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Generating quantum multicriticality in topological insulators by periodic driving
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We demonstrate that the prototypical two-dimensional Chern insulator hosts exotic quantum multicriticality
in the presence of an appropriate periodic driving: a linear Dirac-like transition coexists with a quadratic nodal
looplike transition. This nodal loop gap closure is characterized by an enhanced chiral-mirror symmetry that is
induced by the driving procedure. The existence of multiple universality classes can be unambiguously captured
by extracting critical exponents and scaling laws with a single renormalization group approach based on the
curvature function of the stroboscopic Floquet Hamiltonian. This procedure is effective regardless of whether
the topological phase transitions are associated with anomalous edge modes or not. We comment on possible
experimental realizations of the model and detection schemes for the curvature function.
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I. INTRODUCTION

Periodic driving provides an unprecedented channel to
engineer exciting nonequilibrium quantum phases. Of par-
ticular interest are the various topological phases that can
be achieved by periodic driving, such as Floquet topological
insulators [1–6], Floquet topological superconductors [7–15],
and various exotic Floquet semimetals [16–23], as well as
nodal lines or loops [24]. Most importantly, this plethora of
Floquet topological phases can be very efficiently tuned by
simple manipulations of the drive. This versatility provides an
unrivalled opportunity to investigate the quantum criticality
near the topological phase transitions (TPTs).

In this paper, we demonstrate the feasibility of inducing
TPTs belonging to multiple universality classes, as well as
quantum multicriticality, by means of periodic driving in an
otherwise ordinary, noninteracting topological insulator. This
result is remarkable, given that in static systems with local
Landau order parameters these features usually arise from the
complicated interplay between various interacting and kinetic
energy scales [25–29]. The identification of this unexpected
multicriticality is based on a unified framework that views
the topological order as a momentum space integration of a
curvature function [30–34] and the generic feature that the
curvature function and edge state decay length diverge [35]
at the TPTs, from which the existence as well as coexistence
of multiple universality classes and the scaling laws are un-
covered.

To demonstrate the aforementioned features, we employ
a prototypical two-dimensional (2D) Floquet-Chern insulator
(FCI) that exhibits additional peculiar features that are them-
selves of extreme interest. First, this system hosts so-called
anomalous phases—with no static counterpart—that break the
ubiquitous bulk-edge correspondence: They are characterized
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by a trivial stroboscopic bulk topology, while still exhibiting
anomalous edge modes (AEMs) in the quasienergy spectrum
[36–38]. We establish that anomalous TPTs can be well cap-
tured by stroboscopic physics and do not require knowledge of
the full-time dependence (micromotion). Second, we uncover
that an appropriate driving induces a nodal loop semimetal
(NLS) due to an emergent chiral mirror symmetry, which
corresponds to elusive topological nodal loop band inversions
studied in the context of the spin Hall effect [39,40]. This
suggests the feasibility of realizing exotic symmetry-induced
topological states by choosing specific driving strategies. We
will demonstrate that the unified scheme based on the mo-
mentum space curvature function allows the application of
a curvature renormalization group (CRG) approach [30,31],
which has been successfully applied to determine the phase
boundaries in numerous interacting and noninteracting mod-
els, both static and periodically driven [14,30–34]. The CRG
approach based on the stroboscopic Floquet Hamiltonian un-
ambiguously captures the TPTs despite all the richness of
multicriticality, AEMs, and emergent nodal loops.

II. MODEL AND TOPOLOGICAL DESCRIPTION

We consider a paradigmatic 2D FCI already realized in
photonic lattices [36,37,41]. The model describes fermions
with modulated nearest-neighbor hoppings on a square lattice:

H(t ) =
∑

k=(kx,ky )

(c†k,A c†k,B)H (k, t )

(
ck,A

ck,B

)
,

H (k, t ) = −
4∑

n=1

Jn(t )
(
eibn·kσ+ + e−ibn·kσ−)

. (1)

The lattice vectors b1 = −b3 = (a, 0) and b2 = −b4 = (0, a)
connect the sublattices α = A, B on which the creation or
annihilation operators c(†)

k,α
act, and σ± refer to Pauli matrices.

