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Organic molecular crystals are expected to feature appreciable electron-phonon interactions that influence
their electronic properties at zero and finite temperature. In this work, we report first-principles calculations
and an analysis of the electron-phonon self-energy in naphthalene crystals. We compute the zero-point
renormalization and temperature dependence of the fundamental band gap, and the resulting scattering lifetimes
of electronic states near the valence- and conduction-band edges employing density functional theory. Further,
our calculated phonon renormalization of the GW -corrected quasiparticle band structure predicts a fundamental
band gap of 5 eV for naphthalene at room temperature, in good agreement with experiments. From our calculated
phonon-induced electron lifetimes, we obtain the temperature-dependent mobilities of electrons and holes in
good agreement with experimental measurements at room temperature. Finally, we show that an approximate
energy self-consistent computational scheme for the electron-phonon self-energy leads to the prediction of strong
satellite bands in the electronic band structure. We find that a single calculation of the self-energy can reproduce
the self-consistent results of the band gap renormalization and electrical mobilities for naphthalene, provided
that the on-the-mass-shell approximation is used, i.e., if the self-energy is evaluated at the bare eigenvalues.

DOI: 10.1103/PhysRevB.101.165102

Molecular crystals, periodic arrays of molecules bound by
noncovalent interactions, can nonetheless feature relatively
high charge carrier mobilities [1–4]. The acene family of
molecular crystals are of particular interest, having high crys-
talline purity, making them attractive for fundamental stud-
ies and various optoelectronic applications [5–8]. In acenes,
each monomer consists of a rigid unit of fused benzene
rings. These monomers crystallize in a herringbone structure
(Fig. 1). Naphthalene, the second smallest of the acene family,
provides a popular testbed for electronic structure calculations
and experiments, with results that can often be extrapolated to
its larger siblings [9].

Electron-phonon coupling (EPC) has long been understood
to be important in determining the electronic and transport
properties of these materials [10–12]. Along with contribu-
tions from thermal lattice expansion, the EPC is responsible
for the temperature-dependent renormalization of the band
structure. Electron-phonon scattering and decay channels also
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result in finite lifetimes for electronic states and limit charge
carrier mobilities. The finite lifetimes result in a broadening of
the electronic bands that can be observed with photoemission
spectroscopy, for example [13,14].

The vast majority of prior theoretical studies of temper-
ature effects in organic crystals arising from EPC focus on
lifetimes and mobilities of charge carriers [4,12,15–27]. Prior
ab initio studies that explicitly calculate the renormaliza-
tion of band gaps are usually limited to few-atom systems
[28–33] or small molecules [34]. One study that calculated
both the broadening and renormalization of the band gap of
pentacene crystals used a tight-binding model parametrized
by many-body perturbation theory (MBPT) calculations [35],
reporting unusual quasidiscontinuities in the band structure
caused by EPC that have been corroborated by experimental
results, showing “kinks” in the electronic dispersion [35,36].
In another study, Vukmirović et al. [37] evaluated the EPC
matrix elements for two pairs of bands in naphthalene using
first-principles methods. They reported weak EPC, strength-
ening the argument for bandlike charge carrier transport. Lee
et al. [25] use a fully ab initio approach to calculate the
temperature-dependent hole mobility.
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In this work, we compute from first principles the tem-
perature dependence of the band structure and the electron
and hole transport properties of naphthalene crystals. We use
density functional theory and the dynamical Allen-Heine-
Cardona theory to compute both the real and imaginary contri-
butions to the electron-phonon self-energy. With this quantity,
we predict the temperature renormalization of the band gap,
and we obtain the hole and electron mobilities within the
relaxation-time approximation. We discuss the details of the
calculated frequency-dependent electron-phonon self-energy
of the electron or hole, and identify features that should apply
to acene and other molecular solids, such as the approxi-
mate independence of the self-energy on the electron wave
vector k. We find that in naphthalene, the band dispersion,
phonon frequencies, and the renormalization energies are of
the same order of magnitude, challenging the validity of
perturbation theory in this system. We address this issue by
exploring a self-consistent computational scheme for the
electron-phonon self-energy, and we show that a single calcu-
lation of the self-energy can reproduce self-consistent results
of the band gap renormalization and charge carrier mobilities,
provided that the on-the-mass-shell approximation is used.

I. THEORY AND METHODS

A. Theoretical framework

The starting point for our calculations is density func-
tional theory (DFT), which provides Kohn-Sham orbital wave
functions ψnk and orbital energies ε0

nk, where n is the band
index and k is the wave vector. We rely on density functional
perturbation theory (DFPT) to compute the phonon coupling
potential, and we incorporate the electron-phonon interactions
via many-body perturbation theory, specifically a low-order
diagrammatic expansion of the electron-phonon self-energy
[38–40].

