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Parquet dual fermion approach for the Falicov-Kimball model
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In the Falicov-Kimball model, a model for (annealed) disorder, we expect weak localization corrections to
the optical conductivity. However, we get such weak localization effects only when employing a pp-ladder
approximation in the dual fermion approach. In the full parquet approach, these pp contributions are suppressed
by ph-reducible diagrams. For the optical conductivity, we find that the ph channel yields the main contribution,
even in the region where weak localization in the pp ladder was indicated.
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I. INTRODUCTION

The Falicov-Kimball model (FKM) [1] is one of the sim-
plest models for electronic correlations and describes fully
immobile electrons that interact with mobile conduction elec-
trons. In this sense, it can be seen as a simplified version of the
Hubbard model [2], where one spin species is assumed to be
localized and hopping is allowed for the other spin species
only. Despite its simplicity, finding a solution to the FKM
remains challenging.

For the two-dimensional FKM, a phase transition toward
a checkerboard charge-density wave (CDW) was proven
to occur at and close to half filling [3,4], as well as a
metal-to-insulator transition. The FKM can further be solved
(semi)analytically in infinite dimensions using dynamical
mean-field theory (DMFT) [5–7]. This can also be considered
as an approximation for a finite dimensional system, where
all local correlations are taken into account. DMFT is also a
good approximation for somewhat higher temperatures where
the disorder on each site acts uncorrelated and results in a
temperature-independent solution.

Most of the DMFT results in the FKM have been reviewed
in a seminal oeuvre by Freericks and Zlatić [8,9]. However,
the physics of the FKM is mainly governed by CDW fluctu-
ations, so nonlocal correlations play the key role in the para-
magnetic phase. To include these in addition to the local ones
already fully covered in DMFT, cluster [10] and diagrammatic
extensions of DMFT have been developed. The latter include
the dynamical vertex approximation (D�A) [11–13] and the
dual fermion (DF) approach [14]. In a similar development
for disordered systems, Janiš [15] developed vertex correc-
tions to the coherent potential approximation. For a review,
see Ref. [16]. As D�A is not easily applied to the FKM,
requiring mixed vertex functions of the mobile and immobile
electrons, we choose to employ the DF approach for the FKM
using both the parquet equations and a ladder approximation,
extending earlier approaches using ladder DF calculations
only [17–19]. We compare the full parquet DF approach to
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the simple ladder approach and also analyze the different
contributions from the different channels: particle-hole (ph),
transversal particle-hole (ph), and particle-particle (pp).

Specifically, we investigate the effect of nonlocal correla-
tions resulting from the DF approach onto the optical conduc-
tivity, describing the interaction of the system with light. The
FKM is a model describing annealed disorder. And it is known
that for disordered systems weak localization [20] (corre-
sponding to diagrams in a pp ladder) leads to a diminution
of the DC optical conductivity and therefore an enhancement
of the electrical resistivity, even when there is no gap in
the one-particle spectrum. For more recent studies of weak
localization in the Falicov-Kimball model, see Refs. [21,22].
We confirm the appearance of weak localization in the FKM
via an employment of the pp-ladder series. However, this
effect is superseded by the dominating contribution of the
ph channel to the optical conductivity in the full parquet
approach.

The outline of the paper is as follows: In Sec. II, we intro-
duce the FKM and the properties of the local vertex function
in DMFT, which at self-consistency is employed as the basic
building block in the DF parquet approach. Then the different
methods, the parquet approach and ladder approximations,
that are employed as well as the corresponding equations are
explained. In Sec. III, numerical results for the self-energy,
the optical conductivity, and its corresponding current-current
correlation function and the charge susceptibility are pre-
sented: in Sec. III A for a half-filled FKM, and in Sec. III B
for a doped system with filling nc = 0.15 for the c electrons
and n f = 0.5 for the f electrons. Our main findings are finally
summarized in Sec. IV.

