
PHYSICAL REVIEW B 101, 165121 (2020)

Systematic study of stacked square nets: From Dirac fermions to material realizations
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Nonsymmorphic symmetries protect Dirac line nodes in square-net materials. This phenomenon has been
most prominently observed in ZrSiS. Here, we systematically study the symmetry-protected nodal fermions
that result from different ways of embedding the square net into a larger unit cell. Surprisingly, we find that a
nonsymmorphic space group is not a necessary condition for a filling enforced semimetal: symmorphic space
groups can also host nodal fermions that are enforced by band folding and electron count, that is, a combination
of a particular structural motif combined with electron filling. We apply the results of this symmetry analysis to
define an algorithm, which we utilize to find square-net materials with nodal fermions in specific symmorphic
space groups. We highlight one result of this search, the compound ThGeSe, which we discuss in the context of
nodal fermions. Finally, we discuss how band folding can impose constraints on band connectivity beyond the
connectivity of single elementary band representations.
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I. MOTIVATION

A fundamental question in solid state physics is to predict
material properties from crystal structure. Such structure-to-
property relationships are useful to identify new materials
with desirable physical attributes. The motivation for our work
is to predict topological semimetals, a subject of intense study
in recent years. Topological semimetals are sought after for
their extraordinary electronic and optical properties, such as
gapless Fermi arcs [1–7], large magnetoresistance [8,9] and a
giant nonlinear optical response [10,11], their potential use in
fast optical switches or sensors [12,13], and as a realization of
the gravitational [14,15] and chiral [16,17] anomalies.

The search for topological semimetals is facilitated by
algorithms that can either predict or rule out materials based
on their crystal structure, orbital content, and electron count,
before computing their band structure. The coarsest tool is a
filling constraint for the space group: a filling constraint guar-
antees that at certain electron counts, a symmetry-preserving
noninteracting ground state must be metallic. Recently, filling
constraints have been computed for all space groups [18–20].
Beyond filling constraints, the connectivity of elementary
band representations provides a finer tool: the elementary
band representations provide a basis for all atomic band
insulators, taking into account the space group, Wyckoff
position, and orbital content of atoms. Partially-filled con-
nected elementary band representations must be metallic.
The connectivity of elementary band representations in all
space groups has also recently been computed [21–25]. These
theoretical developments, along with the theory of symmetry
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indicators [26–28], have led to the discovery of many new
topological semimetals [21,29–32].

However, there remains a need for additional search mech-
anisms, both to filter through the thousands of compounds
in materials databases [30,31,33] for particularly promising
candidates, as well as to predict compounds that have not been
previously synthesized. Specifically, despite the plethora of
predicted materials, there are very few that display a Dirac
cone with a linear dispersion persisting over a large energy
range and which is isolated from other bands.

In this work, we combine a particular structural motif
and orbital content with electron counting to predict nodal
fermions that, in some cases, cannot be predicted from filling
constraints and elementary band representations.

We focus on the two-dimensional square lattice, known
in crystallography as the 44 square net, with two atoms
in the unit cell [34,35]. (The name is derived from each
square unit cell having four corners and each site having four
bonds.) Young and Kane [36] proposed the square-net motif
as a source of nodal fermions when the two atoms in the
unit cell are related by a glide symmetry in a nonsymmor-
phic space group. Shortly after, nonsymmorphic symmetry-
protected Dirac cones with an extraordinarily large range
of linear dispersion (2 eV) were experimentally observed in
the layered square-net material ZrSiS [37–40]. Subsequently,
nonsymmorphic space groups have been extensively studied
for their role in protecting nodal semimetals [41–45] and
gapless surface states of topological insulators [46–49].

However, a nonsymmorphic space group is not essential
to protect the Dirac cones introduced by the square net. On
the contrary, different configurations of nodal fermions are
possible depending on the symmetries preserved when the
square net is embedded within the layered crystal structure,
which is the study of the present paper. Our results lead us
to extend the search for Dirac materials in layered square
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FIG. 1. Nodal points and lines that result from different ways
to stack a dense square net. In each box, the left picture shows an
example of a crystal with the indicated symmetries, while the right
pictures show the top view.

lattices to crystals with planes containing p4mm symmetry,
with no need to restrict to nonsymmorphic space groups. In
addition, we find that the square lattice motif can provide
stronger filling constraints than can be derived from utilizing
space group symmetry or elementary band representations
alone. Thus, we expect our results, derived by “folding” the
band structure, are quite general and can be applied to other
structure types that contain a sublattice with a smaller unit
cell.

We now summarize our methods and main points. We
systematically study the band structures that result from
embedding a square lattice into a square unit cell that is
twice as large, while preserving p4mm symmetry in the
plane. Different embeddings preserve different symmetries: in
particular, only half of the C4 centers of the smaller square
lattice are preserved by the larger lattice, as we discuss in
Sec. III. Furthermore, the square lattice can be stacked in the
third dimension to preserve either a z-normal mirror or glide
symmetry, or neither; the consequences for band crossings are
proven in Sec. IV. The main result of this analysis is shown in
Fig. 1.

Our second main result is to apply the symmetry analysis
to find materials that exhibit nodal fermions in symmorphic
space groups. In Sec. V, we list the space groups compatible
with p4mm layer symmetry. Then, in Sec. VI, we introduce
an algorithm that we apply to the thousands of entries in the
Inorganic Crystal Structure Database (ICSD) [33] in order to
find material candidates. We describe two of these candidates,
ThGeSe and KCu2EuTe4, in detail. The former has not before
been discussed in the context of nodal fermion materials. We
discuss related compounds with the same structure type as
well as connections to previous work on square-net materials
with Dirac point and line nodes.