A schematic illustration of the model is provided in Fig. 1. The
hoppings Jn(t ) are periodically modulated with a four-step
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FIG. 1. (a) Depiction of the periodically driven 2D tight-binding
model discussed in the main text. We consider a periodic four-step
driving protocol for which the first hopping is different from the
next three, J ≡ J1 �= J2 = J3 = J4 ≡ J̃ . (b) Phase diagram obtained
from the time-integrated topological invariant, indicating the type
of topological excitations in each phase. The arrows, also shown
in Fig. 2, indicate the two classes of TPTs studied, while the red
circles highlight multicritical points. (c), (d) CRG flow diagram
evaluated at k0 = (0, 0) and k0 = (0, π ) along direction ki = kx . The
color codes indicate the log of the numerator of the CRG equation,
log [∂2

ki
F (k0, M)], with yellow being high values (critical lines) and

blue low values (fixed lines). Choosing other HSPs [i.e., (π, 0) and
(π, π )] or the direction ki = ky leads to similar flow diagrams.

protocol of period T , in which, during the nth step of the cycle,
only the hopping Jn in direction bn is active [37]. Furthermore,
we consider the special case of J ≡ J1 �= J2 = J3 = J4 ≡ J̃
(see Fig. 1 for clarity). Note that this type of modulation
inherently introduces a circular pattern of hoppings that en-
ables the propagation of edge modes in a strip geometry
[36,37]. As shown in Ref. [36], these modes are chiral and
dispersive, whose group velocities are inversely proportional
to the driving period.

We first briefly review how to construct topological in-
variants for 2D Floquet systems such as the FCI. For a
general time-periodic system with open boundary conditions
described by the Hamiltonian H (t ) = H (t + T ), the full dy-
namics of the topological edge states is governed by the time
evolution operator, defined as

U (t, 0) = T
{

exp

[
−i

∫ t

0
dt ′ H (t ′)

]}
, (2)

where T is the time-ordering operator and we have set the ini-
tial time t0 = 0 and h̄ = 1. The operator U (t, 0) accounts for
the full time dynamics, including the micromotion between
periods. When t → T , the time evolution operator is typically
called a Floquet operator and, because of the underlying
time periodicity, it fulfills U (T, 0) = U (T m, T (m − 1)) with

m ∈ N. This induces a discrete quantum map that describes
stroboscopic dynamics [42]. We can then define an effective
stroboscopic Floquet Hamiltonian heff via U (T, 0) ≡ e−iheffT .
The effective stroboscopic Floquet Hamiltonian contains the
full information about the system at multiples of the driv-
ing period T . Diagonalization of heffT will then yield the
stroboscopic quasienergy spectrum εα,k of the Floquet-state
solutions �α (k, t ) = exp(−iεα,kt )�α (k, t ), where �α (k, t ) =
�α (k, t + T ) [42]. Because of the T periodicity of the Floquet
modes �α (k, t ), the quasienergies are defined modulo 2π

T =
ω. Therefore, we can restrict ourselves to consider a first
“Floquet-Brillouin zone” of quasienergies εα ∈ (−ω/2, ω/2).
The number of stroboscopic edge modes can be determined
as a function of the driving parameters from an analysis of the
quasienergy spectrum, i.e., from gap closures and localization
of 0 and π -quasienergy states. Consequently, the topological
phase diagram of the stroboscopic system can be ascertained.

In analogy with time-independent systems, the number of
edge modes in an open geometry is related to the properties
of the bulk time evolution operator via a bulk-edge corre-
spondence [36]. We could therefore determine the topological
phase diagram by investigating the bulk time operator:

Uk(t, 0) = T
{

exp

[
−i

∫ t

0
dt ′ H (k, t ′)

]}
. (3)

In Ref. [36], it was shown that stroboscopic dynamics is
in general insufficient to determine the correct number of
edge modes generated in 2D systems like the one considered
here. Micromotion, i.e., time evolution within a period,
should be considered explicitly, and in general plays a
crucial role in the definition and determination of the correct
topological invariants [43,44]. In this case, the number
of edge modes at quasienergy ε can be calculated from
a topological invariant defined as the winding number of
an explicitly time-dependent map S1 × S1 × S1 → U (N )
constructed from the bulk-time operator [36,45] W [Uε] =

1
16π2

∫
dt dkx dky Tr [U −1

k,ε
∂tUk,ε[U −1

k,ε
∂kxUk,ε,U −1

k,ε
∂kyUk,ε]].