II. MODEL AND METHODS

A. Falicov-Kimball model

The Hamiltonian of the one-band (spinless) FKM reads

H = −t
∑
〈i j〉

c†i c j + U
∑

i

c†i ci f †i fi

−μ
∑

i

(c†i ci + f †i fi ) + ε f

∑
i

f †i fi. (1)
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FIG. 1. The two-particle Green’s function G(2) consists of two
pairs of disconnected Green’s function lines and the connected
vertex function F νν′ω. In this figure, only the frequency arguments
are shown.

Here c†i (ci) create (annihilate) a mobile electron and f †i ( fi)
a localized electron at lattice site i. The hopping t between
nearest neighbors is allowed only for mobile electrons in the
FKM, and the local Coulomb interaction U acts between an
itinerant and a localized electron at the same site; μ and ε f

denote the chemical potential and the local potentials for the f
electrons, respectively. We choose our units of energy as D ≡
4t ≡ 1, kB ≡ 1, and the Planck constant h̄ ≡ 1. Furthermore,
when calculating the optical conductivity, we set the lattice
constant a ≡ 1 and the elementary charge e ≡ 1.

B. Local two-particle vertex

The two-particle vertex function F kk′q is defined as
the connected part of the two-particle Green’s function
G(2)kk′q with the incoming and outgoing lines amputated
(also see Fig. 1):

G(2)kk′q = βG(k)G(k′)δq0 − βG(k)G(k + q)δkk′

− G(k)G(k + q)F kk′qG(k′)G(k′ + q). (2)

Here and in the following, we use a four-vector notation k =
(k, ν) and q = (q, ω) which subsumes both the momenta and
the corresponding Matsubara frequencies.

The local two-particle vertex function F νν ′ω
loc of the itinerant

electrons (i.e., the connected part of the local two-particle
Green’s function G(2)νν ′ω

loc ) for the two-dimensional FKM can
be calculated (semi)analytically in DMFT. As the mobile elec-
trons can only scatter indirectly via the localized electrons,
and are otherwise noninteracting, the local vertex function
exhibits a reduced frequency structure, only having finite
values for ω = 0 and for ν = ν ′. The analytical expression for
Floc can be shown to have the following form [18]:

F νν ′ω
loc = β(δω,0 − δν,ν ′ )a(ν)a(ν ′ + ω), (3)

where a(ν) is given by

a(ν) = (�loc(ν) − U )�loc(ν)√
p1 p2U

. (4)

Here, β = 1/T denotes the inverse temperature, �loc the
local DMFT self-energy, and p2 ≡ 1 − p1 ≡ 1 − 〈 f †i fi〉 the
number of sites without localized electrons. The number of
localized electrons is also referred to as n f ≡ p1 below, and
that of the mobile electrons as nc.

C. Parquet equation

The two-particle vertex F kk′q can be represented by a sum
of diagrams that are classified according to their reducibility
[23]. We distinguish four types of diagrams: a class of fully

FIG. 2. A two-particle reducible diagram can be assigned to
exactly one of three channels, according to which two of the four
outer legs of the diagram can be separated from the other two. In
the particle-hole channel, 	ph legs (1,2) are separated from (3,4),
in the transversal particle-hole channel 	ph (2,3) are separated from
(1,4), and in the particle-particle channel 	pp (2,4) are separated
from (1,3).

irreducible diagrams (contained in the fully irreducible vertex

) and three classes of reducible diagrams (see Fig. 2):
(i) diagrams reducible in the particle-hole channel (contained
in the reducible vertex 	ph), (ii) in the particle-hole transver-
sal channel (	ph), and (iii) in the particle-particle channel
(	pp). The so-called parquet equation than reads

F = 
 + 	ph + 	ph + 	pp. (5)

The reducible vertices 	r in the three channels r ∈
{ph, ph, pp} can be obtained through the respective Bethe-
Salpeter equations. The fully irreducible vertex 
 is not
given by the parquet approach and has to be provided as
input. In the lowest order, 
 is equal to the bare Coulomb
interaction U . Taking 
 = U amounts to the so-called parquet
approximation. This kind of channel decomposition is similar
(except for the spin) as for the Hubbard model [24].