To obtain the electron-phonon self-energy, we follow the
approach described in [31,41]. To lowest order in perturbation
theory, the electron-phonon self-energy �

ep
nk can be divided

into two terms, namely the Fan and Debye-Waller (DW) terms

�
ep
nk(ω, T ) = �Fan

nk (ω, T ) + �DW
nk (T ). (1)

We briefly summarize each term. The frequency-dependent
Fan term is given as

�Fan
nk (ω, T ) =

∑
νq

1

2ωνq

∑
m

|gnmν (k, q)|2

×
[

Nνq(T ) + fmk+q(T )

ω − ε0
mk+q + ωνq + iη

+Nνq(T ) + 1 − fmk+q(T )

ω − ε0
mk+q − ωνq + iη

]
. (2)

In Eq. (2), the phonon modes are specified by indices ν, wave
vector q, and energies ωνq. Phonons couple electrons in state
nk with state mk+q through the first derivative of the electron
crystal potential V (1)

νq associated with the respective phonon’s
atomic displacement pattern. The electron-phonon matrix ele-
ments gnmν (k, q)=〈ψnk|V (1)

νq |ψmk+q〉 determine the coupling
strength between the electronic states and the phonons. The

temperature dependence of the Fan term arises from the
phonon (N) and electron ( f ) occupation factors. We can see
that even at zero temperature, the self-energy has a finite
value. The denominators give rise to poles at ω = ε0 ± ωνq,
which are rendered smooth with the parameter η; η, in prin-
ciple, is real, infinitesimal, and has the same sign as ω in
Eq. (2), which yields the time-ordered self-energy, in contrast
to the retarded self-energy [40]. In practice, we use a value of
0.025 eV to account for the finite q-grid sampling. Details of
the convergence of the self-energy with respect to q-grid and
η can be found in the Supplemental Material [42].

The frequency-independent Debye-Waller term

�DW
nk (T ) =

∑
νq

1

2ωνq
〈nk|V (2)

νq,νq|nk〉[2Nνq(T ) + 1] (3)

makes up the second part of the electron-phonon self-energy.
The DW term depends on the second derivative of the po-
tential V (2)

νq,νq, which is somewhat more arduous to calculate.
We use the rigid-ion approximation, which allows us to write
Eq. (3) in terms of the first derivative [38,43,44]. In this way,
we can obtain all values from DFT and DFPT calculations.

There are two main challenges in calculating the self-
energy efficiently. The first challenge is that q-space has to
be sampled more densely compared to a typical phonon band
structure calculation, which rapidly becomes the main bottle-
neck for large systems. In this work, we interpolate the phonon
coupling potential in real space, following prior work [45–48].
It is standard practice to interpolate the phonon frequencies
of a regular q-grid onto arbitrary q-points by means of a
Fourier transform of the dynamical matrices to real space,
and back to reciprocal space. Applying the same principle
here, we calculate the potential derivative with DFPT on a
coarse q-point grid and interpolate to a finer grid via Fourier
transform. We define the long-range component of the phonon
potential of atom κ along the Cartesian direction j as

V L
κ j (q, r) = i

4π

�

∑
G �=−q

ei(q+G)·(r−τκ )(q + G) j′ · Z∗
κ, j′ j

(q + G) · ε∞ · (q + G)
, (4)

where ε∞ is the static dielectric matrix without the lattice
contribution to the screening, and Z∗

κ, j′ j is the Born effective
charge tensor. These quantities are computed from DFPT by
including the response of the system to a macroscopic electric
field. The long-ranged component of the phonon potential
represents the dipole potential created by displacing the Born
effective charges of each atom, and becomes the dominant
contribution to the potential in the limit q → 0. Next, we
perform a Fourier transform of the short-range component
of the phonon coupling potential, starting from the coarse
q-point grid,

Wκ j (r − Rl ) =
∑

q

eiq·Rl
[
V (1)

κ j (q, r) − V L
κ j (q, r)

]
, (5)

where Wκ j (r − Rl ) represents the short-range component of
the perturbative potential associated with the displacement of
atom κ in the unit cell l along the Cartesian direction j, and r
is defined within the first unit cell (R0 = 0). The interpolated
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phonon potential for an arbitrary point q̃ is then

V (1)
κ j (q̃, r) ≈

∑
l

Wκ j (r − Rl )e
−iq̃·Rl + V L

κ j (q̃, r). (6)

This interpolation scheme reproduces the electron-phonon
coupling matrix elements with accuracy better than 1%, as
shown in the Supplemental Material [42]. It achieves the same
goal as the Wannier interpolation used in other works [48–50],
but avoids the computation of Wannier functions altogether.

