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We study the conductance of a time-reversal-symmetric helical electronic edge coupled antiferromagnetically
to a magnetic impurity, employing analytical and numerical approaches. The impurity can reduce the perfect
conductance G0 of a noninteracting helical edge by generating a backscattered current. The backscattered steady-
state current tends to vanish below the Kondo temperature TK for time-reversal-symmetric setups. We show that
the central role in maintaining the perfect conductance is played by a global U (1) symmetry. This symmetry
can be broken by an anisotropic exchange coupling of the helical modes to the local impurity. Such anisotropy,
in general, dynamically vanishes during the renormalization group (RG) flow to the strong-coupling limit at
low temperatures. The role of the anisotropic exchange coupling is further studied using the time-dependent
numerical renormalization group method, uniquely suitable for calculating out-of-equilibrium observables of
strongly correlated setups. We investigate the role of finite-bias voltage and temperature in cutting the RG flow
before the isotropic strong-coupling fixed point is reached, and extract the relevant energy scales and the manner
in which the crossover from the weakly interacting regime to the strong-coupling backscattering-free screened
regime is manifested. Most notably, we find that at low temperatures the conductance of the backscattering
current follows a power-law behavior G ∼ (T/TK )2, which we understand as a strong nonlinear effect due to
time-reversal-symmetry breaking by the finite bias.
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I. INTRODUCTION

Chiral electronic channels, which can be found on the
edges of an integer quantum Hall sample, show unique con-
ductance behavior. As backscattering of electrons is not possi-
ble, the conductance of these channels is robust against many
perturbations, inter alia scattering off impurities, and it attains
the universal value of G0 = e2/h per charge-carrying channel.
While a system with a single chirality requires breaking of
time-reversal symmetry, as in the quantum Hall effect, a
more nuanced picture emerges when one considers helical
modes. In these systems, the spin and propagation direction
are interlinked, with opposite flavors of spins counterprop-
agating. For example, the edges of a topological insulator
such as a quantum spin Hall bar demonstrate this behavior,
without breaking time-reversal symmetry [1–4]. Such systems
have focused a great amount of interest in recent years, both
experimentally and theoretically. One of the signatures of the
quantum spin Hall state should be a perfect edge conductance
at low temperatures and bias voltages when time-reversal
symmetry is maintained, as backscattering of electrons along
the edge requires flipping of the spin, which is strongly
suppressed in the presence of time-reversal symmetry.

Experimentally, however, the perfect quantization of the
conductance was not observed, despite measurements in
different topological insulators such as HgTe/CdTe and
InAs/GaSb quantum wells, bismuth layers, and WTe2 mono-
layers [5–24]. Suggestions for the potential sources for the
deviation from perfect conductance include effects such as

electron-electron interactions, disorder, electrical noise, in-
elastic scattering, and others [25–35].

The question of the effect of magnetic impurities on the
conductance along helical edges was the subject of theoretical
attention as well, considering different forms of impurities,
coupling, and electronic band structures [36–50]. At low
temperatures and in the absence of strong electron-electron in-
teractions, a generic magnetic impurity forms a Kondo singlet
and is screened out, allowing the helical edge to reconstitute
itself around it, and therefore has no effect on the conductance.
This has been the fundamental picture established by Wu
and collaborators and by Maciejko and collaborators [44,51].
However, identifying the leading corrections at finite temper-
atures to the perfect conductance is an ongoing subject for
debate.

In Ref. [44], the authors employed bosonization and ana-
lytical perturbative renormalization group (RG) calculations
in order to study the backscattering from a magnetic impurity,
and predicted that at low temperatures the deviation from
perfect conductance scales as G ∝ (T/TK )2(4K−1) as long as
K > 1/4, where K is the Luttinger parameter describing the
strength of the electron-electron interactions along the edge,
and TK the Kondo temperature. Specifically, for noninteract-
ing electrons (K = 1), G ∝ (T/TK )6 is found. Väyrynen and
collaborators [30] studied the conductance in the presence
of charge puddles created by disorder and modeled by a
series of interacting quantum dots. They reported a deviation
from perfect conductance in the linear bias voltage regime
and for low temperatures due to a backscattering current
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with a conductance behavior of G ∝ T 4. Recently, Kurilovich
and collaborators considered coupling to an impurity spin
with S > 1/2, and focused on the effect of the local spin
anisotropy on the conductance [48,50]. They discovered that
this effect is strongly dependent on whether the spin is integer
or half integer, and that the correction is almost temperature
independent down to low temperatures.

As Tanaka and collaborators [52] argued, the isotropic
Kondo coupling alone does not affect the perfect dc conduc-
tance for any K and temperature T . They showed that this
can be understood due to the fact that time-reversal symmetry
allows backscattering only accompanied with a spin-flip of
the impurity, which can be further flipped back only with
backscattering in the opposite direction, thus prohibiting a
steady-state backscattered current. In order to circumvent this
limitation while preserving time-reversal symmetry, one has
to consider an anisotropic exchange coupling [41,48–50] or
describe coupling to a many-level interacting quantum dot
[30,43,46].

While a plethora of theoretical tools has been employed to
study the effects of magnetic impurities on the conductance
in helical systems, to the best of our knowledge the problem
has not yet been addressed using advanced numerical tools,
despite the large success of such methods, e.g., the numerical
renormalization group (NRG), in exploring the features of
strongly correlated impurity models [53]. In this paper we
employ the NRG and time-dependent NRG (TD-NRG) tech-
nique to study the conductance of a helical edge coupled to
an impurity in nonequilibrium steady state, when finite-bias
voltage is applied, over a range of temperatures and exchange
couplings.

The structure of the paper is as follows. We start in
Sec. II by presenting the model Hamiltonian, deriving the
expressions for the current in terms of the nonequilibrium
Green’s functions of a local degree of freedom, and analyzing
its character. In Sec. III we employ perturbative RG methods
to analytically study the structure of the correlations and how
they affect the conductance. Then, in Sec. IV, we turn to
the advanced numerical method of TD-NRG to calculate the
current through the helical modes for different temperatures,
bias voltages, and interactions. Finally, in Sec. V we discuss
our results and their implications.

II. MODEL AND OBSERVABLES

A. The Hamiltonian and its symmetries

We consider the 1d edge of a quantum spin Hall insulator,
which is characterized by two counterpropagating helical
electronic modes, associated with two opposite spin projec-
tions and described by the field operators ψσ (x). The edge
electrons are coupled at the origin x = 0 to a set of local
fermionic degrees of freedom Dn,σ which describes a local
interacting impurity. For the time being, we will not consider
specific interaction terms, and discuss the setup in general.
The only requirement we shall impose is that the entire setup
be time-reversal symmetric, which is satisfied by the helical
modes as long as ψσ and ψ−σ are a Kramers pair and they
accordingly couple to Kramers pair degrees of freedom of the
impurity.

In reality, the helicity in the edge of the quantum spin Hall
insulator comes from spin-orbit coupling, which means that
although the left- and right-moving electrons have opposite
spin projections at each point, the spin projection is not
constant along the edge. This was suggested as a possible
backscattering mechanism, allowing for momenta-dependent
flipping of the spin through inelastic scattering processes
or the Dyakonov-Perel spin relaxation mechanism [27,54].
As we are interested in the effects of the impurity on the
conductance, we neglect this effect and assume that the spin
orientation is constant along the edge. This can be formally
achieved by applying a space-dependent unitary transforma-
tion that rotates the spins at each point to the same direction,
and then omitting the extra momenta-dependent terms that
result from this transformation.

The Hamiltonian that describes the dynamics of the edge
electrons is given by

He = −ivF

∑
σ

σ

∫
dxψ†

σ (x)∂xψσ (x), (1)

with σ = +1 (σ = −1) for right (left) movers, which also
have opposite spins. For convenience, and without loss of
generality, we shall henceforth identify the right movers with
up spins in the z directions and left movers with down spins.
Under time-reversal transformation T̂ , the fields undergo
T̂ ψσ T̂ −1 = σψ−σ .

