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Knabe’s theorem lower bounds the spectral gap of a one-dimensional frustration-free local Hamiltonian in
terms of the local spectral gaps of finite regions. It also provides a local spectral gap threshold for Hamiltonians
that are gapless in the thermodynamic limit, showing that the local spectral gap must scale inverse linearly with
the length of the region for such systems. Recent works have further improved upon this threshold, tightening it in
the one-dimensional case and extending it to higher dimensions. Here, we show a local spectral gap threshold for
frustration-free Hamiltonians on a finite-dimensional lattice that is optimal up to a constant factor that depends
on the dimension of the lattice. Our proof is based on the detectability lemma framework and uses the notion of
a coarse-grained Hamiltonian (introduced in [Anshu et al., Phys. Rev. B 93, 205142]) as a link connecting the
(global) spectral gap and the local spectral gap.
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I. INTRODUCTION

A central problem in condensed-matter physics is to un-
derstand the properties of the ground states of spin systems.
While finding a complete description of the ground states can
be a daunting task, many important ground state properties
(notably the area laws [1–3] and the decay of correlation
[4–6]) are intertwined with the spectral gap of the associated
Hamiltonian. Thus, understanding the spectral gap of a local
Hamiltonian takes central stage in the mathematical physics
of spin systems.

Recent results on the undecidability of the spectral gap
[7,8] show that there is no general scheme for computing the
spectral gap of an arbitrary local Hamiltonian (even under the
assumption of translation invariance). But for a large and im-
portant family known as the frustration-free Hamiltonians (to
be defined shortly), there are two powerful methods that pro-
vide criteria for system-size-independent lower bounds on the
spectral gap. First is the martingale method of Nachtergaele
[9] that guarantees a large spectral gap whenever a certain
product of the local ground space projectors is close to the
global ground space projector. The second method, introduced
by Knabe [10], bounds the spectral gap whenever the “local”
spectral gap in a finite region is large enough. These tools
have found several applications in recent years, such as in
the classification of gapped phases for qubits [11], the gap of
generic translationally invariant Hamiltonians [12], properties
of random quantum circuits [13], etc. Through the successful
application of Knabe’s method, [14] showed that the Affleck-
Lieb-Kennedy-Tasaki (AKLT) model [15] on a hexagonal
lattice is gapped, solving a long-standing open problem.

A standard way to represent a local Hamiltonian is via a
Hermitian matrix H , which admits the decomposition H =∑

α Pα as a sum of local terms that act on a small number of
spins. By a simple rescaling of energy, which does not change
the physical properties of the system, we can assume that Pα �
0 for all α. The Hamiltonian H is said to be frustration free if

its ground space G satisfies PαG = 0 for all α. Frustration-free
Hamiltonians are very well studied in the literature, with
some widely known examples being the AKLT model [15],
parent Hamiltonians of tensor networks [16,17], instances of
the Heisenberg model, and quantum satisfiability instances
[18,19].

A useful simplifying assumption for the frustration-free
Hamiltonians is that Pα can be considered a projector (that
is, P2

α = Pα). This changes the spectral gap of H by just a con-
stant factor, more precisely the smallest nonzero eigenvalue
of Pα (minimized over all α). Knabe’s method, which is the
central focus of the present work, applies to translationally
invariant frustration-free Hamiltonians on a periodic chain of
spins. It states the following.

Knabe’s theorem. Let H = ∑n
i=1 Pi,i+1 be a translationally

invariant nearest-neighbor Hamiltonian on a periodic chain of
n spins, with spectral gap γ . Let hk,t = ∑k+t−1

i=k+1 Pi,i+1 be the
Hamiltonian restricted to the spins {k + 1, k + 2, . . . , k + t}.
Let γ (t ) be the spectral gap of hk,t , which does not depend on
k due to translation invariance. Then γ + 1

t−2 � t−1
t−2γ (t ).

We provide a sketch of the argument to help compare
with our techniques. The spectral gap γ of H is the largest
number that satisfies H2 � γ H . In order to lower bound γ ,
we may expand H2 = ∑

i,i′ Pi,i+1Pi′,i′+1 and use the fact that
Pi,i+1 are projectors to simplify H2 = H + ∑

i �=i′ Pi,i+1Pi′,i′+1.
If all the terms Pi,i+1Pi′,i′+1 were positive semidefinite, we
would obtain H2 � H , leading to γ � 1. But this is not the
case, as overlapping local terms Pi,i+1 and Pi+1,i+2 need not
commute. To handle such terms, Knabe [10] invokes the
Hamiltonians hk,t and makes use of the operator inequality
h2

k,t � γ (t )hk,t . This helps in lower bounding sums of the form∑
i,i′ Pi,i+1Pi′,i′+1 in terms of γ (t ).
An important consequence of Knabe’s theorem is that if

H is gapless in the thermodynamic limit (that is, γ → 0
as n → ∞), then the local gap γ (t ) must decay at least as
fast as 1

t−1 . This is often termed the “local gap threshold.”
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FIG. 1. For a subset S of spins, QS denotes a projector orthogonal to the local ground space on spins in S. A coarse-grained Hamiltonian is
obtained by summing over a collection of such projectors, for example, the green and red projectors.