The second challenge in the computation of the electron-
phonon self-energy lies in the sum over electronic states m in
Eq. (2), which can converge slowly with the number of bands.
We evaluate this sum explicitly using all valence bands and
conduction bands up to 5 eV above the last electronic state
for which the self-energy is computed. Above this cutoff, the
sum over infinite bands is replaced by a Sternheimer equation,
and their contribution to the self-energy is treated statically,
an approximation that has been shown to be effective in prior
work [41,44]. Furthermore, this contribution is evaluated on
the coarse q-grid, since the denominator of the self-energy in
Eq. (2) is never small for these bands, and is thus a smooth
function of q.

B. Computational details

DFT calculations are performed with the ABINIT code
[47,51,52] using Fritz-Haber-Institut norm-conserving pseu-
dopotentials [53], and setting the plane wave kinetic energy
cutoff to 45 Ha. We use the Perdew-Burke-Ernzerhof (PBE)
functional in combination with the Grimme-D3 correction
[54,55] to account for London dispersion forces. To obtain the
electronic ground state density, we sample the Brillouin zone
on a 
-centered k-grid of 2 × 4 × 2. All electronic energies
in this work are given relative to the valence-band maximum.

The phonons and associated potential derivatives are cal-
culated with DFPT, including the treatment of dispersion
forces [56–59]. A coarse 
-centered 4 × 6 × 4 q-grid gives
well-converged phonon frequencies and displacements after
interpolation of the dynamical matrix, as shown in our pre-
vious work [60]. In the present work, we start from an even
finer 6 × 8 × 6 grid, and we interpolate not only phonon
frequencies and displacements, but also the phonon potentials
and self-energy onto a 12 × 14 × 12 q-grid, which converges
the renormalization and broadening values within a few meV
(see the Supplemental Material [42] for convergence studies).

C. Lattice parameters

Naphthalene crystallizes in the P21/a space group, form-
ing a herringbone structure with two molecules per unit cell
(Fig. 1) that are held together by noncovalent interactions. As
discussed in previous work [61], relaxing lattice parameters
and atomic coordinates with van der Waals corrected func-
tionals or pairwise dispersion corrections results in excellent
agreement with low-temperature experiments. The relaxed
unit-cell volume of naphthalene obtained with PBE-D3 is
within 0.4% of the experimental value measured at 5 K. 1

1The experimental crystal structures used in this work are available
at the Cambridge Structural Database [62]. The identifiers for the

FIG. 1. Naphthalene is the smallest acene that crystallizes in a
herringbone structure. There are two molecules in the monoclinic
unit cell, each situated at inversion centers.

We use this relaxed unit cell for most of our calculations,
and we refer to it by its computed volume, �DFT. To simulate
thermal lattice expansion, we use fixed experimental lattice
parameters obtained at 295 K,1 and we relax the internal
atomic coordinates using PBE-D3. The volume of this room-
temperature structure is about 6% larger than that of the low-
temperature structure. The main expansion occurs in the ab
plane, and through a decreased tilt of the monoclinic cell (see
the Supplemental Material for all unit-cell parameters [42]).
Any calculations that use this experimental lattice are labeled
by this larger volume, �295K.

II. RESULTS AND DISCUSSION

A. Electronic and phonon band structures

The electronic band structure of naphthalene is charac-
teristic for a small molecule crystal [61]: it possesses a siz-
able band gap combined with flat, well-separated groups or
complexes of bands (Fig. 2). DFT yields an indirect gap of
3.01 eV between the valence-band maximum (VBM) at A and
the conduction-band minimum (CBM) at 
. The weak inter-
molecular interactions lead to small bandwidths for the com-
plexes less than 0.4 eV. Furthermore, because naphthalene
has two molecules per unit cell, the electronic bands double
up in so-called Davydov pairs [64,65]. In the vicinity of the
band gap, these Davydov pairs are separated from each other
by about 0.4 eV. This separation drastically reduces mixing
of states from different Davydov pairs. The wave functions
of solid naphthalene at the band edges therefore vary little
throughout the Brillouin zone, and closely resemble linear
combinations of gas-phase-like molecular orbitals. Dispersion
and interband interactions are higher for bands just below
−2 eV as the spacing between electronic levels decreases, and
for bands above 4.5 eV as the wave functions become more
delocalized.

For the phonon frequencies, we obtain excellent agree-
ment with experiments across the Brillouin zone using
PBE-D3 (see the Supplemental Material [42] for the full
phonon band structure in comparison with experimental

structures measured at 5 and 295 K are NAPHTA31 and NAPHTA36,
respectively, and published in association with [63].