The FKM describes the f -c interaction or annealed disor-
der. The diagramatics for quenched, uncorrelated disorder is
different.

D. Parquet dual fermion approach

The DF approach maps an interacting lattice model onto
a set of interacting local problems which couple to nonlocal
“dual” fermions. The local vertex function Floc of the local
problems is the basic building block for the DF approach.
It corresponds to the bare interaction for the dual particles.
Analogous to the two-particle diagrammatics for the original
electrons, one can formulate Bethe-Salpeter equations and
parquet equation for the dual particles with Floc as the bare
interaction. Within the parquet approximation, this bare in-
teraction is employed as the fully irreducible vertex of the
dual fermions. From the fully irreducible vertex, the full dual
vertex F̃ , and the vertex functions 	̃r reducible in one of the
three channels r ∈ {ph, ph, pp},

F̃ kk′q = F νν ′ω
loc + 	̃

kk′q
ph + 	̃

kk′q
ph

+ 	̃kk′q
pp (6)

are calculated. Here and in the following, we use the tilde to
denote quantities that are defined in terms of dual particles.
Let us further define the vertex functions �̃r that are irre-
ducible with respect to a given channel r, and are therefore
given by the complement �̃r = F̃ − 	r .
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The Bethe-Salpeter equations give a relation between the
reducible vertices 	̃r and the propagator of the dual fermions
G̃:

	̃
kk′q
ph =

∑
k1

F̃ kk1qG̃k1+qG̃k1 �̃
k1k′q
ph , (7)

	̃kk′q
pp = −1

2

∑
k1

F̃ k(k1+q)(k′−k1 )G̃k1+qG̃k+k′−k1

× �̃(k+k′−k1 )k′(q−k′+k1 )
pp . (8)

Here and in the following, all four-vector sums implicitly
include, for brevity, a normalization factor 1/(βN ), i.e.,

∑
k

actually denotes 1/(βN )
∑

k , similar to previous publications,
e.g., Ref. [16]. Note that there is no need to introduce a
separate equation for 	̃ph since it can be obtained from 	̃ph

via the crossing symmetry [25].
To calculate a dual self-energy �̃ out of the full dual vertex,

the dual Schwinger-Dyson equation,

�̃k = −
∑

k′
F νν ′ω=0

loc G̃k′ − 1

2

∑
k′q

F νν ′ω
loc

× G̃k′G̃k′+qG̃k+qF̃ kk′q, (9)

is employed and for the propagator of the dual fermions G̃, we
can also formulate a Dyson equation,

G̃k = [
G̃−1

0,k − �̃k
]−1

, (10)

where G̃0,k is the so-called noninteracting dual Green’s func-
tion, which is the input to the DF approach.

The noninteracting dual Green’s function G̃0,k is obtained
as the difference between the k-dependent and k-averaged
DMFT Green’s function which can both be calculated from
the DMFT self-energy �loc, cf. Ref. [16]:

G̃0,k = 1

iν − εk + μ − �loc,ν
−

∑
k

1

iν − εk + μ − �loc,ν
.

(11)

For the results presented, we keep G̃0,k and Floc fixed at
their DMFT values, i.e., we do not do a so-called outer self-
consistency. As we will see below, the DF corrections to the
self-energy are minute, justifying a posteriori that no outer
self-consistency is necessary.

Equations (6)–(10) can be employed in a self-consistent
form (“inner” self-consistency), where first the dual vertex F̃
is built up from Floc and G̃0 to calculate �̃ and the correspond-
ing interacting G̃, which are then used again in an updated
calculation for F̃ .

