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Dynamical resilience to disorder: The dilute Hubbard model on the Lieb lattice
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In itinerant systems, electron-electron interactions may lead to the formation of local magnetic moments
and their effective exchange coupling, which in turn gives rise to long-range magnetic order. Therefore, when
moment formation is weakened, such as in the single-band Hubbard model on a square lattice with the on-site
repulsion being randomly switched off on a fraction x of sites, magnetic order is suppressed beyond some critical
xc, which was found to lie below the classical percolation threshold x(perc,sq)

c . Here we study dilute magnetism
in flat band systems, namely, in the Hubbard model on a “Lieb” lattice. Interestingly, we show that magnetic
order persists to x almost twice as large as the classical percolation threshold for the lattice, thus emphasizing the
central role of electron itinerancy to the magnetic response. The analysis of the orbital-resolved order parameters
reveals that the contribution of the fourfold coordinated “d” sites to magnetism is dramatically affected by
dilution, while the localized “p” states of the flat band provide the dominant contribution to long-range
correlations. We also examine the transport properties, which suggest the existence of an insulator-to-metal
transition in the same range of the critical magnetic dilution.

DOI: 10.1103/PhysRevB.101.165109

I. INTRODUCTION

The study of magnetic systems with quenched random site
or bond dilution has raised fundamental issues over the years.
One question which was the subject of considerable scrutiny
was whether or not critical exponents are altered; the Harris
criterion suggests they remain at pure system values as long
as the specific heat exponent α > 0 [1]. Initial explorations
focused on classical spin models. For instance, Monte Carlo
simulations of the square lattice bond-diluted [2] and site-
diluted [3] Ising models verified “strong universality.” The
exponents were found to be the same as those of the pure
system (even though α = 0). Another issue of special ex-
perimental interest relates to dilute magnetic semiconductors,
since even a few percent of transition-metal atoms introduce
ferromagnetism, which might be harnessed to change device
functionality [4,5]. The possibility of magnetic order even
in the high-dilution limit emphasizes the crucial role of the
coupling of moments through the free carriers, an effect
not captured in Ising-like models of spins interacting purely
through local exchange coupling.

Indeed, in dilute magnetic insulators where there is no
long-range Ruderman-Kittel-Kasuya-Yosida [6–8] coupling
and interactions are only between neighboring sites, geo-
metrical aspects dominate the suppression of magnetic or-
der as the interactions between the localized spins are ran-
domly switched off. This can be achieved by either replacing
atoms possessing localized moments by nonmagnetic atoms
(the site-dilution problem) or removing atoms mediating
the superexchange interaction between localized spins (the

bond-dilution problem) [9,10]. In both cases, the underlying
lattice structure is fundamental, since only in the percolating
regime in which at least one path of connected sites spans
the whole lattice [11] can long-range magnetic order be estab-
lished. The ground-state magnetization decreases steadily and
vanishes at some critical concentration of sites (s) or bonds
(b), such that x(s)

c � x(b)
c [11], beyond which no long-range

order can be sustained [9,10].
For itinerant systems, however, the situation is quite dif-

ferent. Consider the repulsive Hubbard model in which the
on-site interaction U is switched off on a fraction x of sites.
Ulmke et al. [12] considered a square lattice at half-filling
and a ratio of on-site interaction to hopping integral U/t = 8.
Long-range antiferromagnetic (AF) order disappears at xc �
0.43 ± 0.07. The large uncertainty results from the challenges
in doing the finite-size and zero-temperature extrapolations.
Nevertheless, this strong coupling critical value is consistent
with the classical site-percolation threshold, x(perc,sq)

c = 0.41
[11]. On the other hand, at weaker coupling U/t = 4, devi-
ations from classical percolation have been found [13–16].
For the square lattice, xc is significantly less than the expected
percolation value [14,16,17].