165102-3



FLORIAN BROWN-ALTVATER et al. PHYSICAL REVIEW B 101, 165102 (2020)

Γ H1 M1 Z Γ X A Z

−2

0

2

4

en
er

gy
(e

V
)

VBM

CBM

FIG. 2. Electronic band structure of naphthalene calculated with
DFT. The locations of the conduction-band minimum (CBM) and
valence-band maximum (VBM) are indicated with black dots.

measurements from Refs. [66,67]), similar to our previous
results with the vdW-DF-cx functional [60]. Since we ana-
lyzed the vibrational properties of naphthalene in depth in
Ref. [60], we give only a brief overview of the main features
here. In naphthalene, intermolecular modes (<20 meV) can
be clearly distinguished from intramolecular modes (20–400
meV). Intermolecular modes are translational and librational
modes of rigid molecules, while for intramolecular modes, the
phonon displacement vectors resemble linear combinations of
gas phase vibrations.

We emphasize that, despite the clear separation between
inter- and intramolecular modes, we treat all phonon modes
on the same footing in our work. While hopping transport
models often use the rigid molecule approximation [68–70], it
has been shown that the mixed inter- and intramolecular low-
frequency modes can have large EPC contributions, especially
for larger molecules like rubrene [71].

Upon thermal lattice expansion, the spacing between
molecules becomes larger. The lowered interaction leads to
softening of the intermolecular modes, decreasing the lowest
frequencies by up to 40%. In contrast, intramolecular fre-
quencies, which depend on the covalent interatomic forces,
are found to change very little, as shown in the Supplemental
Material [42].

B. Temperature-dependent renormalization
of the band structure

We obtain the temperature-dependent electronic band
structure of naphthalene from the real part of the
electron-phonon self-energy using the on-the-mass-shell
approximation [72]

εnk(T ) = ε0
nk + Re

[
�

ep
nk

(
ε0

nk, T
)]

, (7)

where ε0
nk is the bare DFT eigenvalue with band index n and

wave vector k, and εnk is the renormalized energy.
The temperature dependence of the VBM, CBM, and

indirect band gap at fixed lattice parameters and neglecting
thermal expansion is shown in Fig. 3. The zero-point renor-
malization (ZPR) of the DFT band gap is calculated to be
−0.23 eV, with nearly equal contributions from a decrease of
the CBM (−0.12 eV) and an increase of the VBM energies
(+0.11 eV). This large correction reduces the DFT-PBE gap
from 3.01 to 2.78 eV.

2.8

2.9

3.0

3.1

en
er

g
y

(e
V

)

DFT 0 100 200 300

temperature (K)

−0.1

0.0

0.1

0.2

ΩDFT

Ω295K

0 300 600 900

temperature (K)

2.4

2.6

2.8

3.0

b
a
n
d

g
a
p

(e
V

)

DFT

(a) (b)

FIG. 3. (a) Renormalization and temperature dependence of the
band edge states at 
 and A, with �DFT. The dotted lines indicate
the ZPR, connecting the bare eigenvalues calculated with PBD-D3
(circles) with the renormalized energies at 0 K. The renormalized
energies for �295K (squares) at 300 K are plotted for comparison.
(b) ZPR (dotted) and temperature dependence (solid) of the indirect
band gap of naphthalene for �DFT. The red square shows the renor-
malization at 300 K using �295K.

At 300 K, the band gap at unit-cell volume �DFT is pre-
dicted to be reduced by an additional −0.12 eV. The rate of
change of the gap at this temperature is 0.05 eV/100 K, and
increases only slightly to the linear limit of 0.064 eV/100 K
at temperatures beyond 500 K.

The DFT gap for the experimental room-temperature struc-
ture at the enlarged volume �295K is 3.12 eV, an increase
of 0.11 eV compared to �DFT. The renormalization calcu-
lated at 300 K (−0.44 eV) brings it down to 2.68 eV. We
observe that the two contributions to the renormalization we
compute—the lattice expansion and the zero-temperature con-
tribution from the electron-phonon interaction—are not inde-
pendent, additive terms. The EPC shows non-negligible vol-
ume dependence, with the renormalization increasing by 26%
from−0.35 eV at �DFT to −0.44 eV at �295K. This can be ex-
plained by a narrowing of the electronic bands upon lattice
expansion and hence an increase in the electronic DOS. The
increased DOS near and at the band edges leads to more
scattering channels on the scale of the phonon energies, and
thus an overall larger self-energy. Altogether, the volume
expansion of �295K leads to two contributions to the renor-
malization of opposite signs, resulting in a band gap at 300 K
that is only 70 meV smaller than the value at 0 K.

For a more detailed analysis of the ZPR and temperature
dependence, we examine the individual phonon contributions
to the renormalization. Reorganizing Eq. (1), we can write

�
ep
nk(ω) =

∑
νq

[
�Fan

nk,νq(ω) + �DW
nk,νq

] =
∑
νq

�
ep
nk,νq(ω) (8)

to obtain the contribution from each phonon. For this analysis,
we calculate the self-energy on a q-grid of 6 × 8 × 6, since
this phonon decomposition does not hold for our interpolation
scheme with two q-grids.