E. Postprocessing

The resulting dual self-energy from the parquet equations
is finally used as a nonlocal correction to the lattice Green’s
function G of the real electrons [26]:

Gk = 1

iν − εk + μ − �loc,ν − �̃k
. (12)

Using the results of the parquet DF formalism,
physical susceptibilities are also calculated, namely, the

density-density correlation function or charge susceptibility
χd ,

χd,q =
∑

k

Gq+kGk

+
∑
k,k′

Gk′Gq+kF kk′qGq+k′Gk , (13)

and the current-current correlation function χ j j ,

χ j j,q = [
γ

q
k

]2
Gq+kGk

+
∑
k,k′

γ
q
k γ

q
k′Gk′Gq+kF kk′qGq+k′Gk . (14)

Here the full vertex function of the real fermions is approx-
imated by the vertex function of the DFs, F = F̃ ; γ

q=0
k =

∂εk/∂k denotes the dipole matrix elements given by the
derivative of the energy-momentum relation in the Peierls
approximation. From χ j j at q = 0, the optical conductivity
can be calculated:

σ (ω) = Re

{
e2 lim

δ→0

[
χ j j,q=0(ω + iδ) − χ j j,q=0(iδ)

i(ω + iδ)

]}
. (15)

Here, an analytic continuation to real frequencies is necessary,
for which we employ the maximum entropy method described
in the Supplemental Material of Ref. [27].

F. Ladder DF

In addition to the full parquet DF calculation discussed
above, we present results for a ladder DF approximation. This
ladder approximation is employed in two different ways:

First, using the parquet formalism and code above, but
restricting ourselves to the respective channel r ∈ {ph, pp},
i.e., Eq. (7) or (8) and F̃ = Floc + 	̃r . Therefore, the ladder
series is built up iteratively and a direct comparison with
the parquet results is enabled in this way. In the case of the
particle-hole ladder, both the ph and the ph contributions are
taken into account in the dual Schwinger-Dyson Eq. (9) to
recalculate the self-energy self-consistently. For the pp-ladder
series instead, Floc + 	̃pp is employed in the Schwinger-
Dyson equation. This method is used to calculate the ladder
results shown in Figs. 5, 7, 8, 13, and 15.

Second, using the exact expression for the dual vertex
function in the ladder approximation, i.e., the geometric se-
ries. This second approach is employed in this paper only
for the pp ladder, as we want to isolate the effect of weak
localization corresponding with such diagrams. The pp-ladder
vertex function then reads

F̃ νν ′ω
q = F νν ′ω

loc

1 − F νν ′ω
loc χ̃0

q

, (16)

where χ̃0 is calculated in pp notation from

χ̃0
q =

∑
k

G̃q−kG̃k . (17)

This second method is used to calculate the pp-ladder results
in Figs. 6 and 14 to confirm weak localization. Diagrammat-
ically, this describes the two directions a closed loop can be
taken in by a particle returning to the same site. In disorder
models, constructive interference between those paths leads
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FIG. 3. DMFT spectral function A(ω) for the half-filled system,
at U = 0.5, U = 0.9, and U = 1.5. At U = 0.5 and U = 0.9, the
system is still metallic. With increasing U , a gap forms and at U =
1 the metal-to-insulator transition takes place; the spectrum is split
into two subbands. This can be seen at U = 1.5, where the system is
already insulating.

to an increase of the amplitude for remaining at the same
site and therefore a reduction of mobility. As in the first
implementation based on the parquet code, the self-energy is
also recalculated self-consistently in this second approach.

III. RESULTS

We solve the DF parquet equations for the FKM on a
6 × 6 square lattice with periodic boundary conditions using
20 (positive) Matsubara frequencies in the case of the parquet
DF approach. Note that the restriction to such small systems
is a severe approximation, necessary due to the immense
numerical effort of parquet calculations. A finite-size scaling
analysis was not possible within the current numerical imple-
mentation. With other approaches, where either the frequency
dependence is reduced [28] or a form-factor expansion is used
[29], such analysis might become possible in the future.

In the case of the pp-ladder approximation, the reduced
numerical effort allows us to study a 32 × 32 square lattice
and 40 (positive) Matsubara frequencies. The temperature at
which most results are calculated is T = 0.06. We present
results both for the half-filled FKM at nc = n f = 0.5 and for
the conduction-electron doped FKM with occupations nc =
0.15 and n f = 0.5. Since we show quantities that depend on
either real or Matsubara frequencies, we use in the following
ν and ω to denote real frequencies and νn and ωn for the
Matsubara ones.