At the origin x = 0, the edge electrons hybridize with the
degrees of freedom of a local impurity Dn,σ , which might have
more than one level (orbital) per spin,

Ht =
∑
σ,n

tσ,nψ
†
σ (0)Dn,σ + H.c., (2)

where n = 1, . . . , N labels the impurity levels, and tn,σ the
hybridization parameters. The levels of the impurity are
also arranged in time-reversal-symmetric pairs T̂ Dn,σ T̂ −1 =
σDn,−σ , where the time-reversal symmetry enforces tn,σ =
t∗
n,−σ . It is convenient to define a single degree of freedom dσ

with which each spin flavor of the edge electrons hybridize,

dσ = t−1
σ

∑
n

tn,σ Dn,σ (3)

with tσ = √∑
n |tn,σ |2, and construct an orthogonal set de-

scribing all the other N − 1 levels Do
n,σ . Then

Ht =
∑

σ

tσψ†
σ (0)dσ + H.c. (4)

In the general case where the D levels are nondegenerate,
this transformation leads to extra terms between the impurity
levels themselves.

The dynamics of the impurity degrees of freedom, and
of potentially other local degrees of freedom that interact
with the Dn,σ orbitals, are described by a general interacting
Hamiltonian HD, which does not contain ψσ and does not
violate time-reversal symmetry. The full Hamiltonian is H =
He + Ht + HD, and by construction it is time-reversal sym-
metric. A schematic depiction of the setup is given in Fig. 1,
where we assumed energy degenerate impurity orbitals.
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FIG. 1. Schematic depiction of the setup considered throughout
most of this paper. A 1d helical edge of a quantum spin Hall insulator
consists of right-moving up-spin electrons and left-moving down-
spin electrons, coupled at a single point to a generalized impurity via
tunnel amplitude t . This impurity encompasses a correlated spinful
level interacting with an additional S = 1/2 quantum spin. Time-
reversal symmetry is maintained by making the up and down level
Kramers partners, and keeping a real exchange coupling elements J
with the impurity spin.

B. Electric current

In this section we derive the relevant Meir-Wingreen ex-
pression [55] for the electrical current through the edge in
terms of the local Green’s functions of the localized level dσ .
We analyze its properties and compare it with the expression
for the current through a nonhelical 1d system.

In the absence of a coupling to the localized level, tσ = 0,
the number of right-moving electrons N̂R and left-moving
electrons N̂L is constant, and the steady-state current is
given by the difference in the corresponding densities Î0 =
vF e(n̂R − n̂L ) with n̂R/L the densities of the left and right
movers. Plugging in the density of states per unit length
ρ0 = 1/(2πvF ) and integrating over the different occupancies
we arrive at the standard result

I0 = 〈Î0〉 = e
∫

dε

2π
[ f (ε − μ+) − f (ε − μ−)]

� G0
μ+ − μ−

e
(5)

with μ± the chemical potential of the left and right movers,
f (ε) the Fermi-Dirac distribution, and we assumed a large
electronic bandwidth D � |μ±|, T . The perfect conduction
of the clean channel may be reduced by a backscattered
current ÎB that takes a right-moving particle and reflects it
into a left-moving one Î = Î0 − ÎB. The symmetric form of
the backscattered current operator is given by

ÎB = e

2

d

dt
(N̂L − N̂R)

= i
e

2
[t−ψ

†
−(0)d− − t+ψ

†
+(0)d+ − H.c.]. (6)

In order to evaluate IB = 〈ÎB〉 at steady state, we express it
using the lesser Green’s functions G<

AB(τ, τ ′) = 〈B(τ ′)A(τ )〉
which are functions only of the time difference τ − τ ′ at
steady state. Upon Fourier transforming with respect to the

time difference we arrive at

IB = e Im
∫

dω

2π

[
t+G<

d+ψ
†
+

(ω) − t−G<

d−ψ
†
−

(ω)
]
, (7)

and by applying standard diagrammatic expansion we obtain

G<

dσ ψ
†
σ

(ω) = t∗
σ

[
Gdσ d†

σ
(ω)g

ψσ ψ
†
σ

(ω)
]<

.

Here g(ω) is the bare Green’s function taken with respect to
He, whereas G(ω) signifies the Keldysh Green’s function in
the presence of the full Hamiltonian H. We are to take the
lesser part of the product of the two Green’s functions, which
is realized by applying Langreth’s rules [56]. The bare Green’s
functions of the electrons at the edge in the wideband limit are
given by

gr/a

ψσ ψ
†
σ

(ω) = ∓iπρ0,

g<

ψσ ψ
†
σ

(ω) = 2πρ0 f (ω − μσ ),
(8)

with gr(a) the retarded (advanced) bare Green’s function. We
similarly label the fully dressed retarded (advanced) Green’s
function by Gr(a). Using these functions and labels we express
the backscattered current using only the fully dressed Green’s
functions of the dσ orbitals

IB = G0

e



∫
dω

[
G<

d+ (ω) + 2Im
{
Gr

d+ (ω)
}

f (ω − μ+)

−G<
d− (ω) − 2 Im

{
Gr

d− (ω)
}

f (ω − μ−)
]
. (9)

Here, 
 = πρ0|tσ |2 equals half the tunneling rate to the lo-
calized impurity orbital, which is identical for both σ due to
time-reversal symmetry, and we used the shorthand notation
Gν

dσ
for the Green’s functions Gν

dσ d†
σ

.

Equation (9) is a central result of this section, as it is an
exact expression for the nonequilibrium current through the
edge I = G0V − IB, driven by an applied voltage drop eV =
μ+ − μ−. It can be evaluated by calculating the fully dressed
Green’s functions of the localized orbitals alone. No approx-
imations were needed in its derivation from our Hamiltonian,
and it encodes all the information about the correlations and
temperature dependence through the structure of the fully
dressed Green’s functions. Note that the vanishing of the
backscattered current is equivalent to 〈ψ†

σ (0)dσ 〉 = 〈d†
σψσ (0)〉

implying that these expectation values are real. We now turn
to a qualitative discussion, and point out the unique features
of the helical edge.

The total current I is a current through a 1d mode which is
side-coupled to an interacting region. Studies of transport in
1d channels side-coupled to an impurity in the Kondo regime
have shown that such impurities suppress the conduction com-
pletely at low temperatures, in contrast to the perfect transmis-
sion when tunneling through the Kondo correlated impurity
[57]. However, the setups considered for these studies were
markedly different from the setup described here, as both left
and right movers carried both spin flavors, and respectively
coupled to the Kondo impurity. In the helical edge setup, on
the other hand, left and right movers correspond to different
spin flavors. To illustrate the difference between these setups,
which directly affects the current, we note that the helical
edge Hamiltonian cannot be derived from a corresponding 1d
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lattice model when taking the continuum limit, and it is fun-
damentally different from the nonhelical case. One has to bear
in mind that the full model of the quantum spin Hall insulator
is 2d and the helical edge states are effective 1d topologically
protected transport channels that can be spatially deformed.
Therefore, the strong-coupling picture where side-coupling to
an impurity cuts a 1d wire into two pieces, as the site near the
impurity hybridizes strongly with it, is not applicable.

On the other hand, the backscattered current IB describes a
current contribution from source to drain through the impurity,
and can be mapped onto a spinless model where two noninter-
acting leads are coupled through an interacting region. In this
mapping the up-spin electrons in the edge are mapped onto
a source lead, while the down-spin electrons are the drain.
The requirement of time-reversal symmetry in the original
Hamiltonian greatly restricts the type of terms allowed in the
interacting region. Specifically, levels coupled to the source
d+ and levels coupled to the drain d− cannot directly be
linked as the term λd†

+d− breaks time-reversal symmetry. In
order to get nonvanishing backscattered current in steady state
one must overcome this obstacle by considering additional
interaction terms.

C. U (1) symmetry and the current

In this section we define a U (1) symmetry the system
might maintain, and demonstrate its importance in protecting
the perfect conductance of the edge even for finite bias and
temperatures. We show that without explicitly breaking this
symmetry no steady-state backscattered current can be driven
by the local impurity. This is demonstrated by applying a time-
dependent gauge transformation, and separately by employing
Hershfield’s Y -operator formalism.

While the SU (2) symmetry is broken by the helical states,
we can define a global U (1) symmetry in the absence of HD.
The transformation ψσ → eiσθψσ , dσ → eiσθdσ leaves both
He and Ht invariant and preserves time-reversal symmetry.
This symmetry is equivalent to a global rotation about the
joined spin z axis of the electrons at the edge and the dσ

orbital. This can be further generalized to encompass degrees
of freedom included only in HD. By summation, one can
construct Sz = Sz

mac + Sz
mic with

Sz
mac =

∑
σ

σ

∫
dxψ†

σ (x)ψσ (x),

Sz
mic =

∑
σ

σ

[
d†

σ dσ +
∑

n

D† o
n,σ Do

n,σ

]
+ 2

∑
j

Sz
j, (10)

where S j are the different possible spin degrees of freedom
describing the impurity. Then the U (1) rotation is generated
by exp[iθSz/2]. We have either [Sz,H] = 0 for the U (1)
symmetric case, or [Sz,H] �= 0 when it is broken by HD.