The fact that, at coupling U/t = 4, the dilution threshold
for itinerant electrons is lower than the classical, geometry-
dependent, percolation value suggests that enhanced double
occupancy plays a role in weakening magnetic order before
the percolation threshold is reached. Interestingly, the recov-
ery of the percolation value at U/t ∼ 8 is consistent with the
fact that this is the crossover interaction strength to the regime
where the Hubbard model is well described by the Heisenberg
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FIG. 1. (a) The Lieb (or CuO2) lattice. The fourfold coordinated
d sites appear in lighter color (orange) and belong to one sublattice,
while the twofold coordinated p sites appear in darker color (blue)
and belong to the other sublattice. The dashed box corresponds to
the unit cell. Panels (b) and (c) respectively show the noninteracting
density of states on d and p sites.

Hamiltonian [20–22]. That is, charge fluctuations are strongly
suppressed and no longer play a role in the effects of dilution
in the eventual magnetic response.

In this paper we extend this understanding of dilution in
itinerant electron systems to the Hubbard model on the Lieb
lattice [23–31], also known as a decorated square lattice, or as
the “CuO2 lattice” [see Fig. 1(a)]. This geometry is realized
in the CuO2 sheets of high-Tc cuprates 1 and also has been
emulated in photonic and optical lattices [32–38], as well
as in atomic manipulation of electronic states in Cu(111)
surfaces [39]. The Lieb lattice geometry allows us to explore
diluted itinerant electron systems in an entirely new physical
context, one in which a flat band is present at half-filling (for
the noninteracting case), as displayed in Fig. 1(c), and for
which compact localized states are present even for strong
hopping disorder [40]. As a consequence of these features,
the electron dynamics on the Lieb lattice is quite different
from that on more conventional structures, leading to the pos-
sibility of alternate magnetic response when electron-electron
interactions are taken into account. Indeed, the fact that the
two sublattices have unequal numbers of sites already gives
rise to unique physics even in the absence of dilution: a ferri-
magnetic state at half-filling [41,42], with a large contribution
of the p band to this long-range ordered state [27]. Here we
investigate the robustness of this ferrimagnetic state in the
presence of site disorder. However, from the outset we stress
that due to limitations on the system sizes used for quantum
systems [43–45], in particular, to the itinerant electronic case,
numerical calculations can rarely provide critical exponents
with sufficient accuracy to settle issues related to the Harris
criterion. So, although we have discussed this issue to lend

1In this situation Ud on the copper orbitals is quite a bit larger than
Up on the oxygen orbitals.

broad perspective to our work, we do not attempt to address
this issue directly.

The layout of the paper is as follows. In Sec. II we present
details of the model, the calculational procedure, determi-
nant quantum Monte Carlo (DQMC), and the magnetic and
transport observables used to characterize the system. The
results are presented and discussed in Sec. III, while Sec. IV
summarizes our findings.

II. MODEL AND METHODOLOGY

The Hubbard Hamiltonian for the Lieb lattice reads

Ĥ = − tpd

∑
rσ

(
d†

rσ px
rσ + d†

rσ py
rσ + H.c

)
− tpd

∑
rσ

(
d†

rσ px
r+x̂σ + d†

rσ py
r+ŷσ + H.c

)
+

∑
r,α

U α
r

(
nα

r↑ − 1

2

)(
nα

r↓ − 1

2

)
+

∑
r,σ,α

(εα − μ)nα
rσ , (1)

with drσ , px
rσ , and py

rσ being standard annihilation electron
operators in second-quantized formalism, while nα

rσ are the
number operators for their corresponding orbitals, α = d , px,
or py; our notation therefore follows closely that of the CuO2

lattice realization. The first two terms on the right-hand side
of Eq. (1) denote the inter- and intracell hopping between d
and p orbitals, respectively, while the third term corresponds
to a site and orbital-dependent local repulsive interaction. The
last term involves the on-site energies εα and the chemical
potential μ, which we set to εα = μ = 0, a choice which
makes each orbital precisely half-filled. The hopping integral
is taken as tpd = 1, thus defining the energy scale.

We model dilution by allowing for random distributions of
U α

r , such that a fraction x of the sites have their interaction
strength suppressed:

U α
r =

{
U with probability (1 − x),
0 with probability x.