The additive term that captures the local gap threshold was
improved in a recent work [20] which shows the inequality
γ + 5

t2−4 � 5
6γ (t ). This inequality is tight up to constants, as

witnessed by the Heisenberg ferromagnet (see Sec. 2 in [20]
for details). The authors also consider the problem on a two-
dimensional periodic square lattice L, with a nearest-neighbor
translationally invariant Hamiltonian H = ∑

e Pe. Here, the
index e runs over the edges of the lattice. In the same spirit
as above, they obtain the inequality γ + 6

t2 � γ (t ), where
γ is the spectral gap of H and γ (t ) is the spectral gap of
the Hamiltonian hS restricted over a square region S of side
length t .

Subsequent works have made further progress in this di-
rection. The results of [20] have been extended to a two-
dimensional lattice with open boundary conditions in [21],
with the additive term scaling as t−3/2. The work [22] shows
that for a gapless Hamiltonian on a lattice L of finite dimen-
sion, the local gap threshold scales as O( ln2(t )

t ). Remarkably,
it builds upon the Martingale method [9] and the detectability
lemma [23], rather than the techniques in [10,20,21] sketched
earlier. More recently, [24] improved this to an upper bound of
3
t (on a finite-dimensional lattice) for the hypercubic regions
of side length t .

II. OUR RESULT

We prove a nearly optimal local gap threshold of O( 1
t2 )

on any finite-dimensional regular lattice. More precisely, let
us consider a D-dimensional regular lattice L with unit cells
as hypercubes and spins situated on the vertices. Suppose the
local Hamiltonian H is defined as H = ∑

e Pe, where e runs
over the unit cells of L and Pe is supported only on the 2D

vertices of the corresponding unit cell. This particular setup
is chosen for convenience, and our results can be generalized
to other lattices as long as the interactions Pe are local. As
before, let γ be the spectral gap of H . For a tuple of integers
(t1, . . . , tD), we let γ (t1, t2, . . . , tD) denote the minimum spec-
tral gap over all Hamiltonians hS restricted to hyperrectangles
S of size t1 × t2 × . . . × tD (where ti is the side length along
the ith axis). We show that

γ (t1, t2, . . . , tD) = O

(
γ + 1

minqt2
q

)
, (1)

where the notation O(·) hides the factors that depend on D
(see the formal statement in Theorem 2 in the Appendix).
Note that we do not require H to be translationally invariant.
The statement applies to both the open and periodic boundary
conditions on the Hamiltonian H . For hypercubic regions
with t1 = t2 = · · · = tD = t , the additive term scales as O( 1

t2 ),
improving upon prior works for t larger than a constant that
depends on D.

As discussed after the proof of Theorem 2 in the Ap-
pendix, the additive term of 1

minqt2
q

cannot be improved even

in the translationally invariant case (as witnessed by many
parallel copies of a chain of the Heisenberg ferromagnet),
except potentially for the constant that depends on D. Further,
Eq. (1) would be false if γ (t1, t2, . . . , tD) were defined as an
average (instead of a minimum) over hyperrectangles of size
t1×t2× . . . ×tD.

III. PROOF OUTLINE

It suffices to consider the one-dimensional case to discuss
the proof technique. We will explain later that the higher-
dimensional case is a simple recursive application of this one-
dimensional argument. Consider the one-dimensional nearest-
neighbor Hamiltonian H = ∑

i Pi,i+1 on an open chain of
spins, with spectral gap γ and ground space G. Let γ (t ) be the
minimum spectral gap over all Hamiltonians

∑k+t−1
i=k+1 Pi,i+1,

where k ∈ {0, 1, . . . , n − t}. Central to our argument is the
coarse-grained Hamiltonian H̄ (t ) = ∑

S QS from [25], which
has the same ground space G. Here, S are some sets of t
consecutive spins (see Fig. 1), and QS project onto the nonzero
eigenstates of

∑
i,i+1∈S Pi,i+1. Let γ (H̄ (t )) be the spectral

gap of H̄ (t ). The coarse-grained Hamiltonian provides a link
between γ and γ (t ), as made precise in the following obser-
vation [26]:

γ (H̄ (t )) � 2γ

γ (t )
. (2)

Its formal proof (in slight generality incorporating the higher-
dimensional lattices) will be given in the Appendix. It was
shown in [25] that for t = �( 1√

γ
), γ (H̄ (t )) = �(1). This

immediately says that γ (t ) = O(γ ) for this choice of t . An
extension of this result to all t relies on an estimate of the
“shrinking ability” of low-degree Chebyshev polynomials,
which is shown in Claim 1 in the Appendix (see also Theorem
42 in [27] for a similar estimate). It shows that γ (H̄ (t )) =
�( t2γ

1+t2γ
), using the converse of the detectability lemma [25].