In Fig. 4 we plot the real part of each �
ep
nk,νq(ε0

nk ) at 0 K—
i.e., each phonon’s contribution to the ZPR. To account for
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FIG. 4. Individual contributions of the phonon modes to the
renormalization of the CBM and VBM plotted against frequency,
with a Lorentzian smearing of 1 meV (red solid line, left axis). The
gray dotted line at 19 meV indicates the separation of inter- from
intramolecular modes. The blue dashed line (right axis) shows the
cumulative integral of the individual contributions.

a finite sampling of reciprocal space, we used a Lorentzian
broadening of 1 meV. The intramolecular phonon modes
around 190 meV are found to have the largest individual
contributions, in agreement with previous studies [25,37].
Overall, however, the contribution as a function of phonon
frequency is distributed relatively equally over the frequency
range, especially for the VBM, as can be seen from the
integral of the spectral density [blue line in Fig. 4(a)]. The
intermolecular modes situated below 19 meV (gray dashed
line in Fig. 4) contribute comparatively little to the ZPR.
Only these weakly coupling intermolecular and a few soft
intramolecular modes are populated at ambient temperatures,
and contribute to the further reduction of the gap at finite
temperatures.

A more quantitative description of the fundamental band
gap can be achieved by correcting the DFT band gap with
many-body perturbation theory within the GW approximation
for the self-energy due to electron-electron interaction, then
adding the EPC corrections to account for the electron-phonon
interaction. Our previous work shows that the GW method
increases the indirect DFT band gap of naphthalene by about
2.3 eV [61], thus bringing the band gap of the expanded room-
temperature structure to 5.4 eV. Adding the electron-phonon
coupling renormalization computed at 300 K, we obtain a
fundamental gap of 5.0 eV, in excellent agreement with the
experimental room temperature value of 5 eV [73].

The electron-electron correlation itself affects the EPC, as
reported in prior work, and efforts have been put toward devel-
oping methods to capture and quantify this effect [33,34,74–
76]. Considering the similarity of the magnitudes of electronic
bandwidth, phonon, and electron-phonon coupling energies in

TABLE I. Calculated mobilities in comparison with experimen-
tal values. We interpolated the experimental results reported in
Ref. [80] to 50 and 300 K, and we compare them to calculations
using the relaxed (�DFT) and experimental room-temperature volume
(�295K), respectively. Mobility values are given along crystal vectors
a and b, as well as c∗, defined as the vector perpendicular to the ab
plane. All values in cm2/V s.

Hole Electron

μh
a μh

b μh
c∗ μe

a μe
b μe

c∗

T = 50 K
Calc. (�DFT) 20.03 25.73 5.84 20.45 2.74 5.02
Expt. 65.73 68.31 35.89 7.18 3.31 0.94
T = 300 K
Calc. (�DFT) 3.42 4.89 0.56 2.48 0.66 0.38
Calc. (�295K) 0.96 2.24 0.20 0.61 0.29 0.19
Expt. 0.79 1.34 0.31 0.58 0.63 0.39

naphthalene, it is plausible that inclusion of electron-electron
correlation has a significant effect on the renormalization;
however, we defer this investigation to future work.

C. Electrical mobilities

We compute the electrical mobilities of the electrons (μe)
and the holes (μh) in the self-energy relaxation-time approxi-
mation [40,77,78] with the expression

μe,h
α (T ) = −e

ρe,h�

∑
n

∫
dk
�BZ

∂ f (ε, T )

∂ε

∣∣∣∣
εnk

|vnk,α|2τnk(T ),

(9)
where α is the Cartesian direction of the applied electric field
and the current, ρe,h is the carrier density of the electrons or
the holes, � and �BZ are the volumes of the unit cell and
the Brillouin zone, vnk,α is the velocity of the electronic state
nk along direction α, and the sum over bands is restricted
to conduction bands for μe and valence bands for μh. The
lifetimes τnk are obtained from the imaginary part of the
electron-phonon self-energy

τ−1
nk (T ) = 2

h̄
Im

[
�

ep
nk

(
ε0

nk, T
)]

. (10)

To evaluate Eq. (9), we use the WANNIER90 package [79] to
interpolate our computed electronic eigenvalues and velocities
to a 60 × 60 × 60 k-grid. Calculating the EPC on this fine
mesh is prohibitively expensive. We find, however, that the
frequency-dependent self-energy for the bands around the gap
is nearly independent of k for naphthalene (see the Supple-
mental Material for a detailed analysis [42]). We therefore ob-
tain the lifetimes τnk on the dense k-grid by interpolating the
self-energy �

ep
nk′ of a single point k′ using the approximation

τ−1
nk (T ) ≈ 2

h̄
Im

[
�

ep
nk′

(
ε0

nk, T
)]

. (11)

To minimize errors associated with this approximation, we
choose k′ to be at A for the hole and 
 for the electron
mobility, the locations of the VBM and CBM, respectively.