We begin by applying a gauge transformation using
the U (1) generator of Eq. (10) Uz(τ ) = exp[−iSz(μ+ −
μ−)τ/2], transforming each of the operators according to
their charge under Sz. Following the transformation, an extra
term is added to the Hamiltonian, given by

�H = i[∂τUz(τ )]U †
z (τ ),

which has a double effect. It shifts the energies of the left-
and right-moving edge electrons and eliminates the chemical
potential, and in addition, a local effective magnetic field is
generated:

HBeff = μ+ − μ−
2

Sz
mic. (11)

Operators and expectation values may acquire an explicit time
dependence, which reflects the fact that the setup is out of
equilibrium.

In the case in which U (1) symmetry is maintained, the
Hamiltonian and the current operator remain time indepen-
dent after the transformation. Since the Hamiltonian and the
current operator are time independent, the problem is mapped
onto an effective equilibrium problem, in the presence of
the local magnetic field, and all expectation values can be
calculated with respect to the transformed Hamiltonian. In
equilibrium, the fluctuation dissipation theorem ensures that
G<(ω) = −2 Im{Gr (ω)} f (ω), which renders the backscat-
tered current in Eq. (9) identically zero at steady state.

As Sz is a conserved quantity in this case, and each
backscattering event changes the values of Sz

mac by ±2, the
values of the local Sz

mic must change accordingly by ∓2 with
each backscattering event. Therefore, the coupling of the local
degrees of freedom to the effective magnetic field ensures that
each backscattering event costs or gains the correct amount
of energy μσ − μ−σ = eV . One can also use this fact to
convince oneself that the backscattered current must be zero
at steady state: Since Sz

mic is a local microscopic quantity,
as long as Sz is a conserved quantity, Sz

mic can allow only a
finite number of consecutive backscattering events in the same
direction before reaching its maximal allowed value, blocking
any further backscattering in that direction.

The situation is starkly different if the U (1) symmetry is
broken. In that case, while the current operator following the
transformation is still time independent, the Hamiltonian is
bound to be explicitly dependent on time. The setup cannot be
described any longer by an effective equilibrium Hamiltonian,
and IB may attain a nonzero value.

A different proof (but similar in spirit) can be constructed
by employing the Y -operator formalism developed by Her-
shfield [58] to describe nonequilibrium steady state. In this
formalism, the system is described in the distant past t →
−∞ by the density matrix

ρ0 = 1

Z0
e−β(H0−Y0 ) (12)

with Y0 the nonequilibrium condition, and then an interaction
term HI is turned on adiabatically. The system evolves in time
until steady state is reached. The steady-state density matrix
is given by a similar form,

ρ = 1

Z
e−β(H−Y ) (13)

with Y = ∑∞
n=0 Yn, where Yn maintains

[H0,Yn] − iηYn = [Yn−1,HI ] (14)

for infinitesimal η → 0+.
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Hershfield [58] decomposed the Y operator into the general
many-body scattering state operators 
kσ :

Y =
∑
kσ

μσ

†
kσ


kσ , (15)

where 

†
kσ

is expanded in contributions 

†
kσ,n proportional to

the interaction term (HI )n of the Hamiltonian



†
kσ

=
∞∑

n=0



†
kσ,n (16)

and each component 

†
kσ,n(n > 0) obeys the hierarchical dif-

ferential equation

d

†
kσ,n(t )

dt
− iεkσ


†
kσ,n = i[
†

kσ,n−1,HI ]. (17)

In order to shed some light onto the nature of the Y operator
for the U (1)-symmetric case, we can evaluate the commuta-
tors in lowest order. Let us start with HD = 0, H0 = He and
treat the bilinear term Ht as interaction. The equations can
be analytically solved yielding the single-particle Lippmann-
Schwinger state operators stated below in Eq. (20) (
†

kσ
=

γ
†
k,σ

). The term 

†
kσ


kσ counts the number of fermions in the
system with a spin σ projection, hence

Y = μ+ − μ−
2

Sz − μ+ + μ−
2

N̂tot, (18)

where N̂tot counts the total number of fermions in the system,
and the scattering state operators γ

†
k,σ

can be used to write the
Hamiltonian He + Ht in energy-diagonal form.

Now we add a finite HD that is conserving the total spin
component Sz, typically an anisotropic Heisenberg term. The
numbers of left and right movers are no longer individually
conserved, and these states mix due to the interaction in
Eq. (17). However, each mixing term is always associated
with a local spin-flip operator S±, so that the contribution


†
kσ,n maintains its spin excitation character in all orders of

the hierarchy so that 

†
kσ

remains an eigenoperator of the
total spin component Sz. Now 


†
kσ


kσ counts the number of
spin σ excitations in the system and Eq. (18) remains valid
even for HD �= 0 as long as [H,Sz] = 0. Note that one can
either construct γ

†
k,σ

for HD = 0 and then perform a second

step by setting 

†
kσ,0 = γ

†
k,σ

and switch on HD = 0, or one
starts directly from free edge states and uses HI = Ht + HD

to arrive at the same final 

†
kσ

.
The density operator is equivalent to the equilibrium op-

erator in a finite magnetic field since the first term in Y
corresponds to a global magnetic field applied in the z di-
rection. The second term controls the overall filling with
fermions and can be essentially dropped. Note that while the
occupation numbers are governed by ρ ∝ exp[−β(H − Y )],
the dynamics is only controlled by the Hamiltonian H itself.
This is important for calculating the Green’s functions. One
can either carry out an equilibrium calculation with respect
to H′ = H − Y and perform a frequency shift by μσ by hand
at the end, or use the definition of the Heisenberg operator
O(t ) = exp[iHt]O exp[−iHt] to obtain the correct frequency

spectrum. We adopted the latter scheme since it remains valid
in true nonequilibrium situations when the U (1) symmetry is
broken.

In the pseudoequilibrium situation where the U (1) sym-
metry holds, the spectral functions obey the dissipation-
fluctuation theorem and, therefore, the backscattering current
IB vanishes identically. Although the operators 


†
kσ

contain
mixing of left and right movers, the mixing cannot induct a
steady-state backscattering current. This can be understood in
a consecutive application of 


†
kσ

onto some arbitrary many-
body quantum state. Since each backscattering term is as-
sociated with a local spin-flip term, and the local spin has
a finite length, these backscattering terms do not contribute
in higher order since they lead to a nil state or to an equal
number of back and forth scattering such that the net current
always vanishes. This is fundamentally different from a U (1)-
symmetry-breaking interaction.

In conclusion, we showed that breaking the U (1) symmetry
defined by Sz of Eq. (10) is critical in order for the local
impurity to drive a backscattering current at steady state.
When [Sz,H] = 0, the system can always be mapped onto
an effective equilibrium setup, which leads to a vanishing
backscattering current [given in Eq. (9)] due to the fluctuation-
dissipation theorem. Following this mapping, the nonequilib-
rium condition plays the role of a magnetic field. Therefore,
we must introduce into HD terms that do not commute with
Sz in order to obtain finite-backscattering current.

III. INTERACTION HAMILTONIAN AND
PERTURBATIVE RG ANALYSIS

From here forward we shall consider a specific form of
interaction for HD. If one considers a localized impurity spin-
1/2 which interacts with a single spinful d level, then the most
general interaction Hamiltonian that respects time-reversal
symmetry is given by

HD = εd

∑
σ=±

n̂σ + Un̂+n̂− +
∑

α,β,ν,ν ′
Jα,βSαd†

ν σ
β

ν,ν ′dν ′ . (19)

Here, n̂σ = d†
σ dσ , σ

β

ν,ν ′ are matrix elements of the Pauli matri-
ces and Jα,β is a set of nine real coupling coefficients. We used
the indices ν, ν ′ in this sum for the helical label σ in order to
distinguish the label from the symbol for the Pauli matrices.
The first two terms describe the on-site energy and Coulomb
repulsion between the levels, while the last term is a time-
reversal-symmetric exchange coupling between the spinful d
level and the impurity spin. We note that when considering
the case of an impurity spin with spin larger than 1/2, the
Hamiltonian may also include spin-anisotropy terms Mα (Sα )2

which are nontrivial. These terms may play an important role
in driving backscattering current in such setups [48,50].