(2)

The U = 0 sites no longer support moment formation as a
result of charge fluctuations. Our simulations focus on the
intermediate coupling value U/tpd = 4, since this is the case
where previous work has found that magnetic order vanishes
(below) away from the percolation value. It is important to
notice that, for the noninteracting case, since the bandwidth
of the Lieb lattice is Wlieb/t = 4

√
2 [see, e.g., Figs. 1(b)

and 1(c)], being smaller than the one for the square lattice
(Wsqr/t = 8), we effectively have a larger U/W for the former.
Therefore, one should naively expect stronger geometrical
effects for this choice of interaction strength.

We investigate the ground-state properties of the
Hamiltonian (1) by means of DQMC simulations [46–50].
This is an unbiased numerical method based on an
auxiliary-field decomposition of the interaction which
maps onto free fermions moving in a fluctuating space-
and (imaginary) time-dependent potential. The first key
step is a separation (the Trotter-Suzuki decoupling) of the
noncommuting parts of the Hamiltonian, Ĥ0 containing
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the terms quadratic in the fermion creation and destruction
operators and the quartic term ĤU, which occur in the
partition function Z = Tre−βĤ = Tr [(e−�τ (Ĥ0+ĤU ))M] ≈
Tr [e−�τĤ0 e−�τĤU e−�τĤ0 e−�τĤU · · · ], where β = M�τ ,
with �τ being the grid of the imaginary-time coordinate
axis. This decomposition leads to an error proportional to
(�τ )2, which can be systematically reduced as �τ → 0.
Here, we choose �τ = 0.125, which is small enough
so that the systematic errors for the magnetic structure
factor are comparable to the statistical ones (from the
Monte Carlo sampling). The second central step is a
discrete Hubbard-Stratonovich (HS) transform [47] on
the two-particle terms e−�τĤU which converts them also to
quadratic in the fermion operators. In this way the resulting
trace of fermions propagating in an auxiliary bosonic field,
whose components depend on the space and imaginary-time
lattice coordinates, can be performed.

The HS fields are sampled by standard Monte Carlo tech-
niques, allowing the measurement of Green’s functions and
other physical quantities including spin, charge, and pair
correlation functions. The DQMC method, as with many
fermionic QMC approaches, in general suffers from the
minus-sign problem when particle-hole symmetry (PHS) is
broken [51]. Here, however, we stress that the Lieb lattice is
bipartite and the introduction of randomness in the interaction
strength preserves PHS at half-filling, so that the sign problem
is absent for this case. A detailed introduction to DQMC can
be found, e.g., in Refs. [50,52,53].

The magnetic response of the system is probed by the real
space spin-spin correlation functions

cαγ (�) = 1
3

〈
Sα

r0
· Sγ

r0+�

〉
, (3)

with r0 being the position of a given unit cell, while α and
γ denote the orbitals (d , px, or py). The Fourier transform of
cαγ (�) is the magnetic structure factor

S(q) = 1

Ns

∑
α,γ

∑
�

cαγ (�)eiq·�, (4)

where the number of sites is Ns = 3L2, with L being the linear
size of the underlying Bravais square lattice. S(q) peaks at the
dominant magnetic wave vector of the system. The existence
of a global ferromagnetically ordered state is probed by the
usual Huse finite-size scaling form [54] with q = (0, 0),

S(0, 0)

L2
= (mF )2 + A

L
, (5)

where mF is the associated order parameter and A is a con-
stant.

In addition, for a global ferromagnetic arrangement, Eq. (4)
allows us to separate the individual orbital contributions as

S(0, 0) = (Sdd + Spx px + Spy py

+ 2Spx py + 2Sd px + 2Sd py )/3, (6)

with

Sαγ = 1

L2

∑
�

cαγ (�), (7)

where we use the fact that Sαγ = Sγα . Since the π/2 real space
rotational invariance is recovered after disorder averaging,
one should find Spx px = Spy py ≈ Spx py and Sd px = Sd py . It is
therefore useful to define

Spp = 1
4 [Spx px + Spy py + 2Spx py ] (8)

and

Sd p = 1
2 [Sd px + Sd py ], (9)

which leads to

S(0, 0) = 1
3 [Sdd + 4Spp − 4|Sd p|]. (10)

The last term in Eq. (10) enters in absolute value because
the d-p spin correlations are always antiferromagnetic at half-
filling, i.e., Sd p < 0 (in accordance to rigorous results derived
in Ref. [55]), and indicative of the ferrimagnetic nature which
combines a nonzero overall ferromagnetism with antialign-
ment of d and p spins within the unit cell.