The calculated temperature-dependent hole and electron
mobilities are shown in Table I for the directions a, b, and
c∗ (cf. Fig. 1). We compare the mobilities at 50 and 300 K,
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FIG. 5. The energy-resolved decomposition of the mobility according to Eq. (12) of holes (top) and electrons (bottom) at 300 K and the
experimental room-temperature structure with �295K. The velocity (orange solid) and the lifetime (blue dash-dot) are associated with the left
and right y-axes, respectively. The density of states D(ε) (green dashed), the derivative of the Fermi-Dirac distribution (red dotted), and the
mobility integrand (gray filled) are in arbitrary units, but share the same scale across all plots.

using the relaxed (�DFT) and experimental room-temperature
volume (�295K), respectively. Below 50 K, the mobilities be-
come dependent on the electric field. At the same time, the
volume between 5 and 50 K expands less than 0.5%, and
the contribution of thermal lattice expansion to the mobility
at these temperatures is expected to still be negligible. This
allows us to use the relaxed lattice parameters and to extract
the contribution of the lattice expansion to the mobility.

At 50 K, our calculations generally underestimate the hole
mobilities, consistent with prior work [25], and overestimate
the electron mobilities. At 300 K, the agreement with experi-
ment is reasonably good when using the experimental lattice
parameters. This suggests that electronic band transport lim-
ited by phonon scattering accounts for much of the electrical
mobility. It is also apparent that the lattice expansion plays an
important role in obtaining accurate values, as the agreement
at 300 K greatly improves in most cases when using the room-
temperature unit cell with �295K. To more accurately predict
the power law (or the slope) of the experimental mobilities,
calculations need to be repeated using experimental lattice
parameters obtained at different temperatures. This has been
shown to lead to good agreement of the power law exponents
in prior work [25]. Possible reasons for any disagreement with
experiment include our neglect of polaronic effects and the
physics of a hopping transport mechanism. In particular, at
temperatures above 100 K, the experimental electron mobil-
ities in the b and c∗ direction show a decreased temperature
dependence, commonly attributed to the transition to hop-
ping transport [6,81–83] (see also the Supplemental Material
[42]). Nonetheless, our work can be considered an important
baseline for comparing with experiments and future work
incorporating polaronic effects.

To gain insight into the mobilities, we decompose them
into energy-resolved contributions by approximating Eq. (9)

in the following way:

μe,h
α ≈ −e

ρe,h

∫
dε D(ε) f ′(ε)v2

α (ε)τ (ε), (12)

where D(ε) is the density of states (DOS), f ′(ε) is the deriva-
tive of the Fermi-Dirac distribution with respect to energy, and
where we define the average squared velocity function

v2
α (ε) = 1

D(ε)

∑
n

∫
dk
�BZ

(vnk,α )2δ(ε − εnk ), (13)

and the average lifetime function

τ (ε) = 1

D(ε)

∑
n

∫
dk
�BZ

τnkδ(ε − εnk ). (14)

The bounds of the integral in Eq. (12) go from −∞ to the
Fermi energy εF for holes, and from εF to +∞ for electrons,
and we add a small Gaussian smearing of 5 meV to evaluate
the Dirac δ functions in Eq. (13) and (14).

Equation (12) approximates the energy-resolved contri-
butions to the mobilities as the product of four functions
of energy. We plot these quantities for �295K in Fig. 5. At
300 K, the contributions to the mobilities extend up to about
0.1 eV above or below the band edges. Within this region,
the DOS, velocity, and lifetime are generally not monotonic
functions of energy, but show distinct features. This high-
lights the need for our detailed calculations; in contrast,
for example, approximations of the mobility that only use
the effective mass of the band extrema or constant effective
lifetimes will be inadequate. This is especially true for μe

b,
where the main contribution to the mobility is situated near
the peak of the DOS, almost 0.1 eV within the conduction
band. Using this analysis, we can also explain why the elec-
tron mobilities are generally lower than the hole mobilities.
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electron-phonon self-energy of naphthalene, evaluated for the VBM
at A (left) and CBM at 
 (right). The features of the self-energy
correlate with the electronic DOS (filled).

Comparing the individual quantities, we see that the veloc-
ities of electrons along the a and c∗ directions are actually
larger than those of the holes. However, the lower electron
lifetimes compared to the hole lifetimes, especially near the
band edge, more than compensate for the higher velocities.
In general, this analysis shows the critical role the individual
contributions of Eq. (9) play in quantitatively determining the
mobility.