A. Half-filled system

1. DMFT spectrum

In the case of the half-filled system, the chemical poten-
tial is fixed at μ = U/2, and particle-hole symmetry holds.
Electronic correlations are expected to have the maximum
effect for this configuration and therefore it is in many cases
most interesting to look at the system at half filling, especially
when investigating the extension to nonlocal correlations. In
DMFT for the two-dimensional FKM at half-filling, a Mott-
Hubbard-like metal-to-insulator transition occurs at U = 1
[8]. This can be seen in the DMFT spectral function A(ν) =
− 1

π
1
N

∑
k Im G(k, ν) shown in Fig. 3 on the real frequency

axis for U = 0.5, U = 0.9, and U = 1.5, where a gap is

forming for increasing U and at U = 1.5 the spectrum is
already split into two subbands. This DMFT solution, its
vertex, and bare dual Green’s function serve as a starting point
for the subsequent DF calculations. For these, we concentrate
on one interaction (U = 0.5) on the metallic side and one
interaction (U = 1.5) on the insulating side.

2. DF self-energy

Figure 4 presents the results of the parquet DF self-energy
in comparison to the local DMFT self-energy at T = 0.06 for
the metallic and insulating system. Regarding the imaginary
part of the self-energy, it can be seen that for the two k
points on the Fermi surface, k = (π, 0) and k = ( 2π

3 , π
3 ),

the nonlocal corrections of the DF approach give a negative
contribution to the DMFT self-energy, with �DF being some-
what larger at (π, 0) (in absolute terms) than at ( 2π

3 , π
3 ). On

the contrary, at k = (π, π ) and k = (0, 0) there is a positive
contribution, reducing the absolute value of the self-energy.
The real part of the self-energy is constant at U/2 in DMFT
and in DF for k points on the Fermi surface because of
particle-hole symmetry; k points outside the Fermi surface
give positive, points inside negative DF corrections. That is,
the nonlocal DF self-energy pushes points further away in
energy. The results look qualitatively similar both for the
metal and the insulator, but note that the self-energy is an order
of magnitude larger at U = 1.5 compared to U = 0.5.

In Fig. 5, the parquet DF self-energy is compared to a
corresponding ph + ph ladder as well as to a pp-ladder DF
approximation for the (π, 0) point. Both ladder series have
been calculated iteratively, as described in Sec. II. These
results indicate that the physics of the FKM is dominated by
ph + ph-ladder diagrams, as the dual self-energy calculated in
a simple ladder series approximates the results from the full
parquet calculation very well. In contrast, �̃ resulting from
a pp-ladder calculation is considerably smaller. Overall, the
self-energy corrections are rather minute, at least for momenta
on the Fermi surface. This justifies a posteriori that we do not
need to recalculate the local vertex Floc.

3. Optical conductivity

As the FKM is a model for annealed disorder, we may
expect weak localization corrections to the conductivity, a
physical phenomenon that is emerging at low temperatures.
Weak [20] (and strong [30]) localization emerge from Feyn-
man diagrams in the pp channel that cause a reduction of the
optical conductivity at ω = 0, even though no gap is present
in the one-particle spectrum. Such an effect and its increase
with decreasing temperature can be seen indeed in Fig. 6,
where we have restricted ourselves to these pp diagrams
[31,32]. Both the bare bubble term σ0 and the total optical
conductivity σ are shown at real frequencies for two values
of the interaction, U = 0.5 and U = 0.9, for which the one-
particle DMFT and DF spectrum (which is essentially the
same) is metallic. At U = 0.5, the bubble conductivity shows
a typical Drude-like peak with maximum conductivity at ω =
0, however, with a huge broadening because of the disorder
scattering. In contrast at U = 0.9, the system is close to the
metal-to-insulator transition and therefore there is reduced
optical weight at small frequencies in the bubble term due to
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FIG. 4. Imaginary part (above) and real part (below) of the self-energy at U = 0.5 (left) and U = 1.5 (right) at half filling and T = 0.06,
as resulting from DMFT (�DMFT) and from the parquet DF approach (�DF). Right inset: Brillouin zone with the Fermi surface at half filling
(black line). The red crosses on the 6 × 6 grid of k points denote the k points for which self-energies are shown in the main panel.