Here, Uk,ε (t, 0) is an operator derived from Uk(t, 0)
preserving the number of edge modes at ε while smoothing
the operator at the end of the cycle to the identity, i.e.,
Uk,ε (T, 0) = 1 [36]. This transformation is necessary because
the winding number is equal to the number of edge modes at ε

only if the spectrum of the bulk operator is gapped everywhere
expect at ε, which can be achieved only if Uk,ε (T, 0) = 1.

While the time-integrated topological invariant yields the
correct number of edge modes, it is computationally quite
cumbersome because of the triple integration and the addi-
tional manipulations performed on the time-evolution opera-
tor. Furthermore, if one is interested mainly in the criticality
of the TPTs, such information should already be determined
by the gap closures in the quasienergy spectrum at zero and
π quasienergies, which can be readily extracted from the
stroboscopic bulk effective Hamiltonian heff(k) [14]. For a
general unitary 2 × 2-Floquet operator,

Uk(T, 0) =
(

A(k) B(k)
−B(k)∗ A(k)∗

)
, (4)
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the effective Floquet Hamiltonian defined via Uk(T, 0) =
e−iheff (k)T takes the following form [14]:

heff(k) ∝ Im[B]σ x + Re[B]σ y + Im[A]σ z ≡ n(k) · σ. (5)

The quasienergy dispersions of the Floquet bands rescaled
to [−π, π ) are then obtained as the eigenvalues of the
operator heff(k)T . The topology of the stroboscopic bulk
effective Hamiltonian is mapped by the Chern number
[46], which for the two-band system analyzed here is C =
− 1

2π

∫ π

−π
dkx

∫ π

−π
dky F (k), where

F (k) = n̂(k) · [∂kx n̂(k) × ∂ky n̂(k)] (6)

is the Berry curvature of the Floquet band in question.
The Chern number C of the effective bulk Hamiltonian

counts the difference between the numbers of edge modes
above and below each Floquet band [36]. If edge modes exist
only at quasienergy 0 or ±π , C of each band will correctly
capture the number of edge modes. However, for coexisting
0 and ±π modes C = 0, the bulk-edge correspondence is
broken, and we have a phase with AEMs [36]. The full phase
diagram based on time-integrated topological invariants as
defined in Ref. [36] is mapped in Fig. 1(b) as a function
of the two hopping strengths J and J̃ . We can distinguish
multiple phases which are either topologically trivial, hosting
only one edge mode at quasienergy 0 or π , or hosting AEMs.
The topological phase boundaries have an analytical form
given by J̃ = J and J̃ = 1

3 (n − J ), where n ∈ [1, 2, 3] [37].

III. DETECTION OF TPTs

Using the CRG method, we now show that information
about the TPTs and their criticality can be extracted even in
the presence of AEM from the stroboscopic Berry curvature
alone, even though its integration C is not necessarily equal
to the true time-integrated topological invariant. We first
briefly summarize the method developed originally for static
systems in [30–33,47,48] and for Floquet systems in Ref. [14].
Generally, at any system parameters M = (J, J̃ ), the curva-
ture function peaks around high-symmetry points (HSPs) k0

satisfying k0 = −k0. Across the topological phase boundaries
described by {Mc}, the peaks diverge and flip signs to preserve
the quantization of the Chern number [30,31,47]. The CRG
relies on the scaling procedure F (k0, M′) = F (k0 + δk, M)
that searches the trajectory in the parameter space along which
the diverging peak F (k0, M) is gradually flattened [30,31,47].
Defining dl ≡ δk2, dMi = M ′

i − Mi, the scaling procedure
yields the renormalization group (RG) equation

dMi

dl
= 1

2

∂2
k j

F (k, M)
∣∣
k=k0

∂Mi F (k0, M)
. (7)

The topological phase diagram can be easily ascertained by
analyzing the critical points of Eq. (7). Furthermore, the
criticality of the TPT is characterized by the divergences
of both F (k0, M) and the concomitant inverse of the full
width at half maximum in directions i = x, y expressed as
FWHMi ≡ 2

ξk0,i
, see also Refs. [30,31,34,47]. As M → Mc,

these quantities diverge like F (k0, M) ∝ |M − Mc|−γ and
ξk0,i ∝ |M − Mc|−νi . The conservation of C in a phase leads to

precise scaling laws relating γ and νi. For example,
∑

i νi =
1 + 1 = γ = 2 for an isotropic 2D Dirac model [47].