Our theory applies in the limit where there are no additional
band inversions after folding the band structure. We expect
this limit to be valid when the spacing between layers is much
larger than the atomic spacing within each layer; this is related
to the tolerance factor introduced by two of us in Ref. [50].
Interestingly, the assumption that there are no additional band
inversions after band folding leads to the prediction of Dirac

TABLE I. Character table for C4v , reproduced from Ref. [51]. For
each irrep indicated in the first column, the characters for the group
elements are listed in the middle columns. The last column indicates
functions (or pseudovectors) that transform as the indicated irrep.

Irrep I C2 C4 m100 m11̄0 Func.

A1 1 1 1 1 1 z, x2 + y2, z2

A2 1 1 1 −1 −1 Jz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy
E 2 −2 0 0 0 (x, y), (xz, yz), (Jx, Jy )

points in some groups that could not be deduced from the
connectivity of their elementary band representations. We
discuss this point in detail in Sec. VII.

Finally, we discuss the effect of spin-orbit coupling (SOC).
Our analysis is valid in the limit of negligible SOC. Non-
negligible SOC will gap the nodal points and lines at the Fermi
level. We discuss this point in Sec. VIII.

II. SYMMETRIES OF THE SQUARE LATTICE

The symmetry of a two-dimensional square lattice is de-
scribed by the “wallpaper group” p4mm: it has two C4 rota-
tion centers; two parallel mirror lines in both the horizontal
and vertical directions; and mirror planes along both diago-
nals. Because each site is invariant under the symmetries of
the point group C4v (also called 4mm), the atomic orbitals
transform as irreps of this group. The group has four one-
dimensional irreps (which describe, respectively, the symme-
try of pz, dx2−y2 , or dxy orbitals and the pseudovector Jz) and
one two-dimensional irrep (which describes the symmetry of
px and py orbitals; these transform identically to dxz and dyz

orbitals, or as the pseudovectors Jx and Jy); the character table
is given in Table I. The remainder of the paper will focus on
spinless px and py orbitals, which describe ZrSiS and related
compounds. We assume that SOC is negligible; we return to
this point in Sec. VIII.

We begin with the following minimal Hamiltonian (only
nearest- and next-nearest-neighbor hopping), written in the
basis of px and py orbitals:

H0 =
(

tσ cos kx − tπ cos ky −2td sin kx sin ky

−2td sin kx sin ky tσ cos ky − tπ cos kx

)
, (1)

where tσ (tπ ) describes σ bonds (π bonds) between nearest
neighbors and td parametrizes the hopping strength diagonally
across the square plaquettes. The spectrum is shown in Fig. 2;
the primes on the labels of the high-symmetry points serve to
distinguish them from the folded Brillouin zone (BZ), which
we will consider shortly. Since the � and M ′ = (π, π ) points
are invariant under the full point group symmetry (C4v), the
bands are twofold degenerate at those points, while there is no
degeneracy at X = (π, 0) because it is only invariant under
C2v , which has no two-dimensional irreps. This symmetry
analysis can be looked up using the BANDREP application on
the Bilbao Crystallographic Server [21–23].

Equation (1) is the shortest-range Hamiltonian which has
only symmetry-required degeneracies (if td = 0, then the
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FIG. 2. Band structure before (left) and after (right) band fold-
ing, with tσ = 1, tπ = 0.2, td = 0.1. The primes indicate high-
symmetry points before band folding, while the unprimed points
indicate high-symmetry points after band folding (see BZ in Fig. 3).
Which band crossings are protected depends on which symmetries
are preserved in the enlarged unit cell.

bands along �-M ′ are degenerate). The addition of longer-
ranged hopping terms will deform the spectrum but cannot
break the degeneracies at M ′ and �.

III. BAND FOLDING

We now consider a crystal that contains a second layer,
consisting of a

√
2 × √

2 lattice. The original layer is now
referred to as a dense square net. There are two possible
stacking arrangements of the two lattices that preserve a C4

symmetry, which are depicted in Fig. 3. If the atoms on
the larger sublattice contribute negligibly to the bands at the
Fermi level, then the leading order effect of enlarging the
unit cell is to fold the band structure of the original atoms,
as shown on the right side of Fig. 2. We now ask whether
the two band crossings in the folded band structure (along
�-X and �-M) are symmetry protected. The answer depends
on which symmetries are preserved when the unit cell is
enlarged: as shown in Fig. 3, each of the two possible stacking
arrangements preserves exactly one C4 center in the unit cell,
which is either located on one of the atoms (“on-site”) or on
the plaquette center (“off-site”) in the original unit cell.

In the next two sections, we prove that when the on-site C4

symmetry is preserved, only the crossing along �-X survives,
while if the off-site C4 center is preserved, both the crossings

FIG. 3. There are two ways to stack the larger square net (green)
below a denser square net (blue) while preserving C4 symmetry.
In both the left and center figures, there is a C4 center located on
the green sites. In the left figure, the C4 center on the blue sites is
broken, while in the center figure the C4 center in the center of the
blue squares is broken. The red dashed lines show the mirror lines.
Both arrangements yield the same folded BZ, shown on the right:
the dashed line indicates the folded BZ, while each quadrant of the
original BZ is outlined in solid black.

FIG. 4. Two possibilities for paired mirror eigenvalues along a
mirror-invariant line. Left: if at one endpoint both eigenstates within
a pair have opposite mirror eigenvalues, while at the other endpoint
both eigenstates within a pair have the same mirror eigenvalue, then
a band crossing is required along the line. Right: if at both endpoints
both eigenstates within a pair have opposite mirror eigenvalues, then
the crossing is generically avoided.

along �-M and �-X are protected. This result is summarized
in the top row of Fig. 1.

To prove this, we utilize the following fact (shown in
Fig. 4) that applies to a four-band model: if at both endpoints
of a mirror-invariant line, eigenstates within a degenerate pair
of bands always have opposite mirror eigenvalues, then there
is generically an avoided crossing along the line. On the other
hand, if at one endpoint, bands within a degenerate pair have
the same mirror eigenvalue, while at the other endpoint they
have opposite mirror eigenvalues, a band crossing is required.
These facts are readily established by testing all possible
mirror eigenvalue arrangements and noting that in the former
case the bands that cross have the same mirror eigenvalue,
while in the latter case there is always a crossing between
bands with opposite mirror eigenvalues.