Plugging in Eq. (2), we find that γ (t ) = O(γ + 1
t2 ). Note that

we did not require translation invariance and the argument
can easily be modified for the periodic chain by considering a
similar coarse-grained Hamiltonian.

To explain the argument for higher-dimensional lattices,
consider a Hamiltonian H = ∑n1−1

i=1

∑n2−1
j=1 Pi, j on a two-

dimensional square lattice {1, 2, . . . , n1} × {1, 2, . . . , n2},
where Pi, j is supported on the spins {(i, j), (i + 1, j), (i, j +
1), (i + 1, j + 1)}. Following [28], we can view this Hamilto-
nian as a one-dimensional Hamiltonian H = ∑n1−1

i=1 Hi, where
Hi = ∑n2−1

j=1 Pi, j is the “column” Hamiltonian acting on two
columns of spins, that is, {∀ j : (i, j)} and {∀ j : (i + 1, j)}
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FIG. 2. We can view the Hamiltonian on a two-dimensional
lattice as a Hamiltonian on a one-dimensional chain of a column of
spins (dark blue rectangles). The interaction H4 between the fourth
and fifth columns is shown as the red rectangle, which decomposes
as H4 = ∑n2−1

j=1 P4, j .

(see Fig. 2). Such a one-dimensional view is not helpful for the
technique used in [10,20,21,24], as the column Hamiltonians
Hi are not projectors (recall the sketch of the proof given
in the Introduction, which crucially uses the fact that Pi,i+1

are projectors). But our method can be applied to a sum
of column Hamiltonians in the same manner as the one-
dimensional case. We relate the spectral gap of H to the

spectral gap of hS
def= ∑

i∈S Hi, where S is some continuous
subset of {1, 2, . . . , n1} of size t1, up to the additive factor of
O( 1

t2
1

). Now, hS is a local Hamiltonian on t × n2 spins (red

region in Fig. 3) and can also be viewed as a sum
∑n2−1

j=1 H ′
j of

“row” Hamiltonians H ′
j

def= ∑
i∈S Pi, j acting on rows of spins

{∀ i ∈ S : (i, j)} and {∀ i ∈ S : (i, j + 1)}. Thus, we can apply
the same argument to hS , relating its spectral gap to the

spectral gap of some local Hamiltonian hS,S′
def= ∑

i∈S, j∈S′ Pi, j

(green region in Fig. 3). Here, S′ is a set of size t2, implying
that hS,S′ is supported on a square region of size t1 × t2. The
overall additive factor is O( 1

t2
1

+ 1
t2
1

) = O( 1
minq∈{1,2}t2

q
). The same

recursive argument applies to higher dimensions.

IV. COMPARISON TO PRIOR WORK

As already mentioned, our tools significantly differ from
those employed in [10,20,21,24]. Similar to us, Ref. [22]
employs the detectability lemma and its converse to obtain
the local gap threshold. But it does not use the coarse-grained
Hamiltonians and builds upon the Martingale method. We
remark that it may be possible to improve their local gap
threshold from O( ln2(t )

t ) to O( poly[ln(t )]
t2 ). This is because the

statement in Theorem 11 in [22] can be improved using the
ideas presented in [29]. Such an improvement would still be
slightly weaker than our bound in Eq. (1), which does not
contain the poly[ln(t )] factor.

FIG. 3. Our strategy is to lower bound the spectral gap of H with
the spectral gap of the Hamiltonian hS supported on the red region
S × {1, 2, . . . , n2}. The spectral gap of hS can, in turn, be lower
bounded by the spectral gap of the Hamiltonian hS,S′ supported on
the green region S × S′.

V. CONCLUSION

In this work, we have derived a relation between the
(global) spectral gap and the local spectral gap of frustration-
free local Hamiltonians on a lattice, along the lines of Knabe
[10]. The relation is optimal up to factors that depend on
the dimension of the lattice. It may be potentially improved
if the Hamiltonian has further symmetry. For concreteness,
consider a local Hamiltonian H = ∑

e Pe, where e runs over
the edges of the lattice and Pe is the same interaction across
every edge (in other words, the Hamiltonian is isotropic and
translationally invariant). In this case, we conjecture that the
additive term in Eq. (1) can be improved to 1∑

q t2
q
, which is the

inverse-squared diameter of the hyperrectangles.
Our proof is based on the technique of the coarse-grained

Hamiltonian introduced in [25] and shows how the detectabil-
ity lemma [23] can be used to capture yet another feature
of the frustration-free systems. Given the recent success of
Knabe’s method for bounding the spectral gap of the AKLT
model on a hexagonal lattice [14], it would be interesting
to apply our method to bound the spectral gaps of a larger
class of frustration-free Hamiltonians on a two-dimensional
lattice (see [30,31] for more applications of prior techniques).
It would also be interesting to find implications of our results
for the existence or absence of chiral edge modes in three or
more dimensions (cf. [21]).
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APPENDIX

1. Low-degree behavior of Chebyshev polynomials

A Chebyshev polynomial of degree m is defined as

Tm(x) =
{

cos[m arccos(x)] if |x| < 1,

cosh[m cosh−1(x)] if |x| � 1.