A. Mapping onto the anisotropic Kondo Hamiltonian

It is instructive to map the Hamiltonian onto the well-
studied Kondo Hamiltonian. To this end, we start by diago-
nalizing He + Ht exactly using the helical scattering states,
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given by

γ
†
k,σ

= eiφk ψ
†
k,σ

+ tσ√
2π

∣∣gdσ
(εk + iη)

∣∣
×

(
d†

σ +
∫

dk′
√

2π

tσ
εk − εk′ + iη

ψ
†
k′,σ

)
, (20)

which can be derived from Eq. (17) [59]. Here,

gdσ
(z) =

[
z −

∫
dk

2π

|tσ |2
z − εk

]−1

is the Green’s function associated with the level dσ , and
φk = arg{gdσ

(εk − iη)} its phase. The eigenmodes maintain
the canonical fermionic anticommutation relations and are
characterized by definite charge and spin/helicity σ .

The noninteracting Hamiltonian is expressed in its eigen-
modes γk,σ :

He + Ht =
∑

σ

∫
dk εkγ

†
k,σ

γk,σ . (21)

They also allow us to write the localized level operators as

dσ =
∫

dk√
2π

tσ
∣∣gdσ

(εk + iη)
∣∣γk,σ . (22)

The interacting Hamiltonian is then given by

HD = εd

∑
σ

t2
σ

∫
dkdk′

2π

∣∣gdσ
(εk + iη)

∣∣∣∣gdσ
(εk′ − iη)

∣∣γ †
σ,k′γk,σ

+Ut2
+t2

−

∫
dkdk′dqdq′

(2π )2
|gd+ (εk + iη)|2|gd− (εk′ + iη)|2γ †

k,+γk′,+γ
†
q′,−γq,−

+
∑

α,β,ν,ν ′
Jα,βSαtνtν ′

∫
dkdk′

2π

∣∣gdν
(εk + iη)

∣∣∣∣gdν′ (εk′ − iη)
∣∣γ †

k′,ν ′σ
β

ν ′,νγk,ν , (23)

where we again used ν, ν ′ instead of σ, σ ′ in the last term
in order to avoid confusion with the notation for the Pauli
matrices. Due to the time-reversal symmetry, t+ = t− ≡ t and
gdν

(ω ± iη) = (ω ± i
)−1, where 
 = πρ0t2. Note that for
this derivation we assumed a wideband limit, D � 
,ω, eV ,
so that the real part of the self-energy of gdν

can be neglected.
In the limit where U = 0 = εd , this Hamiltonian is an

anisotropic spin-1/2 Kondo Hamiltonian. To see this, we
observe that the J term is an exchange coupling between
the local spin density of the γ± quasiparticles and the local
impurity spin HJ = ∑

α,β Jα,βSασ β (0), where

σ(0) =
∑
ν,ν ′

∫
dkdk′√ργ (k)ργ (k′)γ †

ν,kσν,ν ′γν ′,k′ . (24)

Here πργ (k) = 
|gd (εk )|2 is an effective density of states of
the γ± modes that couple to the spin, and 
 serves as the
bandwidth. In this limit, the setup is characterized by a single
Kondo scale TK for an antiferromagnetic coupling tensor Jα,β .
At temperatures below that scale T � TK , the local impurity
spin will be screened by the γ quasiparticles, and the local
magnetic moment asymptotically vanishes for T → 0 as a
Kondo singlet is formed.

As we are mainly interested in the role of the exchange
anisotropy on the backscattered current, we will focus first
and foremost on the limit where both U = 0 and εd = 0. We
qualitatively discuss how turning them on affects the physics
of the setup in Sec. III D.

B. One-loop RG equations and flow

The advantage of mapping H onto the Kondo Hamiltonian
is the exploitation of the rich nomenclature and the extensive
knowledge of this model. Specifically, the perturbative renor-

malization group analysis of the Hamiltonian provides already
a significant insight into the properties of the setup.

The exchange couplings Jα,β constitute a tensor, where the
first index signifies a component of a vector in the spin space
of the quasiparticles γk,σ while the second index is a part
of a vector in the spin space of the impurity spin. For this
section, it will be convenient to write this tensor as composed
of three vectors in the spin-impurity space Jβ=x,y,z. Each of
this vectors is Jβ = ∑

α Jα,β x̂α with x̂α being a unit vector
in the α direction of the impurity spin. In this notation, Jβ

couples to the β component of the quasiparticle spin density
σβ (0).

We carry out a poor man’s scaling calculation on this setup,
in the weak-coupling limit where |Jα| � 
. We relegate the
details of the calculation to the Appendix and present and
discuss here its results. The RG flow equations close to the
local-moment fixed point are given by the general expression

dJα

dλ
= π2ρ0εαβγ Jβ × Jγ , (25)

where λ = ln(D/D′) is the logarithm of the running cutoff D′.
A detailed analysis of these equations can be found in the

Appendix of Ref. [60]. We only present and discuss its main
finding here. There are six conserved quantities under this set
of equations aα,β = Jα · Jβ = |Jα||Jβ | cos(θα,β ) and bα,β =
|Jα|2 − |Jβ |2 for α �= β.

For the convenience of the discussion, let us focus now
on ax,y and bx,y. If ax,y = 0 and bx,y = 0 then the coupling
is isotropic with Jx ⊥ Jy and |Jx| = |Jy|, and the U (1) sym-
metry is maintained. On the other hand, if axy and bxy are
nonzero, then U (1) symmetry is broken. However, at the
strong-coupling fixed point |Jx|, |Jy| → ∞, from which we
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can derive

Jx · Jy

|Jx||Jy| = ax,y

|Jx||Jy| → 0,

|Jx|2 − |Jy|2
|Jx|2 + |Jy|2 = bx,y

|Jx|2 + |Jy|2 → 0. (26)

The implication of these limits is that as the magnitudes of
|Jx| and |Jy| increase during the RG flow, they flow toward
being perpendicular and similar in magnitude. This process
describes a dynamical restoration of the U (1) symmetry, and
the strong-coupling fixed point is isotropic.

We note that not all initial couplings will flow to the strong-
coupling fixed point, as it is well known that the ferromagnetic
Kondo model, with Jx = J⊥x̂, Jy = J⊥ŷ and Jz = Jzẑ where
Jz < −|J⊥| < 0, flows to a fixed point where Jx,y → 0. In this
case as well, ax,y and bx,y are zero throughout the entire RG
flow, and U (1) symmetry is maintained.

As shown in Ref. [60], the backscattering rate is related to
the anisotropy and measured by the scale

JB =
[

(|Jx|2 − |Jy|2)2 + 4(Jx · Jy)2

J2
x + J2

y

]1/2

. (27)

Note that the Jz term cannot contribute to the backscattering,
since it cannot break the U (1) symmetry. Furthermore, if
Jx ⊥ Jy and both vectors are of the same length, JB = 0.
This defines the line of U (1)-symmetric points on which the
backscattering current vanishes. The numerator of JB is con-
stant under the perturbative RG flow, as it is composed of the
conserved ax,y and bx,y, while the denominator increases under

the flow toward the strong-coupling fixed point. As the low-
energy strong-coupling fixed point is isotropic and restores
the U (1) symmetry dynamically, we expect the backscattering
to vanish when the system reaches that strong-coupling fixed
point that is beyond the scope of the perturbative RG analysis.

The formation of the Kondo singlet characterized by the
U (1) symmetry is associated with an energy scale TK . In
the low-temperature and small-bias voltage limit |eV |, T �
TK , the perfect conductance of the edge will be restored as
the backscattering current asymptotically vanishes for T → 0
and eV → 0. As either the temperature or the bias voltage
increases above TK , the RG flow is stopped before the singlet
is formed, and the backscattering current may retain a finite
value for an initially U (1)-symmetry-breaking HD.

C. Exactly solvable point

If only one component of the exchange coupling Jα is
nonzero, the interacting problem can be solved exactly. In this
case, the projection of S parallel to Jα is a good quantum
number and can be diagonalized together with the Hamilto-
nian. One implication of only one of Jα being nonzero is the
absence of any RG flow dJα/dλ = 0.

As we are interested in exchange coupling that breaks the
U (1) symmetry we discuss here the setup where only the
component Jxx is nonzero. As Sx is a good quantum number,
we can diagonalize the Hamiltonian separately for Sx = ±1.
In each sector, the interaction term generates backscattering,
where the two sectors are related by time-reversal symmetry.