The critical exponents obtained from the CRG analysis
can be related to those assigned to correlation length and
susceptibility in the Landau theory of phase transitions. For a
2D (stroboscopic) Hamiltonian described by (Floquet-)Bloch
states |unk〉, such as the one considered in this paper, we can
write the Berry curvature as [49–51]

F (k, M) = ∑
n∈v ∇k × 〈unk|i∇k|unk〉

= −i
∑

n∈v

∑
R e−ik·R〈Rn|(R × r̂)z|0n〉, (8)

where |Rn〉 = 1
N

∑
k eik·(r̂−R)|unk〉 is the Wannier state center-

ing at homecell R, N denotes the number of lattice sites, and r̂
is the position operator. We emphasize that in our analysis of
the Floquet problem we work with the Floquet bands derived
from the stroboscopic effective Hamiltonian, and therefore
the Wannier states calculated in this context are also to be
interpreted as stroboscopic states. The Wannier representa-
tion allows us to draw a direct correspondence between the
topological description of the system and the theory of orbital
magnetization for 2D TRS-breaking systems [52–56]. In this
picture, the Fourier transform of the curvature function yields
a Wannier state correlation function,

F̃2D(R) = 1

(2π )2

∫∫
d2k eik·RF (k, M)

= − i
∑
n∈v

〈Rn|(R × r)z|0n〉

= − i
∑
n∈v

∫
d2rW ∗

n (r − R)(R × r̂)Wn(r)

∝ e−Rx/ξkx e−Ry/ξky , (9)

which is a measure of the overlap of the Wannier function
centered at R with that centered at the origin, sandwiched by
the operator (R × r)z. Note that the correlation function is a
gauge-invariant observable because it is obtained upon inte-
grating the gauge-invariant curvature function over a closed
surface.

We can see that the correlation function F̃2D(R) decays
exponentially with characteristic length scales ξi, indicating
that ξi acquire the meaning of correlation lengths of the TPT
with the associated critical exponents νi. Furthermore, the
integration of the correlation function over real space yields∫

F̃2D(R)d2R = F (k0, M). The curvature function at the HSP
F (k0, M) can be therefore interpreted as the analog of the
susceptibility in the Landau paradigm for phase transitions
[31]. For this reason, we assign to it the exponent γ that
characterizes its criticality. Consequently, different values of
{νi, γ } signify different universality classes.

We now analyze the criticality of the different TPTs that
exist in this model, including transitions to phases with AEMs.
We emphasize that the defining characteristic of the TPTs is its
universality class, i.e., its scaling behavior, and not necessarily
the magnitude of the change in the topological invariant. We
apply the CRG method to the stroboscopic curvature function
Eq. (6) at the representative HSPs k0 = (0, 0), (0, π ) [57]
to extract the criticality of the topological phase boundaries.
First, via a straightforward analysis of the CRG equations, all
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phase boundaries, including those delineating AEM phases,
are correctly captured by the RG flow [see Figs. 1(a) and
1(b)]. Note that this approach requires very little computa-
tional effort compared to the evaluation of the time-integrated
topological invariant, since solving Eq. (7) only requires us
to calculate F (k, M) at a few momentum points. The fixed
lines, on the other hand, illustrate the regions where the
correlation length is shortest, indicating relatively localized
Wannier states.

In the gapped phases, an important issue concerns the
true topological invariant and the corresponding nature of the
edge state. A stroboscopic approach like the ones presented
here cannot address this question directly. Nonetheless, the
approach does track the number of edge modes localized at
0 and π quasienergies, see Fig. 1(b). It also describes the
localization lengths of these modes close to criticality via
the Wannier state correlation length and its critical exponent.
Deep into the gapped phase, these are such that the larger
the gap, the shorter the decay length of the edge state. In the
following, we focus exclusively on the critical lines and detail
the two dramatically different critical behaviors uncovered in
this system.

IV. QUANTUM CRITICALITY OF THE TPT AND
LOW-ENERGY THEORIES

Following the stroboscopic approach outlined in the pre-
vious paragraphs, we now elaborate on the structure of the
low-energy theory of the TPTs. We begin by explicitly looking
at the form of the stroboscopic effective Hamiltonian and the
curvature function given by Eqs. (5) and (6). The stroboscopic
quasienergy dispersion θ (k) corresponding to the effective
Hamiltonian fulfills the eigenvalue equation [13]

heff(k)ψ (k) = θk

T
ψ (k) (10)

or, equivalently,

Uk(T, 0)ψ (k) = e−iθkψ (k). (11)

Hence, θ (k) can be derived, by calculating the eigenvalues of
the Floquet operator and exploiting the identity, arccos(z) =
−i log (z + √

z2 − 1), to be

θ (k) = −i log λ+ = arccos

[
Tr Uk(T, 0)

2

]
. (12)

The behavior of θ (k) at criticality can be used to shed light on
the type of TPT taking place there. Typically, the order of the
gap closure is associated to the type of low-energy theory.