It has found applications in area laws [2,3], the subvolume law
[28], and the decay of correlation [29]. We have the following
claim (see also Theorem 42 in [27]).

Claim 1. Fix ν ∈ (0, 1
4 ) and a real number m > 0. Consider

the polynomial

Stepm,ν (x) = T
m�
(−1 + 2x

1−ν

)
T
m�

(
1+ν
1−ν

) .

It holds that Stepm,ν (1) = 1 and

|Stepm,ν (x)| � 1

1 + m2ν
2(1−ν)

for x ∈ (0, 1 − ν).
Proof. The relation Stepm,ν (1) = 1 trivially holds. Since

T
m�(−1 + 2x
1−ν

) ∈ {−1, 1} for x ∈ (0, 1 − ν), we have
|Stepm,ν (x)| � 1

T
m�( 1+ν
1−ν

)
for x ∈ (0, 1 − ν). We wish to upper

bound 1
T
m�( 1+ν

1−ν
)
. Let w be such that cosh(w) = 1+ν

1−ν
. Then

T
m�

(
1 + ν

1 − ν

)
= cosh(
m�w) � 1 + 
m�2w2

2

� 1 + m2w2

2
. (A1)

Now,

1 + ν

1 − ν
= cosh(w) = ew + e−w

2

⇒ 2ν

1 − ν
= ew + e−w − 2

2
=

(
e

w
2 − e− w

2
)2

2
.

This implies

e
w
2 − e− w

2 = 2

√
ν

1 − ν
.

Solving the quadratic equation for e
w
2 , we find

e
w
2 =

√
1 + ν

1 − ν
+

√
ν

1 − ν
� 1 +

√
ν

1 − ν
.

Thus,

w � 2 ln

(
1 +

√
ν

1 − ν

)
�

√
ν

1 − ν
,

for ν � 1
4 . Equation (A1) now implies

T
m�

(
1 + ν

1 − ν

)
� 1 + m2w2

2
� 1 + m2ν

2(1 − ν)
,

which leads to

|Stepm,ν (x)| � 1

T
m�
(

1+ν
1−ν

) � 1

1 + m2ν
2(1−ν)

for x ∈ (0, 1 − ν).

2. Formal setup and the main result

Here, we introduce notations to analyze both the open
chain and closed chain of qudits [32]. Let [a : b] denote the set
{a, a + 1, . . . , b}. Consider a one-dimensional closed chain
of n qudits, indexed by integers {1, 2, . . . , n}, of potentially
varying dimensions. The indices of the qudits are taken in a
manner in which the (n + k)th index is the same as the kth
index. Introduce the nearest-neighbor local Hamiltonian

H =
n∑

i=1

Hi, (A2)

where Hi is a Hermitian operator which acts nontrivially
only on qudits i, i + 1. Further assume that Hi admits the
decomposition

Hi =
∑

j

Pi j, (A3)

where Pi j are projectors that act nontrivially only on qudits
i, i + 1. We have the following assumptions on the set of
projectors {Pi j}i, j :

(i) Each Pi j does not commute with, at most, g other terms
from the set {Pi j}i, j .

(ii) The projectors can be divided into L layers
T1, T2, . . . , TL, where the terms within each layer mutually
commute.

We further assume H is frustration free, which means that
the ground energy is zero. Let G be the ground space of H .
Note that frustration freeness implies that Pi jG = 0. We shall
write G⊥ for the subspace of states orthogonal to G.

If we are interested in an open chain of qudits, then we sim-
ply assume that Hn = 0 (note that we are not considering the
translationally invariant case). This will lead to some minor
changes that we will highlight as the arguments proceed.

For a contiguous subset S of the chain, let hS
def=∑

i:i,i+1∈S Hi be the local Hamiltonian made out of terms in
Eq. (A2) that are entirely supported in S. Define γ (S) as the

smallest nonzero eigenvalue of hS , and let γ
def= γ ([1 : n]) be

the spectral gap of H . Let

γ (t )
def= minaγ ([a : a + t − 1])

denote the minimum spectral gap over all continuous seg-
ments of length t . Observe that the set of continuous segments
is different for the open chain and the closed chain. Thus,
the minimization over a in the above expression requires
the additional condition that a ∈ [1 : n − t + 1] for the open
chain. Our main theorem is as follows, which upper bounds
γ (t ) in terms of the spectral gap γ . The statement remains the
same for both the open chain and the closed chain.
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FIG. 4. Dividing the chain into contiguous segments of length t : Here, we assume n = 37 and t = 5. The remainder when n is divided by
t is 2. We set r1 = r2 = 1 and rk = 0 for k > 2. The green rectangles represent the sets Sj . The red and blue rectangles represent the sets Tj .
The blue rectangles are to be viewed as a single contiguous region on the closed chain when Hn �= 0 and are assumed to not exist on the open
chain when Hn = 0. The first three rectangles, both green and red, are separated by one qudit.