The individual components of the structure factors obey the
same finite-size scaling form [54], allowing us to extract the
orbital-resolved order parameters in the thermodynamic limit:(

mF
dd

)2 = Sdd

L2
+ a

L
, (11)(

mF
pp

)2 = Spp

L2
+ b

L
, (12)(

mAF
d p

)2 = |Sd p|
L2

+ c

L
, (13)

where a, b, and c are constants.
Finally, the metallic or insulating character of the system

is probed with two independent quantities. One is the direct-
current conductivity

σdc = β2

π

xx(q = 0, τ = β/2), (14)

where


xx(q, τ ) = 〈 jx(q, τ ) jx(−q, 0)〉, (15)

with jx(q, τ ) being the Fourier transform of

jx(i, τ ) = eτH

[
it

∑
σ

(c†i+xσ
ciσ − c†iσ ci+xσ

)

]
e−τH. (16)

This approximation has been extensively used to identify
metal-to-insulator transitions [56,57]. The other quantity is
the electronic compressibility, defined as

κ = 1

n2

∂n

∂μ
, (17)

where n is the global electronic density. We should note
that, in principle, our data for κ could suffer from the sign
problem when the chemical potential moves slightly around
half-filling in the finite-difference implementation of Eq. (17).
However, in a regime where κ is small, the sign problem is less
serious, because even though a nonzero chemical potential
is applied, the density stays close to half-filling. Indeed, we
have systematically checked that the average sign was always
close to 1 within the range of parameters analyzed. Therefore,
our data for the compressibility are free from the minus-sign
problem.
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FIG. 2. The global FM spin structure factor as a function of
inverse of temperature for (a) x = 0.20, (b) x = 0.40, and (c) x =
0.55, and different lattice sizes L. Solid lines are guides to the eye.
Here, and in all subsequent figures, when not shown, error bars are
smaller than the symbol size.

III. RESULTS

We consider lattices with linear sizes up to L = 9 (Ns �
243), and we take U/tpd = 4 throughout the paper. Further, in
what follows our results are obtained by averaging over 20–60
disorder realizations, depending on the temperature and lattice
sizes; this procedure keeps the error bars in the correlation
functions small enough to give rise to unambiguous extrapola-
tions. The disorder configurations are generated in a canonical
ensemble, i.e., for a given concentration, x, of free sites one
randomly chooses xNs sites to set U = 0, so that there are no
fluctuations in the number of free sites. For dilution fractions
x which do not correspond to an integer number of sites for
a given L, we perform a weighted average over the adjacent
integers.

Figure 2 illustrates the behavior of the global uniform
structure factor S(0, 0) with the inverse temperature, β =
1/T , for three different concentrations of free sites. In each
case S(0, 0) approaches an asymptotic value for sufficiently
large β, reflecting the fact that, in an ordered phase, the
correlation length is limited by the finite size of the lattice.
These large β values give S(0, 0) at T = 0 (for the given
system size and concentration) and are used for the scaling
analysis of Eq. (5). The outcome is depicted in Fig. 3. For each
concentration the ground-state magnetization in the thermo-
dynamic limit is obtained from the intercept with the vertical
axis (1/L = 0). These, in turn, are plotted as a function of the
concentration in Fig. 4.

FIG. 3. Finite-size scaling of the normalized global ground-state
structure factor for different impurity concentrations.

From Fig. 4 we see that the global magnetization decreases
steadily with increasing disorder and vanishes around xc ≈
0.55, a value more than twice as large as the classical site-
percolation threshold for the Lieb lattice, x(perc,Lieb)

c ≈ 0.26
[58,59]. This clearly shows that the disorder-induced transi-
tion is not purely geometric.