A. Band crossing along �-X

To be concrete, we choose a coordinate system so that the
original lattice sites are located at n1x̂ + n2ŷ, where n1,2 ∈ Z,
as shown in Fig. 3. Then the segment �-X in the folded BZ
is given by (k, k), with 0 � k � π

2 . It is invariant under the
mirror symmetry m1 : (kx, ky) �→ (ky, kx ). Both arrangements
in Fig. 3 are invariant under m1, which is shown in real space
by the diagonal red dashed line.

Two distinct points in the original BZ map to each point in
the folded BZ. In particular, �′ and M ′ both map to �, while
± 1

2 M ′ both map to X . We now consider their m1 eigenvalues.
At �′, two bands are degenerate before band folding. Since the
m1 symmetry exchanges the px and py orbitals, the degenerate
bands at �′ must have opposite m1 eigenvalues. The same
holds for M ′.

In contrast, each band at 1
2 M ′ has a degenerate partner at

− 1
2 M ′, related by time-reversal symmetry. Since the m1 eigen-

values are real and since m1 commutes with time reversal, the
degenerate bands at ± 1

2 M ′ have the same m1 eigenvalue.
Thus, we conclude that in the folded BZ, each eigenstate

at � has a degenerate partner with the opposite m1 eigenvalue,
while each eigenstate at X has a degenerate partner with the
same m1 eigenvalue. This is exactly the situation depicted on
the left-hand side of Fig. 4: hence, there is a required band
crossing along this line. Since both stacking configurations
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in Fig. 3 have the same m1 symmetry, this band crossing is
symmetry protected in both cases.

B. Band crossing along �-M

Maintaining the same coordinate system as in the previous
section, the line �-M in the folded BZ is given by (0, ky),
where 0 � ky � π . However, the situation along �-M is
different than along �-X because the two different stacking
configurations in Fig. 3 obey different mirror symmetries
that leave the �-M line invariant, which is indicated by the
different positions of the horizontal red dashed mirror line.
The center configuration in Fig. 3 is invariant under the mirror

mx : (x, y) �→ (−x, y), (2)

while the left configuration has a different mirror plane,

m̃x : (x, y) �→ (−x + 1, y). (3)

(The original lattice is invariant under both mx and m̃x, which
are related to each other by a translation by x̂, one of the
original lattice vectors. When the unit cell is enlarged, trans-
lation by x̂ is no longer a lattice vector, and it follows that
only one of mx and m̃x remains a symmetry of the enlarged
cell.) Both mx and m̃x have the same action in momentum
space, mapping (kx, ky) �→ (−kx, ky). Yet, we will show that
their different actions in real space determines whether or not
the band crossing along �-M is protected.

Recall that two distinct points in the first BZ of the original
lattice map to each point in the folded BZ. In particular, �′
and M ′ both map to �, while X ′ and C4X ′ both map to M.

Since mx and m̃x are symmetries of the original lattice, we
find their eigenvalues at particular points in the BZ before
band folding and deduce that even after band folding, the
eigenvalues will be unchanged. We can then write m̃x =
txmx = mxt−1

x , where tx is a translation by x̂. Acting on a Bloch
wave function, uk,

m̃xuk = mxt−1
x uk = eikx mxuk. (4)

Thus, we can determine the m̃x eigenvalues from those of mx.
As before, the bands at � and at M ′ are degenerate before

band folding. Since px and py orbitals have opposite eigenval-
ues under mx, the degenerate eigenstates at � have opposite
mx eigenvalues, as do the degenerate eigenstates at M ′. From
Eq. (4), we deduce that the same is true for the m̃x eigenvalues.

In contrast, each eigenstate at X ′ has a degenerate partner
at C4X ′. We would like to know if these degenerate eigenstates
have the same or opposite mx eigenvalue. To do this, we utilize
the commutation relation mxC4 = C−1

4 mx. Then suppose that
mxuX ′ = λuX ′ , where uX ′ is a Bloch eigenstate at X ′. Then

mx(C4uX ′ ) = C−1
4 mxuX ′ = λC−1

4 uX ′ = −λ(C4uX ′ ), (5)

where the last equality follows because C2 = −1 when acting
on px,y orbitals. From Eq. (5), we deduce that each Bloch
eigenstate at X ′ has the opposite mx eigenvalue as its degen-
erate partner at C4X ′. After band folding, this puts us in the
situation depicted on the right side of Fig. 4: at both ends
of the �-M line segment, the degenerate pairs of bands have
opposite mx eigenvalues and hence the band crossing is not
symmetry protected.

However, from Eq. (4), m̃xuX ′ = −λuX ′ and m̃x(C4uX ′ ) =
−λ(C4uX ′ ), that is, each eigenstate at X ′ has the same m̃x

eigenvalue as its degenerate partner at C4X ′. After band
folding, then, the situation is described by the left side of
Fig. 4: at one end of the �-M line segment, the degenerate
pairs of bands have opposite m̃x eigenvalues, while at the
other end, they have the same m̃x eigenvalues. It follows that
a symmetry-protected band crossing is required.

To summarize, we have proven that when the on-site C4

symmetry is preserved after enlarging the unit cell, the cross-
ing along �-M will generically gap, while when the off-site C4

symmetry is preserved, the crossing along �-M is symmetry
protected.

IV. STACKED LAYERS IN THREE DIMENSIONS

We now consider stacking two-dimensional (2D) layers
by translating them in the ẑ direction. If layers with p4mm
symmetry are stacked by translating in the ẑ direction, but with
no additional symmetry, then the crystal is in the space group
P4mm (SG 99). (The capital P indicates a space group in 3D,
while the lowercase p indicates a set of 2D symmetries.) Since
each ẑ-normal 2D slice in P4mm has the symmetry of p4mm,
which we analyzed in Sec. III, and there are no additional
symmetries in P4mm to impose extra constraints, the band
crossings follow from Sec. III in this case.