Theorem 1. Suppose γ � g2

4 . For every integer 8L2 < t <

n/5, it holds that

γ (t ) � 103L2g2

t2
+ 6γ .

Note that we have not tried to optimize the parameters
appearing in the above expression. For specific applications,
it may be possible to obtain stronger bounds. The rest of the
section is devoted to the proof of Theorem 1.

a. Detectability lemma

The detectability lemma [23] is an important tool for the
study of frustration-free systems. Its central object is the de-
tectability lemma operator, defined as a product of projectors
1 − Pi j taken layer by layer. More precisely, define

DL(H )
def=

∏
α∈[1:L]

∏
i, j∈Tα

(1 − Pi j ).

The following lemma holds, the statement of which is taken
from Corollary 3 in [25].

Lemma 1. Detectability lemma [23]. For any quantum state
ψ ∈ G⊥, we have

‖DL(H )|ψ〉‖2 � 1

1 + γ /g2
.

A converse result stated in Lemma 4 in [25] is a corollary
of [33].

Lemma 2. Converse of the detectability lemma [25,33]. For
any quantum state ψ ,

‖DL(H )|ψ〉‖2 � 1 − 4〈ψ |H |ψ〉.
Here, we provide a short proof (with a minor improvement)

in the special case of L = 2. The proof is deferred to the end
of this Appendix.

Lemma 3. Suppose L = 2. It holds that

‖DL(H )|ψ〉‖2 � 1 − 3〈ψ |H |ψ〉.

b. Coarse-grained Hamiltonian

Another tool that we will use is the notion of a coarse-
grained Hamiltonian [2,25]. Let QS be the projector orthog-
onal to the ground space of hS . By convention, we set Qφ = 0
for the empty set φ. Fix a coarse-graining parameter 8L2 <

t < n/5, and let quo = � n
t � and r = n − t × quo be the quo-

tient and remainder when n is divided by t , respectively .
Identify sets S1, S2, . . . , Squo using the following rules.

(i) Sk
def= [sk : s′

k], with 1 � s1 < s′
1 < s2 < s′

2 < · · · <

squo < s′
quo � n. Further, |Sk| = t .

(ii) Let rk = sk+1 − s′
k − 1 be the number of qudits sand-

wiched between Sk, Sk+1 for k ∈ [1 : quo − 1]. Let rquo =
n − s′

quo + s1 − 1 be the number of qudits sandwiched be-
tween Squo and S1. Observe that

∑quo
k=1 rk = r. We require that

rk are not too large. That is, rk � 
r/quo� for all k. Since
n
t > 5, this implies that

rk � 
r/5� � t/4. (A4)

(iii) For the open chain, with Hn = 0, we require s1 = 1
and s′

quo = n.
Next, choose another collection of quo continuous sets of

size t each, which are placed “half way” between adjacent S’s.
More precisely, the sets T1, T2, . . . , Tquo have the following
properties.

(i) For k < quo, Tk = [s′
k − � t−rk

2 � + 1 : sk+1 + 
 t−rk
2 � −

1].
(ii) For the open chain (with Hn = 0), let Tquo = φ. For the

closed chain, let

Tquo =
[

s′
quo −

⌊
t − rquo

2

⌋
+ 1 : s1 +

⌈
t − rquo

2

⌉
− 1

]
.

Two examples of these sets are depicted in Figs. 4 and 5.
Observe that the set Tk has an overlap of at least � t−rk

2 � with
sets Sk and Sk+1. Using t � 8L2 � 8 and Eq. (A4), this can be
lower bounded by⌊

t − rk

2

⌋
�

⌊
t − t/4

2

⌋

=
⌊

3t

8

⌋
� 3t

8
− 1 = t

4
+ t

8
− 1 �

⌊
t

4

⌋
. (A5)

Following [25], we define the coarse-grained Hamiltonian

H̄ (t )
def=

∑
k

(QSk + QTk )

and the corresponding detectability operator

DL(t )
def=

(∏
k

(1 − QSk )

)(∏
k

(1 − QTk )

)
.

Observe that the ground space of H̄ (t ) coincides with G. Let
the spectral gap of H̄ (t ) be γ (H̄ (t )). The following lemma
was shown in [25]. We provide its proof towards the end of
this Appendix for completeness.

Lemma 4. It holds that

1 − 3γ (H̄ (t )) � maxψ∈G⊥‖DL(t )|ψ〉‖2

� maxx∈(0,1− γ

g2+γ
)Step t

8L ,
γ

g2+γ

(x).

Now, we proceed to the proof of our main theorem.
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FIG. 5. Assume n = 38, t = 18, and Hn = 0 (open chain). In this case, r = 2. There is exactly one set T1 and two sets S1, S2.

c. Proof of Theorem 1

We start with the inequality for all 1 � k � quo,

QSk + QTk � 1

γ (Sk )
hSk + 1

γ (Tk )
hTk � 1

γ (t )

(
hSk + hTk

)
.