The fully dressed Green’s function matrices for the d
orbitals are given by

Gr/a
d (ω) = 1

(ω ± i
)2 − J2
xx

[
ω ± i
 JxxSx

JxxSx ω ± i


]
,

G<
d (ω) = 2
∣∣(ω ± i
)2 − J2

xx

∣∣2

[
(ω2 + 
2) f+ + J2

xx f− JxxSx(ω + i
) f+ + JxxSx(ω − i
) f−
JxxSx(ω − i
) f+ + JxxSx(ω + i
) f− (ω2 + 
2) f− + J2

xx f+

]
, (28)

with the shorthand f± = f (ω − μ±).
Plugging these expressions into the formula for the current

of Eq. (9) and adding the contribution I0 as stated in Eq. (5),
the full current reads

I (eV ) = G0V − 4
G0

e
J2

xx

2
∫

( f+ − f−)dω∣∣(ω + i
)2 − J2
xx

∣∣2 . (29)

At zero temperature the differential conductance approaches

1

G0

dI

dV
= 1 −

[
2J2

xx

2∣∣( eV

2 − i

)2 − J2

xx

∣∣2 + 2J2
xx


2∣∣( eV
2 + i


)2 − J2
xx

∣∣2

]
.

(30)

We note that this is a time-reversal-symmetric setup of the
Hamiltonian, where even at zero temperature the zero-bias
conductance is not unity and decreases to zero at the point
where |Jxx| = 
. This further illustrates our claim that it is
the U (1) symmetry, and not the time-reversal symmetry, that
protects the perfect conductance.

D. Nonzero εd and U

In this section we discuss qualitatively how the previous
results are altered when εd and U are turned on. The two
terms have a significantly different effect. The εd term does
not affect the results substantially, as it adds a local potential
scattering which is marginal in the RG flow, and as long as
εd � D, D being the bandwidth, the Kondo singlet will still
form as before. At the exactly solvable point discussed above,
the addition of εd (for U = 0) is directly incorporated into the
Green’s functions and the result in that limit is

I (eV ) = G0V − 4
G0

e
J2

xx

2
∫

( f+ − f−)dω∣∣(ω − εd + i
)2 − J2
xx

∣∣2 .

(31)

On the other hand, a finite U requires a more delicate
discussion. We will separate it into two distinct cases: one
without exchange interactions Jα,β = 0 and one where the
coupling to the impurity spin is turned on.
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1. The Jα,β = 0, U �= 0 case

Let us first consider the case where the exchange coupling
is turned off Jα,β = 0 but with finite positive U > 0. The
right and left movers have no way to exchange particles,
and N̂± + d†

±d± are conserved quantities. The backscattered
current is therefore zero regardless of the nonequilibrium
conditions. Nevertheless, the physics of this setup are worth
discussing.

This is the single-impurity Anderson model (SIAM), and
for U > 0 we know that a Kondo peak is created in the density
of states of the d orbitals below the Kondo temperature T d

K and
at zero bias if the local orbital occupancy is maintained near
integer valence of 1: the localized level forms a singlet with
the conductance electrons. Note that this scale T d

K differs from
the Kondo scale generated by a finite Jα,β .

At finite bias the system is equivalent to a system in
equilibrium with a local magnetic field applied to the localized
levels as pointed out in Sec. II C. Note that this is a very
subtle point: H has complex strongly correlated many-body
eigenstates and the many-body scattering states 
kσ contain
mixtures of right-moving and left-moving edge states. How-
ever, the conservation of left and right movers prevents mixing
of spin excitations and the nonequilibrium Y operator main-
tains the form of a Zeeman term, as [Sz,H] = 0 still holds.
Time-reversal symmetry is maintained by the Hamiltonian
and only broken by the externally applied bias that enters in
the Y operator and drives the edge current I .

2. Finite U and weak Jα,β

We also briefly consider the case where both U > 0 and
Jα,β are finite. Starting from Jα,β = 0 and εd + U > 0, the
Hamiltonian approaches the strong-coupling fixed point [53]
below T d

K . This fixed point describes a local Fermi liquid that
can be treated as a free electron gas for |ω| < T d

K in leading
order. Switching on an antiferromagnetic Jα,β leads to another
Kondo effect [59] involving the screening of the local spin
below the temperature T s

K that is exponentially dependent on
the Jα,β [61]. This picture remains valid for T s

K � T d
K and

generates a pseudogap in the full renormalized orbital spectral
function ρd (ω).

We derive an expression for the backscattered current by
treating J perturbatively and then follow a similar approach
to the one taken above for the exactly solvable point. Since
a U (1)-symmetric Jα,β leads to vanishing IB we restrict our-
selves to a finite Jxx term and set all other Jα,β = 0. In leading
order in Jxx, backscattering happens between the two local
Fermi liquids. The backscattered current will therefore be

IB ∼ G0

e
J2

xx

∫
ρ+(ω)ρ−(ω)( f+ − f−)dω, (32)

where ρ±(ω) is the renormalized density of states of d±,
including the effects of t, εd as well as U . We wrote Jxx for
connection with the formula in Eq. (31), but one has to sum
over all terms Jα,β that allow backscattering.

Let us assume that we have finite U and J and two Kondo
scales T d

K and T s
K . If J is large then the local spin and the d

orbital will form a singlet and decouple from the edge. For
small J , the argumentation above holds and the d orbital will
get screened at first and then screen the local spin in turn. This

leaves us with two distinctly different ground states for small
and large J . The parameter space of weak and strong Jα,β

and a finite U are adiabatically connected: Since there is no
quantum phase transition in the parameter space we leave the
analysis of the full parameter space where both Jα,β and U are
finite and comparable to a later study. Here, we are interested
on the fundamental mechanism generating a backscattered
current IB in a time-reversal-symmetric Hamiltonian. From
now on we mostly discuss the case where U = 0, which
will allow us to focus on the role of the exchange-coupling
anisotropy. In this case, the Kondo temperature T d

K is maximal
and replaced by 
. Therefore we always choose the parame-
ters for the numerical simulation such that T s

K < 
.

IV. NUMERICAL ANALYSIS

A. Time-dependent numerical renormalization group
and Green’s functions

The backscattering current Eq. (9) requires calculation
of the nonequilibrium retarded and lesser Green’s functions.
Since we are interested in the low-temperature behavior for
arbitrary interaction strength Jαβ as well as a wide range of
bias voltages, we opt for the TD-NRG [62,63], which has been
used successfully to calculate steady-state Green’s functions
in the context of transport through single-orbital quantum dots
before [64,65]. It also allows us to access the low-energy fixed
point in equilibrium of the model introduced in Sec. III and,
therefore, test the predictions of the analytical perturbative RG
approach outlined above.

The NRG was originally developed by Wilson [61] to solve
the single-channel Kondo problem but has been extended
to various problems describing magnetic impurities coupled
to a host’s conduction bands in the meantime. The general
Hamiltonian, as discussed in Sec. II, can be partitioned into
three parts,

H = HD + He + Ht , (33)

where HD and He contain impurity or edge degrees of free-
dom only. The impurity part may comprise local many-body
interactions of arbitrary strength. The edge states, however,
are taken to be noninteracting and play the role of the quasi-
continuous band in the conventional NRG. The third term Ht

describes a hybridization between the localized impurity and
the edge states. In the NRG scheme, one proceeds by parti-
tioning the hybridization function 
(ω) into logarithmically
shrinking intervals around the chemical potential with the
help of the dimensionless discretization parameter � > 1. The
edge degrees of freedom are rewritten as linear combinations
of operators for each such interval. Only modes that couple
directly to the impurity are retained at this point. The system
is further transformed by a tridiagonalization algorithm and
mapped onto a semi-infinite tight-binding chain, the so-called
Wilson chain, where the first chain link is equivalent to HD.
The system is now solved in an iterative fashion where one
diagonalizes the Hamiltonian for a given chain length, calcu-
lates expectation values of interest, and proceeds by adding
the next chain link. The tight-binding hopping parameters of
such a chain fall off exponentially as one traverses the chain
which is a direct result of the logarithmic discretization of the
hybridization function. Due to the exponentially decreasing

165112-8



ANALYTICAL AND NUMERICAL STUDY OF THE … PHYSICAL REVIEW B 101, 165112 (2020)

hopping elements, the Hamiltonian of a given iteration can be
linked to a likewise decreasing temperature scale [53,61]. The
iterative scheme is terminated at some finite chain length N
that determines the target temperature TN ∼ �−N/2.

Only the Ns states with the smallest eigenvalues are kept
each iteration and coupled to the next chain link in order to
tackle the otherwise exponentially growing Fock space. Fur-
thermore, we employ Oliveira’s z averaging [66] to suppress
discretization artifacts and improve numerical precision.