If, in addition to the ẑ translation symmetry, there is a
mirror symmetry,

mz : (x, y, z) �→ (x, y,−z), (6)

then the crystal is in space group P4/mmm (SG 123). How-
ever, since px and py orbitals are invariant under mz, the mz

symmetry acts like an identity operator and does not protect
any additional band crossings. This explains why Fig. 1
does not distinguish between P4mm and P4/mmm. The band
crossings are identical to the analysis in Sec. III.

The third possibility (which describes the symmetry of Zr-
SiS [37]) is more interesting: if in addition to the ẑ translation
symmetry, there is no mz, but there is a glide symmetry, then
additional band crossings can be protected. In the basis intro-
duced in Sec. III A and shown in Fig. 3, the glide symmetry
acts by

gz : (x, y, z) �→ (x + 1, y,−z). (7)

However, after band folding, a translation by x̂ is no longer a
symmetry of the lattice, but is instead a fraction of a lattice
translation; in the primitive basis of the larger

√
2 × √

2
lattice,

gz : (xp, yp, z) �→ (
xp + 1

2 , yp + 1
2 ,−z

)
. (8)

Consequently, gz is truly a glide symmetry of the enlarged
lattice (it is a mirror symmetry when regarded with respect to
only the smaller lattice). As can be seen in the bottom row of
Fig. 1, this symmetry results when the

√
2 × √

2 layers are
rotated by 90◦ relative to each other.

Young and Kane elegantly explained this case in Ref. [36].
For our purposes, there are two main results: (1) both the
band crossings along �-X and �-M are protected by the glide
symmetry and (2) the protected band crossings are part of a
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line node that lies in the kz = 0 plane. For completeness, we
briefly rederive these results.

A. Glide symmetry protects band crossings along �-X and �-M

In the primitive basis, g2
z is equal to a translation by x̂ + ŷ.

Since lattice translations act on the wave function by imposing
a phase, the eigenvalues of gz are ±e−i(kx+ky )/2. Thus, a band
with ±1 eigenvalue at � has ∓i eigenvalue at X and ∓1
eigenvalue at M. Crystal symmetry requires that the twofold
degenerate bands at � have the same gz eigenvalue, while the
twofold degenerate bands at X and M are pairs with opposite
gz eigenvalues; the symmetry eigenvalues can be found using
the BANDREP application [21–23]. (At X , since the bands have
imaginary eigenvalues, time-reversal symmetry also requires
that bands with ±i eigenvalues are degenerate.) Thus, from
the analysis leading to Fig. 4, we deduce that band crossings
between �-X and �-M are required.

B. Crossings protected by glide symmetry are part
of in-plane nodal lines

To prove that each band crossing is part of a degenerate line
node, we consider a local Hamiltonian near the band crossing,
restricted to the kz = 0 plane. Since the bands that cross have
opposite gz eigenvalues, it must be that gz is proportional to
σz, in the basis of the two bands. Further, since gz leaves
each point in the kz = 0 plane invariant, the gz operator must
commute with the Hamiltonian in this plane. It follows that
the Hamiltonian, up to an overall constant, must also be
proportional to σz, that is, H = h0(kx, ky )σ0 + hz(kx, ky)σz,
where hz(kx, ky) = 0 at the band crossing. Since hz(kx, ky) is
a function of two variables, the equation hz(kx, ky) = 0 has
solutions that are lines, not points; thus, the band crossings
must be part of a line of degeneracies in the kz = 0 plane
satisfying hz(kx, ky) = 0.

Geometrically, we can further deduce that the line node
must circle the � point; there is no other way to draw a line
in the plane that yields crossings along �-X and �-M but not
along M-X . This fact is illustrated by the ab initio calculations
for ZrSiS [37].

V. SPACE GROUPS

In the previous section, we showed that the space groups
P4mm, P4/mmm, and P4/nmm exhibit symmetry-protected
Dirac points or line nodes when the crystal structure consists
of layered square nets of different sizes; the results are sum-
marized in Fig. 1.

We now seek other space groups that are compatible with
the stacked square lattice motif and which have enough sym-
metry to protect Dirac point and line nodes. By compiling a
list of space groups, we can systematically search for materi-
als that will realize these features. In particular, we can apply
the tolerance factor developed in Ref. [50] to find promising
Dirac semimetal materials.

Our procedure is to find the “layer groups’—symmetries
of two-dimensional systems embedded in three dimensions—
that yield Dirac point and line nodes following the logic in
Sec. III and then search for space groups that contain the

TABLE II. Generators of the layer groups p4mm, p422, p4̄2m,
and p4̄m2. When restricted to two dimensions, the four layer groups
are identical: each group has a generator (listed in the column
corresponding to the group) that maps the point (x, y) to one of
the points in the first column. Since px and py orbitals transform
like vectors in 2D, the groups act identically on these orbitals. The
notation and group action were obtained from the LAYER application
on the Bilbao Crystallographic Server (BCS) [51–53].

2D symmetry action p4mm p422 p4̄2m p4̄m2

(−y, x) C4z C4z C̄−1
4z C̄−1

4z

(−x, y) mx C2y C2y mx

(y, x) m11̄0 C2,110 m11̄0 C2,110

desired layer group as a subgroup. The results are tabulated
in Table III.

Our first observation is that the four layer groups p4mm,
p422, p4̄2m, and p4̄m2, act identically on spatial points in 2D:
Table II shows the generators of these groups explicitly. The
groups differ by their action in the third dimension. However,
since px and py orbitals transform like vectors in 2D, the
four layer groups are indistinguishable when constrained to px

and py orbitals. Thus, the arguments in the previous section
regarding protected band crossings in P4mm also apply to
p4mm, p422, p4̄2m, and p4̄m2.