While the expression in Eq. (12) is of great practicality for
computing the mobilities and visualizing the energy-resolved
lifetimes and velocities, it also turns out to be an excellent
approximation. The maximum relative error compared to
Eq. (9) is below 10%, and the mean absolute relative error is
below 5%. Mobilities calculated with this approximation de-
viate less than 3.3% (see the Supplemental Material [42]). In
addition to being independent of k, the frequency-dependent
self-energies of the two highest (lowest) valence (conduction)
bands are almost identical. This is because the wave functions,
and hence the electron-phonon matrix elements, of Davydov
pairs are so similar for naphthalene (see [42]). Within this
k- and n-independent approximation, the electron and hole
lifetimes are only a function of energy, and the expressions
in Eqs. (9) and (12) become equivalent.

D. Self-consistent electron-phonon self-energy

Figure 6 shows the frequency-dependent electron-phonon
self-energy of the valence- and conduction-band extrema
alongside the electronic DOS. We see a clear correlation.
This is mainly due to the fact that the electron-phonon cou-
pling matrix elements are relatively independent of k and n
within a Davydov pair. The imaginary part of Eq. (2) then
becomes proportional to the joint electronic and vibrational
density of states, weighted by the coupling strength of each
phonon. In agreement with previous studies [25,37], we find
that intramolecular modes around 0.19 eV have the strongest
coupling (Fig. 4). Correspondingly, the peaks of the imaginary
part of the SE are shifted by about 0.19 eV compared to the
peaks of the DOS.

We also note from Fig. 6 that the real part of the electron-
phonon self-energy varies rapidly between 0 and 0.15 eV over

the frequency range corresponding to the bandwidth, which
is on the order of 0.4 eV. The renormalization of the bands
will therefore significantly alter the shape and width of the
DOS, upon which the self-energy depends. The magnitude of
the self-energy corrections suggests that we should compute
the self-energy self-consistently by updating the electronic
energies in Eq. (2) with the renormalized values.

Accordingly, we use an eigenvalue–self-consistent (evSC)
cycle for the self-energy, whose iterative steps can be
summarized as

ε1
nk = ε0

nk + Re
[
�

ep
nk

(
ε0

nk, ε
0
mk+q

)]
,

ε2
nk = ε0

nk + Re
[
�

ep
nk

(
ε1

nk, ε
1
mk+q

)]
,

· · ·
εi

nk = ε0
nk + Re

[
�

ep
nk

(
εi−1

nk , εi−1
mk+q

)]
, (15)

where �
ep
nk(εi−1

nk , εi−1
mk+q) indicates the use of renormalized

eigenvalues in the self-energy. We use the k-independence
approximation to efficiently calculate the renormalized states
mk + q as

εi
mk+q ≈ ε0

mk+q + Re
[
�

ep
nk

(
εi−1

mk+q

)]
. (16)

This procedure converges the renormalized energies rapidly
to within 2 meV for the bands around the gap (see the Supple-
mental Material [42]).

Our method effectively includes all high-order noncross-
ing electron-phonon coupling diagrams in the self-energy. It
does not, however, allow for multiphonon satellite bands to
form in the spectral function, as, for example, the cumulant
expansion would [84]. A similar level of theory to evSC was
previously achieved using a time propagation of the Green’s
function [85].

While the self-consistent calculation of the electron-
phonon coupling self-energy offers a clear description of
the quasiparticle temperature renormalization and lifetimes,
one generally aims to compute these quantities from a one-
shot calculation of the self-energy for practical reasons. Two
different procedures are often used. In the on-the-mass-shell
approximation [72], which we have used so far, the renor-
malized energies are computed according to Eq. (7). A more
rigorous approach, in theory, is to evaluate the self-energy
at the quasiparticle energy, corresponding to the peak of the

TABLE II. Comparison of the one-shot self-energy computed
in the on-the-mass-shell approximation [�(ε0)], the one-shot self-
energy evaluated at the quasiparticle solution [�(ε)], and the
eigenvalue–self-consistent self-energy (evSC). Renormalizations �ε

are in eV, lifetimes τ in fs.

�(ε0) �(ε) evSC

�εVBM (0 K) 0.11 0.09 0.12
�εCBM (0 K) −0.12 −0.09 −0.12
τVBM (300 K) 8.70 38.47 7.91
τCBM (300 K) 4.73 21.16 6.42
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FIG. 7. (a) The DFT-PBE-D3 band structure of naphthalene of
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(c) The spectral function of the full band structure calculated using
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marked with a dot. While the one-shot spectral function displays
a continuous quasiparticle band structure, the self-consistent result
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spectral function, that is,

εnk(T ) = ε0
nk + Re

[
�

ep
nk(εnk, T )

]
. (17)

In Table II, we compare the two one-shot procedures against
the self-consistent scheme. For the VBM and the CBM, the
on-the-mass-shell approximation appears to better reproduce
the self-consistent scheme, both for the real and imaginary
parts of the self-energy. The quasiparticle solution vastly
overestimates the lifetimes of the band extrema (see the Sup-
plemental Material [42]). For the real part of the self-energy,

TABLE III. Mobilities calculated at 300 K with experimental
lattice parameters (�295K), using the one-shot and self-consistent
(evSC) method, in comparison with experimental values. All values
in cm2/V s.