For the four different transition lines in the phase dia-
gram of the Floquet system analyzed, we show in Fig. 3
contour plots of the quasienergy dispersion that illustrate the
location of the gap closures. Additionally, in Fig. 4 we also
present one-dimensional cuts that depict the form of the gap
closures: We can appreciate that the TPTs at J̃ = 1

3 (n − J )
are all characterized by linear gap closures, while the one at
J̃ = J corresponds instead to a quadratic gap closure. This
visual finding was also verified through a numerical fit of the
quasienergy dispersion.

M

ky

kx
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- -

ky

kx

- -

ky

kx
0

0

(a)

(c)

ky

kx

(b)

(d)

FIG. 2. Illustration of different TPTs (indicated by the arrows in
Fig. 1) in the FCI as a function of tuning parameter M = J (b) or
M = J̃ (d). (a) Quasienergy dispersion exhibiting Dirac-cones with
linear gap closure at quasienergy π for J̃ = 1

3 (n − J ). b) Behavior
of the Berry curvature across the TPT with linear gap closure
(Lorentzians). (c) Quasienergy dispersion with quadratic gap closure
at quasienergy 0 for J̃ = J . (d) Behavior of the Berry curvature across
the TPT with quadratic gap closures, where non-Lorentzian pairs of
peaks flip sign and change direction.

A. Floquet-Dirac criticality

Close to the J̃c = 1
3 (n − J ) [e.g., green arrow in Fig. 1(b)]

transitions, a Dirac-like linear gap closure at the Floquet band
edge takes place at one of the HSPs (kx, ky) = (0, 0) and
(kx, ky) = (±π,±π ), and the curvature function near the HSP
has the shape of a single Lorentzian peak. As J̃ → J̃c, the
Lorentzian peak diverges and flips signs across the transi-
tion, with critical exponents νx = νy = 1, γ = 2, fulfilling the
scaling law 2 = γ = νx + νy (up to numerical accuracy). This
result implies that these TPTs belong to the same universality
class of a static 2D isotropic Dirac model [58] and this critical
behavior is independent of whether in the underlying phase
AEMs exist or not.

- -

ky

(a)

(c)
0

0

-

- kx

(d)

0

(b)

0

kx

ky

FIG. 3. Illustration of the gap closures of the
quasienergy dispersion θ (k) at (a) J = 0.1[4π ], J̃ = 0.3[4π ],
(b) J = 0.2[4π ], J̃ = 0.6[4π ], (c) J = 0.3[4π ], J̃ = 0.9[4π ],
(d) J = 0.6[4π ], J̃ = 0.6[4π ]. The dashed red lines indicate the cuts
shown in Fig. 4.
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FIG. 4. Cuts of the quasienergy dispersion θ (kx ) along the ky

value of the HSPs, illustrating the kind of gap closure for each
topological phase transition. The values of the energy parameters are
as in Fig. 3.

B. Floquet nodal loop criticality

We now analyze the TPTs across J̃c = J [e.g., blue arrow
in Fig. 1(b)], for which the gap closure is revealed to be
quadratic along the nodal loops ky = ±π ∓ |kx|, realizing
an elusive 2D NLS. For this nodal loop case, the curvature
function is characterized by a pair of non-Lorentzian peaks
symmetrically shifted away from the HSP in kx or ky direction
(depending on the direction of the transition), as shown in
Fig. 2(b). Across the TPT, the peaks simultaneously approach
the HSP while diverging, flip signs, and then depart again
from the HSP but in the orthogonal direction. For simplicity,
we fix the direction of the transition such that the peaks are
along the ky direction before diverging. We note that, because
of the boomerang shape of the Berry curvature along the kx

direction, the correlation length that correctly captures the
conservation of the Chern number has to also be defined
along the same curve, i.e., as ξk0,x̃ ≡ 2

FW HM(maxky {F (k)}) . A fit

of the curvature function for this geometry reveals γ = 3
2 ,

νx̃ = 1
2 , and νy = 1 (up to numerical accuracy). The fit is

displayed in Fig. 5. These critical exponents fulfill the scaling
law νx̃ + νy = γ , but are distinct from Dirac models of any
order of band crossing [58].