In addition, the arguments in Secs. III and IV apply to
p4/mmm, which has one more generator (the inversion sym-
metry operation) compared to p4mm, since the extra generator
does not change the band degeneracies.

Finally, the layer groups with a screw or glide symmetry
will always protect a Dirac point or line node following
Ref. [36]. The layer groups with a screw or glide symmetry
and a C4 rotation or rotoinversion axis are p4/m, p4/n, p4212,
p4bm, p4̄21m, p4̄b2, p4/nbm, p4/mbm, and p4/nmm.

VI. MATERIAL REALIZATIONS

Square nets, including 44 nets, are common structural
motifs in real materials. In principle, the space groups listed
in Table III can be cross-referenced with the ICSD in order to
find materials with nodal points or lines in layered square-net
materials. However, not all of these materials will be well
described by our tight-binding model: specifically, not all
materials in these space groups are layered materials (i.e.,
in-plane bonding is much stronger than out-of-plane bonding)
and, in addition, not all materials display the 44 square lattice
motif. Furthermore, since currently over 17 000 entries appear
in the ICSD in these space groups, examining each entry
individually is not feasible. Thus, in order to find material
candidates, we developed an algorithm, outlined in Fig. 5,
which filters the compounds with layered 44 square nets and
which satisfy the tolerance factor developed by two of us in
Ref. [50].

The tolerance factor, t , is defined as the ratio of interatomic
distances in the 44 net and the nearest-neighbor atom in a
different layer. The smaller the tolerance factor, the more
well separated the 44 net is from the next atomic layer and
the better the tight-binding model derived by folding the 44

square net applies. Klemenz et al. investigated the structural
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TABLE III. For each of the layer groups in the first column,
the space groups containing the layer group as a subperiodic group
are listed in the second column. Some space groups appear more
than once because different two-dimensional slices can have different
symmetries. The layer groups above the double line are symmorphic,
while those below are nonsymmorphic; this determines the EBR
analysis in Sec. VII. However, a symmorphic layer group can be a
subgroup of a nonsymmorphic group and vice versa. Cubic groups
are omitted because they do not permit a layered structure and thus
the mostly-2D analysis in this work is not likely to apply. The data is
obtained from the SECTIONS application on the BCS [51–53].

Layer group Space groups

p4mm P4mm(99), I4mm(107), P4/mmm(123),
P4/nmm(129), I4/mmm(139)

p422 P4/mcc(124), P4/nnc(126)
p4̄2m P4̄2m(111), I 4̄2m(121), P42/mcm(132),

P42/nnm(134)
p4̄m2 P4̄m2(115), I 4̄m2(119), P42/mmc(131),

P42/nmc(137), I41/amd (141)
p4/mmm P4/mmm(123), I4/mmm(139)
p4/n P4/nnc(126), P4/ncc(130)
p4212 P4/mnc(128), P4/ncc(130)
p4bm P4bm(100), I4cm(108), P4/nbm(125)

P4/mbm(127), I4/mcm(140)
p4̄21m P4̄21m(113), I 4̄2m(121), P42/mnm(136)

P42/ncm(138)
p4̄b2 P4̄b2(117), I 4̄c2(120), P42/nbc(133)

P42/mbc(135), I41/acd (142)
p4/nbm P4/nbm(125), I4/mcm(140)
p4/mbm P4/mbm(127), I4/mcm(140)
p4/nmm P4/nmm(129), I4/mmm(139)

properties of compounds in the PbFCl structure-type family
and found that the value of t = 1 separates the topologically
interesting phases (t < 1) from the trivial phases (t > 1) [50].
Note that the tolerance factor only eliminates compounds that
do not exhibit an electronic structure approximated by our
tight-binding model, but it does not take the Fermi level into

account. The exact position of the Fermi level is determined
by the number of electrons in the 44 net. The electron count in
materials with t < 1 can be between five and seven electrons
per net atom. For well-isolated 44 nets, such as in ZrSiS, the
band crossing points are located at the Fermi level for six
electron systems, which correspond to half-filled px and py

orbitals and filled s and pz bands.
We now describe the algorithm depicted in Fig. 5. The

majority of the compounds in the space groups listed in
Table III have multiple entries in the ICSD, which often are
repeated entries of the same compound studied at different
temperatures or pressures. In these cases, we chose the entry
that represented the most precise crystal structure solution,
which was obtained at standard conditions (room temperature
and ambient pressure), if available. We then checked which
of the structure types exhibited a 44 square-net motif. Within
the 152 structure types that occurred in the space groups
in Table III and exhibited a 44 net, the unique compounds
were examined with respect to the tolerance factor, t [50].
Candidate Dirac materials that satisfy the tolerance factor
were found in 26 of the 460 structure types that exist in the
space groups that fulfill the symmetry requirements.

In the following we describe two promising materials,
ThGeSe and KCu2EuTe4, that came out of this search.
ThGeSe has not been previously discussed in connection
with nodal fermions, while KCu2EuTe4 was discussed in
earlier work [54], but here we focus on a different aspect.
Both materials crystallize in symmorphic space groups; this
reinforces the idea that nonsymmorphic symmetries are a
particular route, but not the only route, to finding nodal
fermions. Furthermore, the nodal points are protected solely
by the p4mm symmetry of the 44 net layer; thus, they are
distinct from nodal lines that can be protected by a z-normal
glide. Finally, we discuss the connection to the well-known
line node materials with Bi or Sb square nets.