Hole Electron

μa μb μc∗ μa μb μc∗

one-shot 1.20 2.73 0.24 0.67 0.31 0.21
evSC 0.90 2.19 0.18 1.18 0.59 0.31
Expt. 0.79 1.34 0.31 0.58 0.63 0.39

such a result agrees with the one found for the Fröhlich model,
compared with diagrammatic Monte Carlo results [84,86].

Next, we examine the effect of the evSC approach through
the spectral function, given by the imaginary part of the
Green’s function:

Ank(ω) = 1

π

∣∣Im[
�

ep
nk(ω)

]∣∣[
ω − ε0

nk − Re
[
�

ep
nk(ω)

]]2 + Im
[
�

ep
nk(ω)

]2 .

(18)

It describes the probability of finding an electron in state nk
at energy ω. The quasiparticle (QP) peaks of the spectral
function appear at ω = ε0 − Re[�ep

nk(ω)], which corresponds
to the solution of Eq. (17). The spectral function allows
us to compare both the renormalization (position of the QP
peak) and the broadening (width and height of the QP peak)
simultaneously.

Figure 7 shows both the one-shot and evSC spectral func-
tion, where we use the k-independence approximation to
interpolate Ank(ω) across the Brillouin zone. We chose the
self-energy at 
 as a starting point for the interpolation, and
we checked that the choice of starting point does not alter the
results significantly.

The QP bands of the evSC spectral function show a dis-
continuity at energies around 0.2 eV below the VBM and
above the CBM, due to the spectral weight being transferred
from the main quasiparticle peak to the satellite band. In con-
trast, the bands of the one-shot calculation are continuous, and
the distinction between the main quasiparticle peak and the
satellite remains clear in most cases. This band discontinuity
(or splitting) happens when the real part of the self-energy
has a unitless slope �1. In this case, the Dyson equation
(17) may admit more than one solution in certain regions
of the Brillouin zone. Such a high slope in the self-energy
is seen near the poles, located one phonon frequency away
from the peaks of the DOS, as seen in Fig. 6 (the strongest
coupling modes are ∼0.19 eV). A similar splitting has also
been observed theoretically and experimentally in pentacene
and rubrene crystals [35,36,87] as well as nonorganic systems
[50,88].

Finally, we evaluate the mobilities from the evSC self-
energy at 300 K using �295K lattice parameters, taking into
account the renormalized electronic eigenvalues and veloc-
ities. The results are listed in Table III in comparison with
the values for the one-shot calculation and experiment. The
evSC approach lowers the hole mobilities, bringing μa and
μb to even better agreement with experiment. In contrast,
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evSC electron mobilities increase slightly compared to the
one-shot calculation. By looking at the decomposition of
the mobility via Eq. (12), we can attribute the decrease of
the hole mobility to lower lifetimes, and the increase of the
electron mobilities to higher lifetimes and velocities (see the
Supplemental Material [42] for the decomposition).

III. CONCLUSION

In summary, we used comprehensive ab initio calculations
based on DFT to study the effect of electron-phonon inter-
actions on the electronic structure of naphthalene crystals, as
well as its electrical mobility. Both the temperature-dependent
renormalization of the gap, and the hole and electron mo-
bilities are in good agreement with experimental values if
the lattice expansion is taken into account. Because of the
limited dependence of the self-energy on k and n of the two
occupied and unoccupied band-edge bands, we can visualize
the contributions to the mobility at each band energy in terms
of the density of states, average scattering time, and average
velocity squared. This facilitates a useful energy-resolved
analysis of the mobility, and provides an efficient way to
model charge carrier transport in organic systems.

Furthermore, we indirectly and approximately investigated
the effect of higher-order electron-phonon coupling terms by
calculating the self-energy self-consistently. The band gap
renormalization and mobilities show only moderate differ-
ences between the one-shot and self-consistent calculations,
as long as the on-the-mass-shell approximation is used. Both
of these properties depend mainly on the electronic states
close to the band gap, which are only weakly affected by
the evSC treatment. However, the electronic states further

away from the band edges are strongly affected by the self-
consistent treatment of the self-energy. The spectral function
reveals a band splitting and band widening comparable to
what has been observed experimentally in other molecular
crystals.

Most of the qualitative results discussed in this work re-
sult directly from the weak interactions between constituent
monomers, a common feature of molecular crystals. This
includes the k-independence of the self-energy, and the band-
widths being on the same order of magnitude as the phonon
frequencies.

The methods and conclusions presented here likely apply
to several other molecular crystals, and they provide an ef-
ficient approach for the ab initio calculation of the electron-
phonon self-energy and electrical mobility.
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