In order to understand why the magnetic behavior on the
diluted Lieb lattice is more robust, in the sense that xc >

x(perc,Lieb)
c , we must examine the orbital-resolved order pa-

rameters. Figure 5 shows their temperature dependence for a
given linear system size. We see that the dominant correlations
between electrons on p orbitals are ferromagnetic, and so are
those on d sites; by contrast, when one electron is on a p site
and the other on a d site, the correlations are antiferromag-
netic, justifying the form of Eq. (10). Following the procedure
adopted for the global structure factor, in Fig. 6 we extrapolate

FIG. 4. Global ground state ferromagnetic order parameter mF

as a function of dilution fraction, x. The error bars are due to the
uncertainties in the 1/L → 0 extrapolation (see Fig. 3). The solid
curve is a guide to the eye for the magnetization, while the vertical
dashed line marks the classical site-percolation threshold for the Lieb
lattice.
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FIG. 5. Orbitally resolved contributions to the structure factor
from d-d (squares), d-p (triangles), and p-p (inverted triangles)
correlations as functions of the inverse temperature, for fixed L = 8
and (a) x = 0.20, (b) x = 0.40, and (c) x = 0.55. Solid lines are
guides to the eye.

the low-temperature results to L → ∞. The thermodymanic
limit intercepts with the vertical axis are plotted in Fig. 7.

FIG. 6. Finite-size scaling of the normalized, orbitally resolved
structure factors of (a) d-d , (b) d-p, and (c) p-p contributions for
different dilutions.

FIG. 7. Extrapolated (L → ∞) values of the orbitally-resolved
contributions to the order parameter, obtained from the scaling of
their structure factors (see Fig. 6). Solid lines are guides to the eye.

A strong coupling analysis for the clean system [27] at-
tributes the robustness of the pp FM order parameter to the
p spins locking into triplets. In contrast, the weakness of the
dd correlations originates in a shielding by these surrounding
triplets. This picture, in fact, persists to seemingly rather small
values of U/tpd , as a result of the flatness of the p band, which
makes the ratio of the interaction to bandwidth large. The
formation of such triplets seems to be only weakly affected if
U = 0 on all d sites: as discussed in Ref. [27], magnetic order
persists even in this limiting case. Upon random dilution,
one should notice that the long-range behavior of d sites
(mF

dd ) is strongly suppressed for a small dilution strength,
while magnetism is dominated by the p sublattice, as shown
in Fig. 7: the pp contribution to the magnetization is much
stronger than that involving d sites, both in intensity and in
its resilience to disorder, sustaining order well beyond the
classical percolation threshold. It is worth noticing that the
robustness of the long-range behavior of p sites is due to their
coupling to d sites, which may restore the triplets even when
U = 0 on a given p site. As displayed in Fig. 7, long-range
antiferromagnetic correlations between p and d electrons
(i.e., mAF

d p ) occur even for mF
dd = 0, and has almost the same

threshold as mF
pp. It therefore emphasizes the importance of

d electrons to global magnetism and seems to be the key
feature for the occurrence of magnetism beyond the classical
percolation limit.

Once the disorder threshold is exceeded, there are not
enough strongly repulsive U sites to sustain an insulating state
at half-filling, and we expect a metallic state to set in. This can
be checked with the aid of the conductivity, calculated through
Eq. (14). Figure 8(a) shows the temperature dependence of σdc

for different disorder concentrations, while Figure 8(b) shows
σdc as a function of concentration, for different temperatures.
Two distinct regimes are clearly identified: insulating, when
σdc decreases as the temperature decreases, and metallic, when
σdc increases as the temperature decreases. One can roughly
estimate that the change in behavior occurs at x(σdc )

c = 0.50 ±
0.03, which is consistent with the results suggesting a change
in magnetic behavior at the same xc. The transition across xc is
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FIG. 8. Conductivity (a) as a function of temperature, for differ-
ent dilutions, and (b) as a function of dilution, for different temper-
atures. The solid lines are guides to the eye. Both presentations of
the data suggest insulating behavior for x < xc ∼ 0.5 and metallic
behavior for x > xc ∼ 0.5.

therefore from an insulating ferrimagnetic phase to a metallic
paramagnetic one.