Materials where the atoms in the dense square net reside
on a C4 rotation center, i.e., the left blocks of Fig. 1, did not
appear in our analysis. We conclude that this configuration is
not very common in nature, likely because it is chemically

FIG. 5. Algorithm for finding layered square-net materials that display nodal fermions. From the space groups in Table III, we identified
460 structure types that appear with materials in the Inorganic Crystal Structure Database (ICSD) [33]. Further filtering for structures containing
44 nets reduced this number to 152 structure types. Applying the tolerance factor from Ref. [50] resulted in a final list of 26 structure types to
search for promising materials.
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FIG. 6. (a) Crystal structure and (b) band structure of ThGeSe. The band structure for the body-centered tetragonal crystal is plotted with
respect to the primitive tetragonal Bravais lattice for easy comparison to Fig. 1. Different colored bands represent different irreps.

unstable to have the atoms in the planes above/below the
dense square net directly on top of the square net atoms.

A. ThGeSe

ThGeSe crystallizes in the space group I4/mmm (139).
The ICSD structure type is named for the isostructural com-
pound UAsTe [55]. The crystal structure is very similar to that
of ZrSiS, which adopts the PbFCl structure type [56]. While
in ZrSiS the Si2− 44 nets are separated by identical NaCl-like
ZrS2+ slabs, in ThGeSe the two NaCl-like slabs in the unit
cell are shifted by (1/2, 1/2, 0) relative to each other [see
Fig. 6(a)]. This difference in stacking causes the crystal to
have a mirror reflection symmetry across the plane of the Ge
atoms, instead of the glide symmetry present in ZrSiS.

The steep bands near the Fermi level come mostly from
the Ge px and py orbitals [see Fig. 6(b)], whereas the more
shallow band close to the Fermi level comes from Ge pz

orbitals. Further, we have computed the tolerance factor for
ThGeSe, t = 0.92. Hence, the Ge square net is well separated
from the neighboring Th square net and our band-folded
model for layered square nets provides a starting point to
understand the band structure of this material.

Since the crystal structure shows that the Ge atoms are
not located on a C4 axis, we expect the nodal points to be
described by the upper right block in Fig. 1: specifically,
there should be Dirac points along �-M and �-X in the band
structure in Fig. 6(b), but not nodal lines. (Note that the band
structure is plotted with respect to the primitive tetragonal
Bravais lattice BZ instead of the body-centered BZ in order
to make the comparison to the square lattice more clear.)
The steep linearly dispersing bands along �-M are clearly
visible. It is symmetry protected, as indicated by the fact
that the different bands have different colors and therefore
different symmetry eigenvalues. This is exactly as predicted
from the tight-binding model. A similar crossing along �-X
is not present (the crossing between green and black bands is
an accidental crossing between the pz and the px/py bands.)
This may be due to the fact that there is some mixing with
the d and f orbitals in thorium that cause the energy bands of
the crystal to deviate from the simplistic tight-binding model.
The bands in the kz = π plane are very similar to those in the

kz = 0 plane, including the Dirac crossing with steep linearly
dispersing bands along Z-A. This indicates the planar nature
of the material.

In ThGeSe the nodal fermions are located close to the
Fermi level. We understand this by assuming Th has an
oxidation state of +4, which is reasonable for intermetallic
Th compounds. We then derive an electron distribution of
Th4+Ge2−Se2−, where the Ge atom has six electrons, re-
sulting in half-filled px and py bands. Several thorium and
uranium compounds are members of this structure type (t
values): ThGeS (0.90); ThGeTe and UGeSe (0.92); ThSiS,
ThSiSe, and ThSiTe (0.96); and UGeTe and USiSe (0.97),
which each have six electrons in the 44 net, and UAsTe (1.00)
and UPTe (1.02), which each have seven electrons in the 44

net. The electron counts assume that thorium will exist as
Th4+ with a 5f0 configuration and uranium as U4+ with a 5f2

configuration [55]. We expect nodal fermions to be present for
all compounds with t < 1; the band structure will be cleanest
for the smallest t . The Fermi level will be at the nodal point
for an electron count of six electrons per net atom.

B. KCu2EuTe4

KCu2EuTe4 [57] crystallizes in the space group P4mm
(SG 99) and is labeled by the structure type of the same
name. The material was previously reported to be a nodal
line semimetal [54]. The bands near the Fermi level come
from the Te px and py orbitals. The crystal structure is shown
in Fig. 7(a). In this structure, the Te atoms form two types
of square nets. We can apply the band-folded square-net
model to the denser square net, which is well separated
from neighboring planes of K+ and Eu2+ according to the
tolerance factor t = 0.90. The ICSD only reports one other
compound [57] that exists in this structure type (Cu2EuKTe4),
which is Na0.2Ag2.8EuTe4, which has t = 0.93.

Since there is no z-normal glide symmetry and the Te
atoms in the dense square net are not a C4 rotation center, the
structure is described by the upper right block of Fig. 1 and we
expect Dirac points along the �-M and �-X lines, but no nodal
lines. The linearly dispersing upper half of the Dirac cones are
clearly visible in the band structure in Fig. 7(b): specifically,
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FIG. 7. (a) Crystal structure and (b) band structure of KCu2EuTe4. The red circles around −1.5 eV indicate the nodal crossings embedded
in the valence bands.

they remain linear over a range of about 1.2 eV along �-X and
nearly double that along �-M.

However, tracing the linear bands down in energy shows
that the nodal point, circled in red in Fig. 7(b), is located
approximately 1.5 eV beneath the Fermi level, due to the
electron count. For KCu2EuTe4 the distribution of electrons
can be written as K+Cu+

2 Eu2+Te2−
2 (Te2)−. The Te atoms in

the 44 net (Te2)− thus have 6.5 electrons, resulting in a more
than half-filled px and py band. Consequently, the Fermi level
resides above the nodal points.

This conclusion relies on determining the valence state
of europium, which can be ambiguous. Lanthanides usually
prefer a charge of +3. However, previous magnetic measure-
ments on KCu2EuTe4 clearly identified europium to be in the
4f7 configuration (or +2 oxidation state) [57]. If one assumes
a 3+ oxidation state for Eu, the Fermi level would be located
about 1 eV higher. However, this would require an electron
count of more than seven electrons per 44 net atom, for which
these nets become chemically unstable [58]. Considering that
no compounds with 3+ cations in this structure type are
known and that the magnetic data [57] point to Eu2+, we
consider the band structure shown in Fig. 7(b) to be reliable.