In Table I, we summarize the critical exponents and
the low-energy dispersions of the two different universality
classes obtained from the model. Details of fitting the critical
exponents will be demonstrated in the following sections.

TABLE I. Summary of the critical exponents extracted for the
two different topological phase transitions existing in the Floquet-
Chern insulator, where k̃ refers to the k coordinates around the HSPs
where the corresponding gap closes.

TPT dispersion γ νx or νx̃ νy

J̃ = 1
3 (n − J ) E ∝

√
k̃2 + M2 2 1 1

J̃ = J E ∝
√

(k̃2
x − k̃2

y )2 + M2 3
2
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2 1
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FIG. 5. Power law fit (solid lines) of the diverging quantities
in the nodal loop semimetal extracted from the normalized Berry
curvature. The fitted data is indicated by the dots.

This different behavior clearly indicates that the TPT at
J̃c = J belongs to a different universality class than the J̃c =
1
3 (n − J ) transitions described earlier. This is remarkable, as it
is not customary for a single system to host two kinds of TPTs
belonging to different universality classes. Quite surprising
is also that the two TPTs, described by drastically different
effective theories, connect the same phases along two different
parameter paths.

We now present an effective theory for this Floquet-
engineered NLS which perfectly captures this physics.
First note that in the vicinity of J̃c = J transition
line, the quasienergy dispersion around the HSPs
k0 = (0,±π ), (±π, 0) is well described by the following:

E = ±A
√

((kx − k0,x )2 − (ky − k0,y)2)p + M2, (13)

where the parameters A, p, and M are determined numerically.
A fit of the quasienergy dispersion to the form of Eq. (13)
is depicted in Fig. 6(a). Close to J̃c = J , p = 2 and at the
transition the mass term M = 0. Remarkably, along the entire

FIG. 6. (a) Two-dimensional parametric fit of the quasienergy
dispersion (upper band) to Eq. (13) around the HSP k0 = (0,−π ) for
the TPT at J̃ = J = 0.6 in the FCI. The color bar on the left indicates
the absolute error of the fit shown as a contour plot. (b) Dependence
of the fitting parameters A, p, and M on the position of the TPT
J̃ = J , showing that only the overall scaling A changes along the
transition line.
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FIG. 7. (a) The normalized absolute value of the Berry curvature across the topological phase transition for the Floquet-Chern insulator (J̃
in units of 4π ). (b) The normalized absolute value of the Berry curvature across the topological phase transition for the nodal loop semimetal
as a function of μ, with ν = β = 1.0 and α = −1.0.

transition line J̃c = J , the dispersion exhibits the same shape
with the same values of p and M (except at the multicritical
point where the dispersion is identically zero), and only its
overall scaling factor A varies as illustrated in Fig. 6(b). Note
that A has no influence on the topology because it does not
affect the gap closures.

The peculiar non-Dirac quadratic gap closure of Eq. (13)
can be naturally generated along the entire J̃ = J transition
line from a single 2 × 2 NLS Hamiltonian,

HNL = X (kx, ky)σ x + Y (kx, ky)σ y + Z (kx, ky)σ z (14)

= (μ − 2η(cos kx + cos ky))2σ x

+ α(sin kx − sin ky)(cos kx + cos ky)σ y

+ β(sin kx + sin ky)(cos kx + cos ky)σ z, (15)

where σ i are the Pauli matrices, α, β, m, μ, and η are parame-
ters. For μ = 0 (and arbitrary values of the other parameters)
the energy dispersion of Eq. (15) in the vicinity of the HSPs
exactly recovers Eq. (13), with the overall scale A = η and
M = 0. This model can further reproduce all the features
observed in the FCI along the J̃ = J transition, including the
shape of the Berry curvature across the TPT, the value of the
critical exponents, and symmetries. In particular, a compari-
son of the two Berry curvatures across the TPTs (J = J̃ = 0.6
for the FCI and, correspondingly, λ1  λ2 = μ for the NLS)
is shown in Fig. 7 and reveals an excellent agreement between
the two systems, indicating that the low-energy theory of the
TPT in the FCI is in fact a NLS.