Note that the above inequality also holds in the case of the
open chain, as Tquo = φ implies QTquo = 0 and hTquo = 0.
Summing over k and using the definition of H̄ (t ), this implies
that

H̄ (t ) � 1

γ (t )

∑
k

(
hSk + hTk

)

= 1

γ (t )

∑
k

⎛
⎝ ∑

i:Supp(Hi )∈Sk

Hi +
∑

i:Supp(Hi )∈Tk

Hi

⎞
⎠

� 2

γ (t )
H.

Here, the last inequality holds since each Hi is supported
within, at most, one Sk and, at most, one Tk . As a result, we
have the following inequality:

γ (H̄ (t )) = minψ∈G⊥〈ψ |H̄ (t )|ψ〉

� 2

γ (t )
minψ∈G⊥〈ψ |H |ψ〉 = 2γ

γ (t )
. (A6)

Lemma 3 ensures that

γ (H̄ (t )) � 1
3 (1 − maxx∈(0,1− γ

g2+γ
)Step t

8L ,
γ

g2+γ

(x)).

Now we use Claim 1, setting m = t
8L and ν = γ

g2+γ
� γ

g2 � 1
4 .

This ensures that ν
1−ν

= γ

g2 , and we obtain

γ (H̄ (t )) � 1

3

(
m2ν

2(1−ν)

1 + m2ν
2(1−ν)

)
= 1

3

t2γ

128L2g2 + t2γ

� t2γ

400L2g2 + 3t2γ
.

Substituting it in Eq. (A6), we find

2γ

γ (t )
� t2γ

400L2g2 + 3t2γ
⇒ γ (t ) � 103L2g2

t2
+ 6γ .

This concludes the proof.

3. Local versus global spectral gap on D-dimensional lattices

Consider a D-dimensional regular lattice L = [1 : n1] ×
[1 : n2] × · · · × [1 : nd ], and let

HL =
∑

i

Pi

be a frustration-free local Hamiltonian, where the index i
enumerates the unit cells of the lattice and Pi acts nontrivially
only on the vertices of the ith unit cell. Let γ be the spectral
gap of HL. Since Theorem 1 also applies to periodic chains,
the results below can similarly be extended to Hamiltonians
with periodic boundary conditions on the lattice. We study this
model as an illustrative example and highlight that the results
below easily generalize for any local Hamiltonian of constant
locality on the lattice.

In the above setting, we have L, g � (3D)D. For a region
R ⊆ L, let γ (R) be the spectral gap of the Hamiltonian

HR =
∑

i:Pi∈supp(R)

Pi.

For integers t1, . . . , tD, we define γ (t1, . . . , tD) as the mini-
mum of γ (R) over all hyperrectangular regions R of dimen-
sion t1 × t2 × . . . × tD. Formally,

γ (t1, . . . , tD)

= mina1,a2,...,aD:0�ai�ni−tiγ ([a1 + 1 : a1 + t1]

× [a2 + 1 : a2 + t2] × · · · × [aD + 1 : aD + tD]).

We show the following theorem.
Theorem 2. Suppose 264DL < ts < ns/5 for all s ∈ [1 : D]

and γ � g2

16D . It holds that

γ (t1, t2, . . . , tD) � 6Dγ + 200L2g26D 1

minqt2
q

.

Proof. The proof will follow by inductive application of
Theorem 1.

Base case. We view HL as a Hamiltonian on a one-
dimensional chain of large qudits. This is achieved by com-
bining the qudits {i} × [1 : n2] × · · · × [1 : nD] into a single
ith qudit of the chain. Defining

Hi
def=

∑
i:Pi∈supp({i,i+1}×[1:n2]×···×[1:nD])

Pi

[see Eq. (A3)], we obtain the identity HL = ∑n1−1
i=1 Hi, which

is the decomposition given in Eq. (A2). This allows us to
conclude, from Theorem 1, that

γ (t1, n2, . . . , nD) � 103L2g2

t2
1

+ 6γ . (A7)

Since

γ � 1

16D−1

g2

16

and

10
3
2 Lg

t1
= 1

4D

g

2

2 × 10
3
2 L4D

t1
� 1

4D

g

2
,
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Eq. (A7) additionally implies that

γ (t1, n2, . . . , nD) � 1

16D

g2

4
+ 6

16D−1

g2

16

� g2

16D−1
<

g2

4
, (A8)

maintaining the condition on the spectral gap in Theorem 1.
Recursion. Fix an s ∈ [2 : D]. Assume

γ (t1, t2, . . . , ts−1, ns, . . . , nD) � g2

16D−s+1
<

g2

4
, (A9)

which is true for s = 2 via Eq. (A8) and for s > 2 via Eq. (A9)
in the previous recursion. Let

R = [a1 + 1 : a1 + t1] × · · · × [as−1 + 1 : as−1 + ts−1]

×[1 : ns] × · · · × [1 : nD]

be a hyperrectangle that achieves the minimum in the defini-
tion of

γ (t1, t2, . . . , ts−1, ns, . . . , nD).