The band structure is nearly flat along the �-Z line and the
bands along �-X -M are very similar to those along Z-R-A,
and, consequently, also exhibit large linearly dispersing bands
corresponding to the upper half of a Dirac cone; this further
verifies treating the crystal to be a layered material.

C. Bi square nets in the SmCuP2 structure type

Our materials search also lead to many compounds that
are known topological semimetals. One class is the SmCuP2

structure type (I4/mmm). This structure type includes ma-
terials hosting anisotropic nodal fermions, such as the lay-
ered manganese pnictides [59–63], AMnBi2, A = Sr, Ba,
Eu, as well as in BaZnBi2 [64]. We now describe how
these materials fit into the framework of the current paper.
For this we compare these to the chemically similar com-
pounds YbMn(Sb/Bi)2 [65–68] in the HfCuSi2 structure type
(P4/nmm). Both structure types display Bi or Sb 44 nets.

In all cases, the Bi or Sb atoms are not centers of a C4 ro-
tation. Therefore, in the symmorphic space group (I4/mmm),

these materials are described by the upper right block in Fig. 1
and can display Dirac cones along �-M and �-X , while in
the nonsymmorphic space group (P4/nmm), the materials are
described by the lower right block in Fig. 1 and can display
nodal lines that cross �-M and �-X . All of these compounds
exhibit a tolerance factor, t , between 0.9 and 0.93. Since
t < 1, the interplane spacing exceeds the in-plane spacing
and the tight-binding model describes the Bi bands well.
Consequently, nodal lines or points are apparent in the band
structure, as has been previously reported [59–68].

VII. ELEMENTARY BAND REPRESENTATIONS

One of the novel aspects of the band-folding procedure is
that it can predict band crossings that could not be deduced
from the connectivity of elementary band representations
(EBRs), as long as there are no band inversions after band
folding, i.e., the folded band structure qualitatively captures
the relevant physics near the Fermi level. The tolerance factor
is designed to capture the crystals where this condition is
likely to be satisfied (t < 1).

The connectivity of EBRs has been computed for all space
groups and is a powerful tool to predict topological semimet-
als and insulators [21–25]. Specifically, if, for a particular ma-
terial, the bands at the Fermi level transform as a “connected”
EBR [21], and the orbitals are partially filled, then the material
is guaranteed to be metallic. Such a constraint cannot exist for
a material where the bands near the Fermi level are derived
from two EBRs. This is because bands corresponding to two
EBRs can always be realized with an energy gap: physically,
the orbitals corresponding to distinct EBRs are not related by
symmetry and therefore can generically have different on-site
potentials and/or see different surrounding environments.

Therefore, in the cases where the orbitals corresponding to
the 44 square net split into two EBRs after band folding, the
EBR connectivity is not enough to guarantee that the material
will be a semimetal. Instead, the assumption that band folding
accurately describes the band structure (i.e., there are no bands
that invert after band folding) provides the extra input neces-
sary to guarantee that the symmetry-protected band crossings
discussed in Sec. III are present.
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FIG. 8. Maximal Wyckoff positions in p4mm [51–53].

Broadly speaking, in nonsymmorphic groups the original
EBR will not split into two EBRs, while in symmorphic
groups, it will. As an example, we compare the layer groups
p4mm and p4/nmm, which are symmorphic and nonsym-
morphic, respectively. We will show in Sec. VII A that in
p4mm (symmorphic) band folding causes the original sites
to split into two EBRs. Consequently, the constraint of no
band inversions after band folding is necessary to deduce the
band crossings. We then show in Sec. VII B that in p4/nmm
(nonsymmorphic) the original EBR remains an EBR in the
new lattice because the glide symmetry in the nonsymmorphic
group relates the two sites in the unit cell. Since the EBRs
with glide symmetry cannot be realized with an insulating
gap (a fact that can be checked using the BANDREP appli-
cation [21–23] on the BCS), the band crossings cannot be
removed, and the extra constraint of having no band inversions
relative to band folding is unnecessary. This is a generic
feature of nonsymmorphic groups [36].

A. Symmorphic group: EBRs in p4mm

The layer group p4mm has three maximal Wyckoff posi-
tions, shown in Fig. 8. The 1a and 1b positions are invariant
under C4v , while sites in the 2c position are invariant under
C2v .

1. Case 1: Site-centered C4 remains after band folding

We first consider the center configuration in Fig. 3. Before
the

√
2 × √

2 unit cell is considered, the atoms reside at
the 1a position. When the unit cell is enlarged, the Wyckoff
position splits into two positions, the 1a and 1b position. Both
are C4 centers, which can be visually verified from Fig. 3.
Since the site-symmetry group (C4v) is unchanged, the orbitals
on each site are still an irrep of the site-symmetry group.
Thus, the folded bands correspond to two EBRs. Generically,
two EBRs can be separated by an energy gap. However, the
constraint that no band inversions occur relative to the folded
configuration guarantees that the four bands in the folded
band structure are connected. This connectivity could not be
deduced from the EBRs alone.

2. Case 2: Plaquette-centered C4 remains after band folding

We now consider the left configuration in Fig. 3. Before
the

√
2 × √

2 unit cell is considered, the atoms reside at the
1a position. After band folding, this position becomes the 2c
position in the new unit cell. Thus, the two sites in the enlarged
unit cell are still part of the same Wyckoff position. However,
the px and py orbitals are no longer irreps of the site-symmetry

FIG. 9. Maximal Wyckoff positions in p4/nmm [51–53]. The 2a
position is not C4 invariant, but is invariant under an S4 rotoinversion.

group of the 2c position (this can be easily verified since the
site-symmetry group, C2v , only has one-dimensional irreps),
so the orbitals each comprise a different EBR. Thus, the folded
bands again correspond to two EBRs, which can generically
be separated by an energy gap. But again, the constraint that
no band inversion occur relative to the folded configuration
guarantees that the four bands in the folded band structure are
connected, which could not have been deduced from the EBRs
alone.