Surprisingly, Floquet driving realizes an extension of the
model discussed in Refs. [39,40] in the context of the spin
quantum Hall phases. Though 3D NLS have been abundantly
discussed in the literature [59–66], physical realizations of
2D NLS (proposed as excellent candidates for spintronics)
remain elusive [67–69]. Recently proposed candidate systems
include interpenetrating kagome-honeycomb lattices [70] and
ferromagnetic monochalcogenide monolayers [69]. Here, we
see that via a simple driving protocol on a square lattice, the

resulting Floquet-engineered Hamiltonian perfectly realizes
the full static model of a 2D NLS.

C. Emergent chiral mirror symmetry

The existence of two different universality classes in a sim-
ple noninteracting model indicates that they must be related to
different symmetries. In fact, the effective nodal loop theory is
characterized by an increased chiral mirror symmetry that can
be traced back to the driving scheme. We have numerically
verified that the Floquet effective Hamiltonian fulfills the
following symmetry operations:

Cheff(kx, ky)C−1 = −heff(−kx,−ky ), (16)

Iheff(kx, ky )I−1 = heff(−kx,−ky ), (17)

Dheff(kx, ky)D−1 = heff(kx ± π, ky ± π ), (18)

with C = σ z ◦ K, I = σ x, and D = σ z. These symmetries
are charge conjugation, inversion, and displacement by ±π

(reduction of the Brillouin zone to half), respectively.
Additionally, at J̃ = J corresponding to the nodal loop low-

energy theory, a driving-induced new symmetry emerges,

M̄heff(kx, ky)M̄−1 = −heff(ky, kx ), (19)

with M = σ y. We term this symmetry chiral mirror sym-
metry, as it can be decomposed into a combination of a
mirror symmetry M and chiral or sublattice symmetry S . We
note, however, that the two separate symmetry operations M
and S need not be fulfilled when chiral mirror symmetry is
present, much like a chiral symmetry can exist on its own even
when time-reversal and charge-conjugation symmetries are
not separately fulfilled [46]. In fact, we empirically verified
that the effective Floquet Hamiltonian does not have separate
mirror and chiral symmetries.

The combination of charge conjugation and chiral mirror
symmetry protects the nodal loop Hamiltonian Eq. (15) from
mass terms. Chiral mirror symmetry implies Y (kx, ky) =
−Y (ky, kx ), which forbids mass terms in σ y. Charge
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conjugation instead implies Z (kx, ky) = −Z (−kx,−ky),
which forbids mass terms in σ z. The parameter μ controls the
gap closure, such that the nodal loop sits at zero (quasi)energy
when μ = 0 (and, correspondingly, J̃ = J for the FCI).

The chiral mirror symmetry is a direct consequence of the
driving scheme applied to the Chern insulator and can be
reformulated as a property of the Floquet operator U (k, T ):

M̄heff(kx, ky)M̄−1 = −heff(ky, kx )

⇐⇒ h∗
eff(kx, ky) = heff(ky, kx )

⇐⇒ U (kx, ky; T ) = U �(ky, kx; T ), (20)

where � denotes matrix transposition. This property can be
generalized to other forms of mirror symmetries, such as
reflections with respect to a different axis (kx ↔ ky is a re-
flection with respect to â = 1√

2
(1, 1) in k space). The general

condition to have chiral mirror symmetry in the effective
theory of the Floquet Hamiltonian is then

U (k, T ) = U �(kM, T ), (21)

where kM are the k coordinates transformed under the chiral
mirror symmetry. By Floquet engineering the stroboscopic
time evolution to have such a property, it is in principle
possible to generate a whole hierarchy of effective Floquet
Hamiltonians with chiral mirror symmetry that can stabilize
NLS phases.