Defining

H ′
i

def=
∑
i:Pi∈

supp([a1+1:a1+t1]×···×[as−1+1:as−1+ts−1]{i,i+1}[1:ns+1]×···×[1:nD ])

Pi,

we have the decomposition

HR =
ns−1∑
i=1

H ′
i ,

which is the same as given in Eq. (A2). Since the values of g
and L remain unchanged for HR, we can apply Theorem 1 [see
Eq. (A9)] and obtain the relation

γ (t1, t2, . . . , ts, ns+1, . . . , nD) � 103L2g2

t2
s

+ 6γ (R)

= 103L2g2

t2
s

+ 6γ (t1, t2, . . . , ts−1, ns, . . . , nD). (A10)

Using Eqs. (A9) and (A10), we further have

γ (t1, t2, . . . , ts, ns+1, . . . , nD) � 1

16D

g2

4
+ 8g2

16D−s+1
� g2

16D−s
.

This ensures that Eq. (A9) continues to be satisfied as we
update s → s + 1.

Having obtained Eq. (A10) for all s ∈ [2 : D] and Eq. (A7),
we combine them to arrive at the upper bound

γ (t1, t2, . . . , tD) � 6Dγ + 103L2g2

⎛
⎝ D∑

q=1

6D−q

t2
q

⎞
⎠

� 6Dγ + 103L2g2 6D

5

1

minqt2
q

.

This concludes the proof. �
The dependence on minqt2

q cannot be improved, al-
though the dependence on D might not be optimal. To
show this, we provide the following example adapted from
[20]. We consider the Heisenberg ferromagnet, which is a
one-dimensional chain of qubits with a frustration-free lo-
cal Hamiltonian defined by the nearest-neighbor interaction
1
2 (|01〉 − |10〉)(〈01| − 〈10|). The spectral gap of an open

chain of length n1 is π2

2n2
1
. We take n2 × n3 × · · · × nD in-

dependent copies of this system and arrange them on a D-
dimensional lattice, with the chains running in the “first”
dimension. That is, for each i2, . . . , iD ∈ [1 : n2] × · · · × [1 :
nD], the set of qubits {(i, i2, i3, . . . , iD)}n1

i=1 interacts via the

nearest-neighbor Heisenberg ferromagnetic interaction. Con-
sider all hyperrectangles of dimension t × n2 × · · · × nD. Any
such hyperrectangle contains n2 × n3 × · · · × nD independent
copies of the Heisenberg ferromagnetic chain of length t ,
and hence, the local spectral gap in this hyperrectangle is
the minimum local spectral gap of each copy, which is π2

2t2 .

Equivalently, γ (t, n2, . . . , nD) = π2

2t2 . On the other hand, in
the limit n1, n2, . . . , nD → ∞, we have γ → 0. Since t is
the smallest of {t, n2, . . . , nD}, this saturates the bound in
Theorem 2 (up to the factors that depend on D).

The definition of γ (t1, t2, . . . , tD) takes a minimum over all
hyperrectangles of dimension t1 × t2 × · · · × tD. To see that
this is cannot be improved to an average of the spectral gap
over all hyperrectangles, consider the following Hamiltonian
for D = 1:

H =
k−1∑
i=1

Pi,i+1 +
n∑

i=k+1

P′
i ,

where Pi = 1
2 (|01〉 − |10〉)(〈01| − 〈10|) and P′

i = |1|〉|〈1|.
This is the same Heisenberg ferromagnet on the first k qubits
and a trivial Hamiltonian on the rest. For this Hamiltonian,
γ = O( 1

2k2 ). But the spectral gap, averaged over all Hamilto-
nians on line segments of length k, is at least 1 − k

n . This is
much larger than γ + 1

k2 .

4. Proof of Lemma 3

Proof. Define two projectors

	1
def=

∏
i, j∈T1

(1 − Pi j ), 	2
def=

∏
i, j∈T2

(1 − Pi j ).

Since Pi j mutually commute for all i, j ∈ Tα , we have

	1 � 1 −
∑

i, j∈T1

Pi j, 	2 � 1 −
∑

i, j∈T2

Pi j .

Adding both sides, we find

	1 + 	2 � 21 −
⎛
⎝ ∑

i, j∈T1

Pi j +
∑

i, j∈T2

Pi j

⎞
⎠ = 21 − H. (A11)
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Next, we apply Jordan’s lemma [34], which states that 	1 and
	2 can be simultaneously block diagonalized in the following
sense. There exist orthogonal projectors 	̄β of the dimension
of, at most, 2, such that

	α =
∑

β

	̄β	α	̄β, ∀α ∈ {0, 1}.