the forming gap in the spectral function that can be seen in
Fig. 3. For both interaction values, the vertex corrections from
the pp ladder yield a negative contribution to the conductivity
for small frequencies, an effect that increases with decreasing
temperature. This is precisely the kind of physics expected
from weak localization corrections. We can hence conclude
that we are in a parameter regime where conventional pp
diagrams yield weak localization corrections.

If we now employ the parquet equations in Fig. 7 (top)
instead of the mere pp diagrams, the behavior is qualitatively

FIG. 5. Imaginary part of the dual self-energy at U = 0.5 (left)
and U = 1.5 (right) at k = (π, 0) resulting from the full parquet
DF approach (blue), a ph + ph- (black dashed) and a pp-ladder
(red) approximation for the half-filled system at T = 0.06. The ph
ladder results also containing the ph contributions provide a good
approximation to the dual self-energy as obtained from the full
parquet calculation.

very similar to U = 0.5. Quantitatively, the vertex corrections
are, however, strongly enhanced: Now much of the optical
spectral weight at ω = 0 is shifted toward higher frequencies
and a peak at around ω = 0.4 is forming. With lower temper-
ature, the bubble conductivity itself is slightly reduced by the
stronger nonlocal corrections to the Green’s function and the
effect of the vertex corrections is further enhanced.

FIG. 6. Bubble term σ0 and total optical conductivity σ at U =
0.5 (above) and U = 0.9 (below) as resulting from the pp-ladder
approximation at T = 0.1, T = 0.06, and T = 0.02 for a half-filled
system. The effect of weak localization is clearly visible when
employing only the pp ladder.
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FIG. 7. Top: Optical conductivity for real frequencies (main
panel) and the corresponding current-current correlation function in
Matsubara frequencies (insets) for the half-filled FKM calculated
now from parquet DF at U = 0.5, T = 0.1, and T = 0.06. Shown
are again the bare bubble (σ0) and the full conductivity (σ ), including
vertex corrections. Insets: The respective current-current correlation
function χ 0

j j and χ j j . Bottom: Corresponding vertex correction to the

current-current correlation function χ j j separated into ph, ph, and pp
contributions. Additionally, the contribution of a ph and a pp ladder
are shown. As can be seen, the full parquet calculation shows even
bigger effects compared to Fig. 6. These do not originate from the pp
channel, but the ph channel.

However, the physical origin is a completely different one.
This can be seen in Fig. 7 (lower panel) where we analyze
from which channel (ph, ph, and pp) the vertex corrections in
the parquet equation emerge. That is, to obtain Fig. 7 (lower
panel), the contributions of reducible vertices 	ph, 	ph, or
	pp to the current-current correlation function have been
calculated independently instead of the full vertex F . Inserting
in Eq. (15) instead of the F one of the summands, 	ph/ph/pp,
we obtain the contributions from the respective channels: χ ph,
χ ph, and χ pp.

Apparently the ph channel is the dominating one. Con-
tributions from the ph and pp channels are rather small by
contrast. In addition to these parquet results, results from a ph
and pp ladder are also shown. Note that vertex corrections
to the current-current correlation function in the ph ladder
vanish by symmetry. The difference of these simple ladder
diagrams to diagrams emerging from the corresponding 	r as
calculated in parquet is the mixing of the channels, leading to
a nonzero χ ph and explaining the differences visible at T =
0.06. Overall, we can conclude that the vertex corrections
mainly stem from ph contribution to the parquet equation,
which in turn are essentially given by the ph ladder.

Figure 8 presents the same analysis but now for U = 1.5.
Here the bubble term σ0 of the optical conductivity is centered
around ω ≈ U , which corresponds to the distance of the
peaks of the two subbands in the spectral function shown in

FIG. 8. Same as Fig. 7, but for the insulating system at U = 1.5.