In the TD-NRG [62,63], we regard the system to be in
thermal equilibrium for t < 0, at which point an additional
interaction term �H is turned on. Thus, the Hamiltonian
undergoes an abrupt change (or quench):

Hi → H f (t > 0) = Hi + �H. (34)

As a result, the density operator for t > 0 evolves in time with
respect to the final Hamiltonian H f :

ρ(t > 0) = e−iH f tρ0eiH f t . (35)

The equilibrium NRG scheme described above needs a further
refinement since nonequilibrium calculations involve contri-
butions from all energy scales intermingled together. One can
show [62,63] that a set of all discarded states forms a complete
basis for a Wilson chain of length N . Conceptually, one first
carries out two separate equilibrium NRG calculations for Hi

and H f , respectively. The eigenbasis of the final Hamiltonian
is needed for the time evolution of any operator O(t ) while
the reduced density matrix is constructed in the eigenbasis
of the initial Hamiltonian. The overlap matrix Sm allows for
rotation between both bases at given iteration m and connects
both NRG runs.

The approach outlined above can be straightforwardly
extended for equilibrium spectral functions in their Lehmann
representation [67,68]. The TD-NRG and the sum-rule con-
serving scheme for the spectral functions were combined in
Ref. [69] to evaluate non-equilibrium Green’s functions for
times t, t ′. Note that both the equilibrium and the nonequi-
librium calculations can be extended readily to lesser and
greater Green’s functions [68,69]. The spectral δ functions of
the Lehmann representation are broadened by a logarithmic
Gaussian as defined in Eq. (74) of Ref. [53], where we used
the broadening parameter b = 0.8 throughout the paper.

Evaluation of the backscattering current Eq. (9) poses a
number of challenges from a technical point of view. The first
is the calculations of the nonequilibrium Green’s functions
themselves according to the TD-NRG procedure. Second, we
are not able to employ the improvement of the NRG Green’s
function via an equation of motion [70] since it is not readily
applicable for nonequilibrium lesser Green’s functions. Third,
we need to calculate a difference between the retarded spectral
function and lesser Green’s function, that may well be very
small, before integrating numerically over the whole real axis.
Finally, we are interested in the linear conductance G = IB/V
which limits our precision further and keeps us effectively
from using arbitrary small-bias voltages since the already
small current IB cannot be distinguished from numerical noise
in the limit V → 0.

In the following we choose a discretization parameter � =
2, a half-bandwidth D/
 = 100, and z averaging of z = 4 for

all our calculations. If not stated otherwise, we use a Wilson
chain of length N = 45 which results in a target temperature
T/
 ≈ 1.79 × 10−5. This choice of parameters guarantees
that the temperature T for our calculations is well below the
equilibrium Kondo temperature T eq

K as we will discuss in the
next section.

B. Equilibrium and effective equilibrium

We start by addressing the setup in equilibrium. While we
are mostly interested in the case where U = 0 and Jα,β �=
0, it is instructive to first consider the opposite case where
U is finite and Jα,β are turned off. Under these conditions,
the additional spin completely decouples from the subsystem
comprising the local d orbital and the edges, and the system is
equivalent to an equilibrium single-impurity Anderson model
(SIAM).

We performed two independent NRG calculations: a con-
ventional equilibrium NRG calculation of a SIAM in a finite
magnetic field, and a full scattering state TD-NRG calculation
where the bias enters through the Y operator in the density
operator but the dynamics is governed by the Hamiltonian
only [69]. Remarkably, as discussed above, the system re-
mains in effective equilibrium even when a finite-bias volt-
age is applied, as the two spin flavors are only capacitively
connected. When a bias voltage eV is applied, the system
behaves as under the influence of a magnetic field B where the
chemical potential difference takes on the role of the Zeeman
energy. Here, the Kondo peak resides at ±B for spin up and
spin down, thus accounting for a splitting of �E = geffB
while the Kondo peak forms around the respective chemical
potential in the helical model. As a result, the spectral density
of the equilibrium SIAM calculation ρr,SIAM

σ shows a peak
at double the chemical potential of the opposite spin on an
absolute scale [Fig. 2(a)]. Perfect agreement can be realized
by a symmetric shift of ±eV/2.

We are ultimately interested in the backscattered current
driven by finite exchange coupling to the local spin. In order to
examine the role of the anisotropy, we turn on a finite Jα,β and
set U = 0. The finite-U regime is adiabatically connected but
results in a much lower characteristic energy scale. In equi-
librium eV = 0, this setup is also characterized by a Kondo
screening, which is different from the Kondo screening for the
SIAM setup (finite U and zero exchange coupling) discussed
before. The Kondo temperature associated with this exchange
coupling can be found numerically by employing Wilson’s
definition using the temperature-dependent magnetic suscep-
tibility via 4T eq

K χspin(T eq
K ) = 0.413 [53,61]. Here, χspin(T ) is

calculated by applying an infinitesimally small local magnetic
field and measuring the polarization of the localized spin (not
the spin of the d electron) in the absence of a bias voltage
eV = 0 [Fig. 2(b)]. In the following, we will refer to the
equilibrium Kondo temperature calculated in this way as T eq

K
to emphasize that it stems from an equilibrium calculation.
To simplify the discussion, we restrict ourselves to exchange
couplings that contain only diagonal terms Jα,α . We note that
it is sufficient to tune the ratio Jxx/Jyy to break U (1) symmetry
and generate a backscattered current, as discussed above
(Sec. II C). This has the added benefit of eliminating complex
terms from the local Hamiltonian, simplifying the numerical
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FIG. 2. (a) ρr,SIAM
σ (red solid line) for finite magnetic field B/
 =

0.5 compared to ρr,helical
σ (blue dashed line) calculated for bias voltage

eV/
 = 0.5 and Jαβ = 0. The results for the helical model are shifted
by an additional ±eV/2. For both models εd/
 = −5 and U/
 = 10.
(b) Local spin susceptibility χspin for helical model in equilibrium
eV = 0, εd/
 = −0.5,U = 0, and Jxx = Jyy = 
. (c) Equilibrium
Kondo temperature calculated from the local spin susceptibility as
a function of Jyy for Jxx = Jzz = 
 and U = εd = 0.

calculations. We also take advantage of the fact that Jzz does
not affect the U (1) symmetry, and we can set it at will. For the
U (1)-symmetric point where Jxx = Jyy = Jzz = 
, we get an
equilibrium Kondo temperature T eq

K /
 ≈ 0.025 [Fig. 2(c)].

C. Finite-backscattered current for eV > T eq
K � T

We start at the symmetrical point Jxx = Jyy = 
 and turn
on a gate voltage eV on the edge. Below, we quantify the
deviation from the U (1)-symmetric point by �Jyy = Jyy − 


and retain the other two exchange parameters at fixed values
Jxx = Jzz = 
. The problem thus becomes a full nonequilib-
rium one. Both the lesser Green’s function (GF) G<

σ and the
spectral function ρr

σ times Fermi function fall off at the chem-
ical potential for the respective spin σ . In the symmetrical
case, the system can be mapped to an effective equilibrium
problem and the lesser GF is equal to the retarded spectral
function times the Fermi function and appropriate constant
factor as a direct consequence of the fluctuation-dissipation
relation [Figs. 3(a) and 3(b)]. We break the U (1) symmetry
by performing a quench in the value of �Jyy. In the asym-
metrical case and for eV > T eq

K , the nonequilibrium lesser
GF and retarded spectral density start to differ [Figs. 3(c)
and 3(d)], which consequently drives a backscattering current.
The NRG GF broadening induces small finite-size oscillations
[53] in the spectral functions at the chemical potentials and the
numerical integration. This effectively limits our precision for
the backscattered conductance calculated by the integral over
the difference between both GFs.

The conductance can be partitioned into two regimes:
(i) eV < T eq

K and (ii) eV > T eq
K , which are connected by a

crossover regime. In both cases we consider the temperature
being the smallest energy scale, i.e., T � T eq

K , eV . For bias
voltages that are lower than T eq

K , the system crosses over to

FIG. 3. G<
σ (ω) (solid blue curves) and 2ρr

σ (ω) f (ω − μσ )
(dashed green curves) for (i) the symmetrical point Jyy/
 = 1 for
spin (a) up and (b) down and (ii) for the broken U (1) symmetry,
Jyy/
 = 0.7, for spin (c) up and (d) down. G<

σ and ρr
σ for consecutive

bias voltages eV are shifted by a constant offset a = 0.25 for better
visibility. The legend applies to all subplots.

a regime in which the impurity spin is screened and U (1)
symmetry is dynamically restored. As a consequence, the
backscattered current vanishes even when the initial param-
eters break the U (1) symmetry, implying that the total edge
has a perfect zero-bias differential conductance.