Moreover, |vα,β |〉|〈vα,β | def= 	̄β	α	̄β is either a one-
dimensional normalized vector or a null vector. As a
consequence, we have the identities

	2	1	2 =
∑

β

|〈v1,β |v2,β〉|2|v2,β |〉|〈v2,β |,

	1 + 	2 =
∑

β

(|v1,β |〉|〈v1,β | + |v2,β |〉|〈v2,β |). (A12)

We will show the following claim.
Claim 2. Let 0 � ν � 3−√

5
2 . It holds that

|v1,β |〉|〈v1,β | + |v2,β |〉|〈v2,β |
� ν|〈v1,β |v2,β〉|2|v2,β |〉|〈v2,β | + (2 − ν)	̄β.

Before proving the claim, let us show how it implies the
lemma. Setting ν = 1

3 < 3−√
5

2 and substituting Claim 2 in
Eq. (A12), we find that

	1 + 	2 � 1
3	2	1	2 + (

2 − 1
3

)
1

= 1
3 DL†(H )DL(H ) + 5

31.

Using this in Eq. (A11), we obtain

21 − H � 1
3 DL†(H )DL(H ) + 5

31

⇒ 1
31 − H � 1

3 DL†(H )DL(H ).

This proves the lemma after multiplying both sides by |ψ〉.
Proof of Claim 2. Let |0〉 def= |v2,β〉 and a|0〉 + b|1〉 =

|v1,β〉, where |a|2 + |b|2 = 1. The claimed inequality is
equivalent, in matrix representation, to(

1 + |a|2 ab∗

a∗b |b|2
)

� ν|a|2
(

1 0
0 0

)
+ (2 − ν)

(
1 0
0 1

)

=
(

2 − ν|b|2 0
0 2 − ν

)
.

This can be rewritten as

0 �
(

1 − |a|2 − ν|b|2 −ab∗

−a∗b 2 − ν − |b|2
)

=
(

(1 − ν)|b|2 −ab∗

−a∗b 1 + |a|2 − ν

)
.

Since the trace of the matrix on the right-hand side is positive
for ν < 1, the above inequality is satisfied if the determinant
is non-negative. The determinant can be computed to be

(1 + |a|2 − ν)|b|2(1 − ν) − |a|2|b|2
= |b|2[(1 − ν)2 + |a|2(1 − ν) − |a|2]

= |b|2[(1 − ν)2 − ν|a|2],

which is non-negative for all ν satisfying (1 − ν)2 − ν � 0.
This is satisfied if ν � 3−√

5
2 . This completes the proof. �

5. Proof of Lemma 4

Proof. The lower bound follows from Lemma 3. The upper
bound uses the following claim, adapted from [29].

Claim 3. Let F be any polynomial of the degree of, at most,

 t

8L � such that F (1) = 1 (see Claim B.1 in [28]). It holds that

DL(t ) =
(∏

k

(1 − QSk )

)
F [DL(H )†DL(H )]

(∏
k

(1 − QTk )

)
.

(A13)

Before we outline the proof of this claim, note that we can
set F = Step t

8L ,
γ

g2+γ

to obtain

maxψ∈G⊥‖DL(t )|ψ〉‖2

= maxψ∈G⊥‖
(∏

k

(1 − QSk )

)

× Step t
8L ,

γ

g2+γ

[DL(H )†DL(H )]

(∏
k

(1 − QTk )

)
|ψ〉‖2

� maxψ∈G⊥‖Step t
8L ,

γ

g2+γ

[DL(H )†DL(H )]|ψ〉‖2.

In the last inequality, we used the following:(∏
k

(1 − QTk )

)
|ψ〉 ∈ G⊥, ‖

(∏
k

(1 − QTk )

)
|ψ〉‖ � 1.

From Lemma 1, the second largest eigenvalue of
DL(H )†DL(H ) is, at most, 1

1+ γ

g2
= 1 − γ

g2+γ
. This concludes

the proof of Lemma 4.
Proof outline of Claim 3. Following Claim B.1 in [28], we

consider the “layer operators”

DLα
def=

∏
i, j:Pi j∈Tα

(1 − Pi j ).

Observe that DL(H ) = DL1DL2 · · · DLL and hence

DL(H )†DL(H ) = DLL · · · DL2DL1DL2 · · · DLL.

This implies that the operator

[DL(H )†DL(H )]q = (DLL · · · DL2DL1DL2 · · · DLL−1)q−1

× DLL · · · DL2DL1DL2 · · · DLL

is a product of (2L − 2)(q − 1) + 2L − 1 = q(2L − 2) + 1
operators DLα . Suppose we have

q �
⌈

t

8L

⌉
⇒ q(2L − 2) + 1 < �t/4� (using t � 8L2).

Since the overlap between an S set and the adjacent T set is at
least �t/4� [Eq. (A5)], all the operators can be “absorbed” in
either [

∏
k (1 − QSk )] or [

∏
k (1 − QTk )]. This ensures that(∏

k

(1 − QSk )

)
[DL(H )†DL(H )]q

(∏
k

(1 − QTk )

)

=
(∏

k

(1 − QSk )

)(∏
k

(1 − QTk )

)
.

This proves the claim if we take the linear combination of the
above equation according to the polynomial F . �
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