

III. RESULTS AND DISCUSSIONS

Similar to the procedure used in the continuous XY model
to locate the transition temperature [16], we vary the applied
field and obtain the peak positions of −∂m/∂T , as presented
in Fig. 2(a). To determine the critical points for a given D,
an extrapolation to a zero field is performed by a power-law
fitting Tp − Tc ∼ hx.

As demonstrated in Fig. 2(a), the results with D = 40 are
obtained as Tc1 = 0.9038 and Tc2 = 0.9557. Likewise, we
replicate the above process with different bond dimensions,
and obtain the converged transition temperatures, i.e., Tc1 =
0.9063 and Tc2 = 0.9557, as shown in Fig. 2(b). Both agree
well with the estimations from other research [6,12,17,30,31].

Once obtaining the critical points, we can calculate with
the HOTRG method the critical exponent δ, which signifies
the change of the system magnetization with the applied
magnetic field at each transition point as m ∼ h1/δ . The re-
sults are δ1 = 15.81 and δ2 = 15.77, respectively, by using
the bond dimension D = 70. Both are consistent with the
theoretical value δ = 15 for the KT transition in the 2D
XY model [2]. According to the results of CFT [32,33],
we calculate the finite-size partition function on a torus by
infinite time-evolving block decimation (iTEBD) algorithm
[34] with D = 40 to obtain the central charge at two critical
points and the sandwiched critical phase as c = 1.04, which
indicates that both transitions belong to the same c = 1 CFT
class. Combining c and δ together, it probably implies two
KT type transitions. As also shown clearly in Fig. 2(a), the
upper critical point shifts with the applied magnetic field, the
stronger a field, the higher the transition temperature, similar
to the XY case [16], because more heat energy is needed to
overcome the additional barrier introduced by the magnetic
field. However, as seen in Fig. 2(a), the lower one moves op-

FIG. 3. MC simulation of the Hamiltonian [Eq. (3)] with L =
128 for different λ: (a) magnetization, (b) magnetic susceptibility,
(c) −∂m/∂T , (d) number densities of the domain walls (ρd ) and the
vortices (ρv), where ρv is multiplied by 2 for a better view.

positely, which seems to indicate a different scenario. Besides
the vortex excitation, another typical topological excitation
responsible for the melting of the magnetic order in magnetic
systems is the domain wall [31,35–37], which probably plays
an important role in this transition.

To clarify the mechanism, we adopt the procedure of
Refs. [38,39] and the references therein to investigate the
influence of the vortices excitation on the phase transitions
by introducing a parameter λ to adjust the vortex core energy
as

H = −J
∑
〈i j〉

cos(θi − θ j ) + λ
∑

i′
|ωi′ |, (3)

where ωi′ = (δba − δcb − δdc − δad )/5, and δba is sb − sa

wrapped in [−1, 1]. sa, sb, sc, sd are spins on four vertexes of
a square plaquette labeled by i′.

By MC simulations for the above Hamiltonian [Eq. (3)] on
a square lattice with L = 128, we obtain the magnetization,
the magnetic susceptibility, and the deduced −∂m/∂T for
different λ, as all shown in Fig. 3. Increasing the vortex core
energy to suppress its formation, a clear shift of the upper
critical point can be seen from each curve. Again, −∂m/∂T
looks much more convincing than the magnetic susceptibility
for the lower transition. More importantly, as manifested in
Figs. 3(b) and 3(c), this lower temperature phase transition
is barely affected by the vortex suppression, which strongly
suggests it is dominated by the domain wall excitation
[31,35–37]. A more intuitive illustration is presented in
Fig. 3(d), i.e., the number density of each excitation, by
adopting the definition in Ref. [38]. One can clearly observe
that, near the lower transition point, the number density of
the domain wall decreases negligibly, while the vortices are
greatly suppressed even eliminated, when increasing λ.