For a setup with broken U (1) symmetry, the equilibrium
RG flow equations (25) are cutoff by eV > T eq

K [71,72],
therefore preventing the system from approaching the strong-
coupling fixed point and restoring the perfect edge. In the
symmetric case, �Jyy = 0, the fluctuation-dissipation theorem
holds perfectly for each spin sector individually, and the
conductance vanishes regardless of eV .

Numerically we find small negative values for IB in the
eV < T eq

K regime for broken symmetry that we trace back to
three sources of errors. First, the error increases with increas-
ing quench �Jyy as a consequence of the discrete representa-
tion of the continuum problem by the Wilson chain [63,73,74].
Second, the smaller the eV , the smaller the difference between
GFs that will be indicated in Fig. 3. Therefore, the relative
error due to subtraction and integration increases. Third, the
linear conductance is proportional to V −1, requiring a high
numerical precision of the integral determining IB for small
eV in Eq. (9). A voltage of order eV/
 ∼ 10−3 demands a
precision of the backscattering current of at least four relevant
digits. Here, not only the scattering state NRG but also the
discretization of the spectral function on a finite frequency
grid generate a small error in the numerical integration.
We find that the smallest voltage for which we could still
get results that are not overshadowed by numerical noise is
eV/
 ≈ 0.005.

When we start in the large-eV regime and decrease the
voltage, the finite G for broken symmetry is also reduced
until the system reaches the small-eV regime. In the crossover
regime, we extracted the parameter of a fitting function

G/JB = aslope ln
(
eV/T eq

K

) + b (36)
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FIG. 4. (a) Linear conductivity G = IB/V as a function of voltage
eV/T eq

K for different couplings Jyy. IB = 0 for the U (1)-symmetric
case Jyy = 
. The vertical black dashed line indicates eV = T eq

K . The
other dashed lines represent the fits to Eq. (36). (b) Backscattering
current IB as a function of eV/T eq

K . (c) Slopes aslope for the different
fits in subplot (a). The error bars stem from the numerical fitting
process. The values for T eq

K are shown in Fig. 2(c). In all cases
Jxx = Jzz = 
.

to the data shown in Fig. 4(a). The function is added as dashed
lines in the same color to the plot. We find that the slope aslope

depicted in Fig. 4(c) is nearly independent of the coupling
constant Jyy.

D. Finite-backscattered current for T > T eq
K

As in the previous section, we retain the parameters of
a diagonal matrix Jαβ with Jxx = Jzz = 
 and use Jyy as a
tuning parameter. The cutoff of the RG flow equations does
not necessarily have to come from high-bias voltage but can
be due to finite temperature as well. For the regime eV <

T eq
K < T , we expect that a setup with a broken U (1) symmetry

will not have its edge reconstructed and a finite backscattering
will be observed. We choose a fixed voltage eV/
 = 0.01
and calculate G as a function of T for various couplings
Jyy in the symmetry-broken regime. Our particular choice
partitions our results into two groups: for Jyy/
 � 0.7, we
find T eq

K > eV , while the voltage is the largest energy scale
for Jyy/
 � 0.3. For Jyy/
 = 0.5, the Kondo temperature and
voltage are almost equal and the system is located in the
crossover regime.

In the first case, the low-temperature conductance shows
a universal behavior for T < T eq

K approaching asymptotically
zero [Fig. 5(a)], as discussed in the previous section. If eV
is the largest energy scale, then the conductance converges
toward a finite value for T → 0. This asymptotic value in-
creases monotonically with the ratio eV/T eq

K [see Fig. 5(a),
cyan and magenta curves], i.e., the earlier the perturbative RG
flow equations are cut off by eV .

The low-temperature behavior of G is converged and, in
the case of eV < T eq

K , is expected to follow a power law. We
use a fit of the form

T eq
K G(T ) = b

(
T/T eq

K

)α + c (37)

FIG. 5. (a) Linear conductivity G as a function of temperature
T/T eq

K for a fixed eV/
 = 0.01 and different couplings Jyy. The
black dashed line indicates T eq

K . Below T/T eq
K = 1 the conductance

G → 0 when eV < T eq
K (yellow, green curves). The lines are a guide

to the eye. (b) Power-law fit [Eq. (37)] to the data points (crosses)
of (a) for T/T eq

K < 1. (c) Exponent α of the power-law fit: α → 2
(Fermi liquid) for eV < T eq

K . The error bars stem from the numerical
fitting process.

and determine the exponent α = 2 from the data presented
in Fig. 5(b) as depicted on the right side of Fig. 5(c).
An exponent of α = 2 is associated with single-particle
backscattering, but as noted in previous studies [36,43] the
nature of the low-energy fixed-point Hamiltonian [75] is
strongly restricted by symmetry considerations, and cannot
contain a single-particle backscattering term as such a term
will break time-reversal symmetry. While maintaining time-
reversal symmetry, the leading possible perturbation is a two-
particle backscattering term which should have a power law
corresponding to α = 4. However, by applying finite voltage
we, and any experimental setup, explicitly break time-reversal
symmetry, and we understand the strong α = 2 exponent to be
a signature of nonequilibrium physics, with G ∝ (eV T )2/T 4

K .
This suggests that for finite voltages the anisotropy might
be the most dominant cause for the deviation from perfect
conductance of the edge that was observed in experiments
[5–24].

The offset c in Eq. (37) is numerically zero in the regime
where eV < T eq

K . In the case in which eV is the relevant low-
energy scale, it attains a nonzero value c = c(eV/T eq

K ), which
is not constant and increases with eV .

E. Dynamical restoration of the U (1) symmetry and the
breakdown of backscattering current

Now we focus on the behavior of the conductance in the
limit T → 0 and finite eV as we break the U (1) symmetry
by a finite detuning �Jyy = 
 − Jyy and holding all other pa-
rameters fixed. The conductance vanishes at the symmetrical
point �Jyy = 0 (Jyy/
 = 1) regardless of eV . The symmetric
point is asymptotically restored by the Kondo effect in the
limit T → 0. Note that the corresponding Kondo tempera-
ture T eq

K = T eq
K (Jyy) depends on the exchange coupling for
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FIG. 6. Low-temperature G = IB/V as a function of �Jyy for
different bias voltages eV and T → 0. The upper subplot shows the
corresponding equilibrium Kondo temperatures T eq

K (�Jyy ).

otherwise fixed parameters. We calculate the conductance G
as a function of �Jyy for a fixed bias voltage eV in the limit
T → 0 and plot the curve for different eV in Fig. 6. If U (1)
symmetry is broken, the conductance depends on the ratio
eV/T eq

K as discussed above.
When T eq

K replaces eV as the largest low-energy scale, the
strong-coupling fixed point is approached and backscatter-
ing is suppressed, explaining the vanishing conductance for
Jyy
 < 1 in Fig. 6. When T eq

K ≈ eV , a backscattering current
is found as shown for large negative �Jyy.

For Jyy/
 > 1, T eq
K is generally the largest energy scale

except for eV/
 = 0.5 (magenta curve) which still shows
a significant backscattering conductance. The conductance
is smaller than for Jyy/
 < 1 due to the higher T eq

K as the
renormalization process is cut off later and the system moves
closer to a strong-coupling fixed point. We find a finite con-
ductance for large Jyy and eV/
 < 0.01 albeit eV < T eq

K . We
again attribute this residual G to numerical inaccuracies in the
calculation of the current via Eq. (9). The calculation of this
residual G requires an accuracy of 5 digits at eV/
 < 0.01
which is beyond our numerical precision. We conclude that
G → 0 for eV/
 < 0.01. We believe that once eV exceeds
0.1
 and eV of O(T eq

K ), the backscattering current emerges
from the numerical noise in the regime �Jyy > 0.

In short, we found a vanishing backscattering current at
the symmetry point. The renormalization process is cut off for
eV > T eq

K , and a finite IB remains for broken U (1) symmetry.