B. Nonsymmorphic group: EBRs in p4/nmm

For comparison, we now consider the EBRs in p4/nmm.
The group has three maximal Wyckoff positions, shown in
Fig. 9. The multiplicity of each site is always an even num-
ber because the group contains a glide symmetry. The site-
symmetry group of the 2a position is D2d ; the site-symmetry
group of the 2b position is C4v; and the site-symmetry group
of the 4c position is C2h.

1. Case 1: Site-centered C4 remains after band folding

We now consider the center configuration in Fig. 3. In the
enlarged unit cell, the original atoms are C4 centers, so they
must be in the 2b position (recall the site-symmetry group of
the 2a position, D2d , does not have a C4 center.) Since the site-
symmetry group of the 2b position is C4v , the same as it was
before band folding, the orbitals remain an irrep of the site-
symmetry group. Hence, they comprise a single EBR. Further-
more, utilizing the BANDREP application [21–23] on the BCS
shows that this EBR cannot be disconnected. We conclude that
unlike the same positions in p4mm (Sec. VII A 1), the band
connectivity could be deduced from the EBR connectivity
(this also follows from Young and Kane [36]). Consequently,
the band crossings that result from band folding cannot be
removed from the band structure, regardless of how the bands
are deformed.

2. Case 2: Plaquette-centered C4 remains after band folding

Finally, we consider the left configuration in Fig. 3. In the
enlarged unit cell, the original atoms are not C4 centers, but
there are two of them in the unit cell, so we deduce that they
are in the 2a position. The px and py orbitals do transform
as an irrep of the site-symmetry group (D2d ); hence, the
folded bands comprise a single EBR. Utilizing the BANDREP

application [21–23] on the BCS shows that this EBR cannot be
disconnected. Thus, similar to the previous case in P4/nmm,
we conclude that the band connectivity can be deduced from
the EBR connectivity and the bands must be connected [36].
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FIG. 10. Band crossings between spin-degenerate bands with ±1
mirror eigenvalues (left) are relabeled with “spinful” ±i eigenvalues
(center) to account for the action of mirror symmetry on spin. In
general, bands with the same eigenvalue will gap (right).

VIII. SPIN-ORBIT COUPLING

We now discuss the effect of SOC. While SOC is nearly
negligible in ZrSiS, SOC has a small effect in ThGeSe and
KCu2EuTe4, as well as in ZrSiTe [49].

When SOC is non-negligible, it will gap the band crossings
along �-X and M-�. One can understand this result in terms
of symmetry representations: before considering SOC, the
band crossings along �-X and M-� are symmetry protected
because the two bands that cross have opposite mirror and/or
glide eigenvalues. When SOC is non-negligible, the symmetry
representations must be modified to act on the spin degrees of
freedom by a tensor product:

ρo → ρo ⊗ ρ1/2, (9)

where ρo and ρ1/2 are the representations of the appropriate
mirror operator on orbital and spin degrees of freedom, re-
spectively. In our case, ρo = ±1 is a number and ρ1/2 is a
2 × 2 matrix with ±i eigenvalues. Thus, each spin-degenerate
band without SOC will split with SOC into two bands: one
with +i mirror eigenvalue and the other with −i mirror eigen-
value. Since bands with the same eigenvalue will generically
gap, SOC can gap the original spin-degenerate band crossing,
as illustrated schematically in Fig. 10.

This analysis agrees with angle-resolved photoemission
spectroscopy data and ab initio calculations of ZrSiTe [49].
Notice that the denser square net in ZrSiTe is still made of Si
atoms: therefore, the effect of SOC can be non-negligible even
when the denser square net is made of light atoms (Si), but the
larger square net is made of heavier atoms (Te).

In nonsymmorphic space groups, band crossings at the cor-
ners of the BZ may remain gapless in the presence of SOC be-
cause time-reversal symmetry can protect a four-dimensional

representation [36,48,69]. However, for the structural motif
and electron filling discussed in this paper, these protected
crossings are not at the Fermi level.

IX. OUTLOOK

We have studied the nodal fermions that result from em-
bedding a dense 44 square net into a larger unit cell and
identified the nodal fermions that are symmetry protected in
different embeddings. We provided a model that shows that
nonsymmorphic symmetry is not a necessary requirement for
filling constrained semimetals. Further, some cases could not
have been predicted from only the EBR connectivity. Our
analysis is specific to materials with half-filled px and py

orbitals, but can be extended to d orbitals. In particular, since
dxz and dyz orbitals transform in the same way as px and
py orbitals (see Table I), the analysis can be immediately
applied to search for nodal fermions in square-net materials
with half-filled dxz and dyz bands. A similar analysis could be
carried out for the other d orbitals.

Our theoretical analysis was reinforced by a materials
search that identified candidate compounds that fit our model.
We introduced ThGeSe as a square-net material in a symmor-
phic space group with Dirac nodes near the Fermi level and
bands that disperse linearly over a large energy window. We
also identified several similar compounds that deserve future
theoretical and experimental investigation. In addition, we
studied the linearly dispersing bands of KEuCu2Te4, whose
Dirac cones reside 1.5 eV below the Fermi level. Finally, we
introduced an algorithm (Fig. 5) that can be applied to find
more Dirac materials that will be investigated in future work.

This work thus extends previous analyses that provided
filling constraints to find semimetals in nonsymmorphic space
groups to symmorphic groups, for the structural motif of a
44 net. Our results demonstrate that band folding provides an
additional route to search for material realizations of nodal
fermions. This idea can in principle be extended beyond
square nets, to other structural motifs that cause band folding.
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