Further evidence in favor of the insulator-to-metal transi-
tion is provided by the compressibility, Eq. (17). Figure 9
shows the global compressibility, the change in the overall
density with chemical potential. We see that for x = 0.3 and
0.4 the system has a small, temperature-independent value of
κ , while for x = 0.5 and 0.6, κ increases with β. In Fig. 10 the
compressibility is broken into individual contributions from p
and d sites, and we see that the dominant behavior comes from
p sites, which are the ones forming the flat band. That is, xc

defines a value above which the p sites become weakly com-
pressible. It is also worth noticing that, for x > xc, κp seems
to diverge at low temperatures, a behavior already present
in the noninteracting case due to the dispersionless middle
band [see, e.g., Fig. 1(c)]. Thus, for x > xc, the transport
properties resemble those for the noninteracting case, despite
the presence of electron-electron interactions on a subset of
sites.

The following picture emerges from the combination of
data for the magnetic structure factor, conductivity, and com-
pressibility: The low-temperature insulating ferrimagnetic
state can accommodate extra electrons on the U = 0 sites at

FIG. 9. Global compressibility as a function of the inverse tem-
perature, for different dilution concentrations x. The solid lines are
guides to the eye.

low energetic cost, provided there are not too many of them.
As dilution increases, more U = 0 p sites become available,
and the system becomes fully compressible. One should also
notice that, since there is an energetic cost to break the triplets
formed by spins on p sites, the compressibility is reduced as
the temperature decreases, for x � 0.30, and grows faster for
x � 0.40.

IV. CONCLUSIONS

Studies of the periodic Anderson model [60–62] and of
the single-band Hubbard model with random dilution of the

FIG. 10. Site-resolved compressibility as a function of the in-
verse temperature, for different dilution concentrations x: (a) com-
pressibility on p sites, and (b) compressibility on d sites. Solid lines
are guides to the eye.
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on-site interaction [12–16] have provided opportunities for the
exploration of magnetic order in systems possessing both sites
where moments form and those for which charge fluctuations
are allowed. By considering dilution on the repulsive Hubbard
model on a Lieb lattice, in which the on-site repulsion U is
switched off on a fraction x of sites, we have established some
interesting features of this problem.

In particular, although studies of the diluted square lattice
Hubbard model suggested the critical concentration for U = 0
sites is less than the percolation value, we have shown here
that on the Lieb lattice magnetic order is more robust than
one might expect from percolation arguments: the percola-
tion threshold, xc, is higher than the one solely determined
by the geometry of the lattice, x(perc,Lieb)

c . While a dynamic
(i.e., interaction-driven) influence on xc had already been
noted [14,16] for the attractive Hubbard model at half-filling
(which has a corresponding behavior in the repulsive case),
there the classical percolation threshold provided an upper
bound to the quantum case. A second observation is that,
simultaneously with the “percolative” magnetic transition,
the system undergoes an insulator-to-metal transition, as ev-
idenced by both the dc conductivity and the compressibil-
ity. These properties are a direct consequence of the flat p
band displayed by the noninteracting Lieb lattice. Our results
therefore show that disordered quantum itinerant systems
display a nontrivial interplay between dynamics and lattice
geometry, leading to features with no counterpart in classical
systems.

Previous works [12–16] have suggested that the presence
of two regimes, one at strong coupling where xc ∼ x(perc,sq)

c ,
and one at weaker coupling where xc < x(perc,sq)

c , might be

connected to the two distinct physical pictures for the origin of
antiferromagnetism (AF) in the half-filled single-band square
lattice Hubbard model. For large U/t , one thinks of a Mott-
insulating state in which a superexchange interaction J =
4t2/U couples neighboring spins. A (quantum) Heisenberg
spin description is appropriate in this regime. On the other
hand, at weak coupling, AF can be viewed as arising from a
spin-density wave instability driven by Fermi surface nesting.
In this case, the U = 0 band structure and electron itinerancy
play a central role. Our work suggests that, although a cri-
terion for xc based purely on the strength of U/t might be
correct for a single-band model, a more complex picture is
necessary to understand the multiple-band case. Specifically,
the orbitally resolved magnetic order parameters mαγ must be
analyzed and might vanish at very different dilution fractions.
Finally, it would also be interesting to verify whether the
metal-to-insulator and the ferrimagnetic transitions always
take place concomitantly or may occur at different regions
of the parameter space, e.g., if turns out that xFer

c �= xIns
c , one

could have a ferrimagnetic metal or a nonmagnetic Mott-
insulating state. Further work is needed to clarify this inter-
esting issue.
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