V. SUMMARY AND DISCUSSION

In this paper we studied and analyzed the conductance of
helical edge modes when coupled to a magnetic impurity,
combining analytical and numerical methods. We derived
a general expression for the nonequilibrium dc current in
Eq. (9) by coupling the helical edge electrons to localized
levels. The current is independent of the specific details of the
interactions of the local levels, which are encoded implicitly
in the Green’s functions for the localized levels. An analysis

of the expression for the current using time-dependent gauge
transformations as well as Hershfield’s formalism revealed
the role of a global U (1) symmetry in protecting the perfect
conductance of the helical modes. If the U (1) symmetry is
retained, then the edge manifests a perfect conductance even
if time-reversal symmetry is broken. This conclusion was
further corroborated by considering a specific exactly solvable
interacting setup that maintains time-reversal symmetry but
breaks U (1) symmetry. We demonstrated in Eq. (31) that
the conductance is not perfect even at zero temperature and
zero bias. Similarly, the case where U (1) symmetry was
preserved but time-reversal symmetry broken was mapped
onto an equilibrium setup with perfect conduction.

We then focused on an interaction Hamiltonian consisting
of an exchange coupling between the levels and a localized
impurity spin, defined by the coupling tensor Jα,β which al-
lows for anisotropies that break the U (1) symmetry. The one-
loop RG flow equations of the exchange coupling, given in
Eq. (25), showed that in general there is a dynamical process
in which the U (1) symmetry is restored. The equations flow
to the strong-coupling fixed point, even when starting with
symmetry-broken initial conditions. At low temperatures and
low-bias voltages the steady-state conductance approaches its
quantized backscattering free value in the general case. This
is a crossover transition, characterized by a scale TK , below
which the edge electrons tend to screen the impurity spin and
form a Kondo singlet, isotropic by its nature.

However, the RG flow process in which the system crosses
over to the low-energy isotropic regime can be cut off before
the system reaches the strong-coupling fixed point, either
by the temperature or by the finite-bias voltage. This leaves
the impurity spin only partially screened and the system
accumulates a finite correction to the quantized conductance.
We studied the interplay between the anisotropy, temperature,
and bias voltage in the strongly correlated regime numerically
by employing the TD-NRG method. For U (1)-symmetry-
broken systems, with anisotropic exchange couplings, we
found that if the temperature or bias voltage is larger than
the Kondo scale, then there is a finite-backscattering current,
as the impurity is only fractionally screened. We tracked the
crossover from the weak-coupling free-moment regime to the
strong-coupling screened regime, characterized by a restored
isotropic exchange and vanishing backscattered current. The
perfect conductance of the edge is restored.

The challenging numerical analysis corroborates the ana-
lytical understanding of the role played by the global U (1)
symmetry in maintaining the conduction along the edge.
Furthermore, it allowed us to extract the way in which the
backscattering vanishes, and the perfect edge conductance is
restored as we reduce the bias voltage (holding T � TK ) or re-
duce the temperature (holding eV < TK ). In the first case, the
backscattering vanished logarithmically while eV > TK , as it
served as the effective cutoff for the RG process. In the latter
case, when the temperature was reduced, the conductance
followed a power law G ∼ (T/TK )α with an exponent of α =
2, which is characteristic of a Fermi liquid fixed point. While
such an exponent cannot characterize the linear conductance,
as it requires a time-reversal-symmetry-breaking term in the
low-energy fixed-point Hamiltonian, we understand it to be
a feature of the nonequilibrium finite-bias condition that
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explicitly breaks this symmetry. We expect the term to scale
with (eV T )2/T 4

K , and intend to explore this further in future
studies. The α = 2 result suggests that the anisotropy might
serve as a dominant cause for the experimental observation of
nonperfect conductance in these setups.

ACKNOWLEDGMENTS

The authors would like to thank D. Litinski, A. Bruch, E.
Sela, M. Goldstein, C. Karrasch, B. Sbierski, F. von Oppen,
and P. W. Brouwer for useful and enlightening discussions.
Y.V.-A. acknowledges funding from Deutsche Forschungsge-
meinschaft (Project No. C02 of CRC1283 and Project No.
A01 of CRC/TR183). F.B.A. and D.M. acknowledge support
from the Deutsche Forschungsgemeinschaft via Project No.
AN-275/8-1.

APPENDIX: POOR MAN’S SCALING

Here, we analyze the low-energy scaling behavior of the
Hamiltonian of Eqs. (21) and (23), for εd = U = 0 and S =
1/2. To this end, we employ Anderson’s poor man’s scaling.

The model describes free fermions that couple to the
impurity spin degrees of freedom with an effective Lorentzian
density of states ρ(ε) = ρ0/[1 + (ε/
)2]. Around the weak-
coupling point and for simplicity, we can replace the Lorenti-
zan density of states with a hard-cutoff density of states with
width 2
 and ρ
 = πρ0/2, and ignore all the states that are
outside this box. The width of the level 
 will now serve as the
new high-energy cutoff. This can be thought of as a first step
in a RG process where states which have small overlap with
the impurity are being integrated out. While we know that for
U �= 0 the width 
 itself is a dynamic quantity that undergoes
renormalization, we are working in the limit where U = 0 and
are interested in the flow of the exchange coupling; therefore
we can safely omit these high-energy modes.

The next step is to rescale the Hamiltonian and the field
operators with the effective bandwidth D ≡ 
,

H
D

=
∑

σ

∫ 1

−1
dx xϕ†

σ (x)ϕ(x)

+
∑

α,β,λ,λ′
J ′
α,β

∫ 1

−1
dx1dx2ϕ

†
λ (x1)ϕλ′ (x2)σα

λ,λ′Sβ, (A1)

where J ′
α,β = Jα,β/vF , and we have defined the dimensionless

field operators

ϕσ (x) =
√

Dψσ (xD), (A2)

with ψσ (ε) the on-shell energy-field operator,

ψσ (ε) =
√

D

2

∑
k

γσ,kδ(ε − σεk ). (A3)

The next step is to divide the energy band into low-energy
|x| < 1 − dl and high-energy 1 − dl < |x| � 1 modes, and
integrate out the fast energy modes by perturbation theory.

The leading order then gives

Veff = −
∑

{λi},{αi},{βi}
Jα1,β2 Jα2,β2σ

α1
λ1,λ2

σ
α2
λ3,λ4

Sβ1 Sβ2

×
∫ 1−dl

−1+dl
dx1,<dx2,<ϕ

†
λ1

(x1,<)ϕλ4 (x2,<)

×
∫ 1

1−dl
dx1,>dx2,>

〈
ϕλ2 (x>)ϕ†

λ3
(x>)

〉
(A4)

and its corresponding contributions from the modes in
(−1,−1 + dl ). We employ the identity

(A · S)(B · S) = i(A × B) · S + A · B (A5)

to carry out the multiplications and arrive at

Veff = 2dl
∑

{αi},{βi},λ1λ2

εα1,α2,α3εβ1,β2,β3

× J ′
α1,β1 J ′

α2,β2σ
α3
λ1,λ2

Sβ3

×
∫ 1−dl

−1+dl
dx1,<dx2,<ϕ

†
λ1

(x1,<)ϕλ1 (x2,<), (A6)

where we have omitted constant terms and terms contributing
to a scattering potential, which are irrelevant. The above
expression can be written in a more concise form if we write
the exchange couplings as vectors in the impurity spin basis,
J′

α = ∑
β J ′

α,β β̂. We then write the effective Hamiltonian

H′

D
=

∑
σ

∫ 1−dl

−1+dl
dx xϕ†

σ (x)ϕ(x)

+
∑

{αi},λ,λ′

[
J′

α1
+ 2dlεα1,α2,α3

(
J′

α2
× J′

α3

)] · S

×
∫ 1−dl

−1+dl
dx1dx2ϕ

†
λ (x1)ϕλ′ (x2)σα1

λ,λ′ . (A7)

Finally, we rescale by dx → (1 − dl )1/2dx, and write H′
in terms of D′ = (1 − dl )D, to have

H′

D′ =
∑

σ

∫ 1

−1
dx xϕ†

σ (x)ϕ(x)

+
∑

{αi},λ,λ′

[
J′

α1
+ 2dlεα1,α2,α3

(
J′

α2
× J′

α3

)] · S

×
∫ 1

−1
dx1dx2ϕ

†
λ (x1)ϕλ′ (x2)σα1

λ,λ′ . (A8)

We therefore arrive at the following renormalization group
flow equation,

dJi

dl
= 2πρ


∑
j,k

εi, j,kJ j × Jk, (A9)

with the dimensions restored, and we take the relation ρ =
(2πvF )−1 for a flat band. A detailed analysis of this RG
equation can be found in the Appendix of Ref. [60].
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