D. Multicritical points

Lastly, we consider the three multicritical points shown
in the phase diagram. Because the two kinds of TPTs
of the model occur at different HSPs, the points at J̃ =
J = π/T, 3π/T are found to exhibit both a peak diver-
gence at k0 = (0, 0) and k0 = (±π,±π ) (linear gap closure
at quasienergy π ), and a double-peak divergence around
k0 = (0,±π ) and k0 = (±π, 0) (quadratic gap closure at
quasienergy 0). These multicritical points therefore display
a coexistence of both TPTs belonging to different univer-
sality classes. The points at J̃ = J = 2πn/T , n ∈ [0, 1, 2]
are instead not critical, because there the Floquet oper-
ator U (k, T ) = eiheff (k)T is precisely the identity and the
quasienergy dispersion heff(k)T collapses to a flat band at 0.
This behavior at J̃ = J = 2π/T is also detected in the CRG
flow, where fixed lines and critical lines meet. The loss of
criticality around these points is further corroborated by the
fit of the quasienergy dispersion (Fig. 6), which highlights the
flat band as A → 0. Such multicriticality in static topological
systems has not been widely explored. To our knowledge, the
only two examples of static free fermion models exhibiting
multicriticality of TPTs are an extended Su-Schrieffer-Heeger
model in the presence of a synthetic potential [35], and a
one-dimensional topological band insulator with spin-orbit
coupling [71]. This indicates that in static systems a certain
degree of engineering beyond usual linear Dirac models is
required to generate multicriticality. In contrast, our paper
shows that multicriticality can be easily realized in simple
periodically driven systems by making use of the additional
gap-closure channel at quasienergy π provided by the time
periodicity.

E. Experimental realization and detection

The multiple universality classes and the multicriticality
uncovered in the present paper can be experimentally detected
in photonic and cold-atomic realizations of the model. The
AEMs existing in this model have already been experimen-
tally probed in photonic systems with state recycling [37,41].
Here, the measurement of the Berry curvature needed to ex-
tract the critical exponents could be performed from measure-
ments of the anomalous displacement of wave packets under
optical pulse pumping in coupled fiber loops, similar to what
was highlighted in Ref. [72]. Another possible realization of
the model is with ultracold atoms placed in a square optical
lattice, where the modulations of the hopping between neigh-
boring sites can be induced by a time-dependent superlattice
[73]. In this setup, the measurement of the Berry curvature
can be achieved through quantum interference maps of the
Berry curvature [74] or force-induced wave-packet velocity
measurements [75,76].

V. CONCLUSIONS AND OUTLOOK

In summary, we demonstrate how to generate quantum
multicriticality and exotic 2D nodal loops by a simple peri-
odic driving in an otherwise ordinary topological insulator.
Through applying the CRG method to the Berry curvature,
we have delineated the entire topological phase diagram re-
gardless of the details of the system. The extracted critical
exponents indicate that the system hosts TPTs belonging to
two different universality classes, namely, a Dirac low-energy
theory with linear gap closures, and a NLS low-energy theory
with quadratic gap closures. Remarkably, these different uni-
versality classes can coexist at certain discrete points, reveal-
ing an unprecedented phenomenon of topological multicriti-
cality in 2D. The nodal loop TPTs were also shown to result
from a driving-induced additional chiral mirror symmetry,
which is absent for the Dirac-type TPTs and helps stabilize the
band inversion from certain perturbing mass terms. Our paper
thus paves the path for future explorations and realizations of
complex topological states of matter by engineering emergent
symmetries in simple systems using judiciously chosen Flo-
quet driving protocols.

Despite the enhanced symmetry provided by the driving
procedure, the nodal loops of this particular Floquet model
are not fully topologically protected, because mass terms
along x are still allowed to shift the band inversion away
from zero quasienergy. It is, however, feasible to expect
that similar emerging symmetries in different models could
give rise to a fully symmetry-protected NLS phase, for in-
stance, if the driving realizes a time-reversal symmetry T =
σ y ◦ K. This point is therefore worth investigating in future
work.

Another question opened up by our study is the stability
of the nodal loops with respect to interactions. Possibly, the
nodal loops in the driven system are unstable to interactions
like Weyl and NLSs in three dimensions [77]. Additionally, in-
teractions can introduce various orderings like ferromagnetic,
antiferromagnetic, and charge-density wave ordering in the
bulk, which could be detrimental for topological states [78].
Interactions also raise the specter of drive-induced heating.
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Typically, integrable systems such as free-fermion systems
are not expected to thermalize to a trivial Gibbs ensemble.
Exceptions are the recently studied free fermion systems with
specific disorder and quasiperiodic potentials, which were
shown to exhibit heating to a high-temperature state [79].
Even in these cases, the amount of energy absorption was
shown to be directly proportional to the driving period T , and
remains low for small periods. We therefore expect our results
to be stable to potential sources of heating like weak disor-
der for experimentally relevant timescales [80]. Furthermore,
even in systems which are expected to heat up, sufficiently
long prethermalization regimes are often found, permitting the

exploration of the new physics triggered by driving [81]. A
detailed study of the impact of interactions in the Floquet case
and the associated problem of heating is beyond the scope of
the present paper and is left for future studies.
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