Furthermore, we calculate the aforementioned universal
entropy ln g of CFT on a Klein bottle [22] at each transi-
tion point by iTEBD algorithm with D = 40, because CFT
asserts the two transitions in this model are KT type but
with different g [24]. Our computation gives g1 = 3.30 and
g2 = 3.09, respectively, both of which agree well with the
CFT conclusion [24]. From the foregoing discussions, we can
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FIG. 4. −∂m/∂T and the power-law fitting of its peak position
varying with the applied field: (a) 2D XY model with D = 40, (b) 2D
Ising model with D = 40, (c) 3D Ising model with D = 10.

conclude that both transitions are indeed KT type, but with
subtle differences: the upper one is attributed to the unbinding
of the vortices pairs, while the lower one is dominated by the
domain wall excitation instead; and they belong to different
CFTs. The differences may be closely related to why the
magnetic susceptibility works fine for the upper transition
but not so well for the lower one, and why the transition
points shift oppositely with the external field as shown in
Fig. 2(a). They may also be the reason why studies from
different groups would give controversial estimations about
the nature of the transitions.

Briefly, with an auxiliary external magnetic field, the
function ∂m/∂T accurately reflects the interplay of the field
and the temperature, and captures the implicit dynamics of
the excitations in this model, hence correctly describing the
phase transitions. While the derivative of the free energy F
with respect to each single parameter, such as the specific
heat or the magnetic susceptibility, is inadequate for lacking
information about the internal competition/interplay among
those mingled complex excitations. The auxiliary magnetic
field and the cross derivative provide us a convenient way to
observe the response/dynamics of different excitations.

To further check the universality of this idea, we apply
it to the 2D XY , the 2D Ising, and the 3D Ising models
separately. A sample of −∂m/∂T and the power-law fitting
of the peak position for each model are illustrated in Fig. 4
as (a)–(c) respectively. For the XY case, the transition tem-
perature is obtained at Tc = 0.8924(16), which is coincident
to the previous estimation [16] from the magnetic suscepti-
bility Tc = 0.8921(19) with same bond dimension D = 40,
and both conform to the results from other methods like
MC [40,41] at Tc = 0.89294(8). For the 2D Ising case, the
power-law extrapolation yields the transition temperature at
Tc = 2.26893(18), and a simultaneous prediction from the

magnetic susceptibility (not shown in the figure) is Tc =
2.26904(22). They agree well with each other, and with
the exact value Tc = 2/ ln (

√
2 + 1) ∼ 2.26919, even using

a relatively small bond dimension D = 40. As to the 3D
Ising case, the same procedure is carried out with the bond
dimension D = 10. The similar efficiency of the function
−∂m/∂T is clearly demonstrated once again, from which the
critical temperature is located at Tc = 4.5014(2). Also, the Tc

is determined at 4.5013(1) from the magnetic susceptibility.
Both are consistent with the prediction at Tc = 4.5015 by
the HOTRG calculation with the same D [13]. What’s more,
the singularity can be clearly observed in the −∂m/∂T curve
of the 2D/3D Ising model, indicating a second-order phase
transition. It becomes sharper when lowering the field to zero
and a direct determination of the critical point can be achieved
without extrapolation.

IV. CONCLUSION

These examples have verified the capability of the cross
derivative ∂2G/∂T ∂h, which seems more versatile and ef-
fective, no matter if a transition is trivial or exotic, espe-
cially when multiple exotic excitations are involved and other
quantities/methods are difficult to clarify. Also, we think this
strategy is universal, as long as the free energy can be calcu-
lated accurately with a weak external magnetic field included.
Experimentally, one can measure the system magnetization
m(T, h), from which the phase transition information can
be easily deduced. More importantly, the magnetic field (h)
and the magnetization (m) in the Gibbs free energy or the
Hamiltonian are just one typical conjugate pair of generalized
force and displacement [26]. Likewise, other conjugate pairs,
if introduced into the Hamiltonian to regulate a system’s
behavior, would play a similar role in investigating the phase
transitions, e.g., the electric field (E ) and the polarization(p)
in an electronic system, which could be similarly integrated
into formula Eq. (2) as G = U − T S − hm + E p + · · · . The
case of using the electric field and polarization pair is under
exploration and will be presented in subsequent reports. In
such a way, we have a list or vector whose components are the
partial derivatives from conjugated pairs in the Gibbs energy
G. Each component can be equally effective to investigate
the phase transitions. Thus, this idea will greatly enrich our
vision and means to study the classical phase transitions both
theoretically and experimentally.

Considering its accuracy and simplicity, the cross deriva-
tive we demonstrated in this work is efficient and universal
to investigate the phase transitions in classical spin systems,
trivial or complex, 2D or 3D. The predictions will be more
accurate if the free energy or the physical quantities involved
could be computed more precisely.
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