Fig. 3. For low temperature, at ω = 0 the bubble conductivity
vanishes because of the one-particle gap. It appears that in
Fig. 8 vertex corrections shift the optical weight toward lower
frequencies and that there is a finite weight at ω = 0 due to
vertex corrections. But one has to keep in mind prospective
uncertainties of the maximum entropy analytic continuation.
Regarding the different contributions to the vertex corrections
of χ j j , again ph-reducible diagrams appearing in 	ph are
prevalent.

To better understand where the large vertex corrections
from the ph channel come from, we analyze χ j j as calculated
from 	ph further, specifically its contributions from different
wave vectors k′ − k. These contributions for different mo-
menta are shown in Fig. 9. Clearly, the largest contribution
stems from k′ − k = (π, π ). At half filling, this is the wave

FIG. 9. Vertex corrections to the current-current correlation
function χ j j resulting from the ph channel (black) for representative
momentum differences k′ − k for the half-filled FKM at U = 0.5
and T = 0.06.
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FIG. 10. Charge susceptibility χd at ωn = 0 for a half-filled FKM
at U = 0.5 and T = 0.06, both in momentum space (left) and real
space (right). In momentum space, it can be seen that the dominating
value lies at q = (π, π ), which corresponds to the formation of the
checkerboard structure which is also visible in real space.

vector associated with CDW fluctuations, corresponding to a
dominance of the charge susceptibility χd (q) at (π, π ).

This is illustrated further in Fig. 10, which shows χd (q)
for the metallic system at U = 0.5 and T = 0.06 along with
its Fourier transform, the charge susceptibility χd (R) in real
space. A dominance of CDW fluctuations at (π, π ) corre-
sponds to a checkerboard structure in real space.

All in all, we observe vertex corrections to the optical
conductivity coming predominately from k′ − k = (π, π ) in
the ph channel. These contributions to optical conductivity
can be interpreted as polaritons, coined π -tons in Ref. [33],
where also results for the FKM at T = 0.07 (in units of
D ≡ 4t ≡ 1) have been presented.

B. c-doped system

1. DMFT self-energy

As CDW fluctuations are strongest for the FKM at half
filling, one might expect that ph contributions are less rel-
evant for the doped system and that the conventional weak
localization picture with vertex corrections in the pp channel
reappears for the doped FKM. Hence, we also present numer-
ical results for the FKM on the square lattice at an occupation
of the mobile (c) electrons nc = 0.15, and of localized f
electrons n f = 0.5. To this end, we fix the chemical potential
μ to the value at which the DMFT solution yields the doping
nc = 0.15. That is, μ is held constant throughout the parquet
DF calculation, and therefore the occupation as resulting from
the DF approach is changed compared to the corresponding
DMFT solution. However, as we will see below, this change
in occupation is minute.

In Fig. 11, we show again the DMFT spectral function A(ν)
for the c-doped system at U = 0.5, U = 0.9, and U = 1.5.
The behavior of the spectrum splitting into two subbands with
increasing interaction strength is the same as at half filling,
but at this low occupation, the Fermi level always lies within
the lower subband and therefore the system retains its metallic
character at these parameters.

2. DF self-energy

The results of the parquet DF approach at c doping are
compared to the DMFT calculation for the self-energy in

FIG. 11. DMFT spectral function A(ν ) of the FKM at filling
nc = 0.15 and nf = 0.5. For all three U shown, the system remains
metallic, even when the spectrum is split into two subbands at U � 1.

Fig. 12 for three different momenta k. The (0,0) point lies,
of course, well inside the Fermi surface at the filling of nc =
0.15, k = ( π

3 , π
3 ) lies very close to it, and k = ( 2π

3 , 2π
3 ) lies

outside of the Fermi surface. The nonlocal corrections are
much smaller than they are at half filling (Fig. 4), which can
be expected as nonlocal correlations show the largest effect

FIG. 12. Imaginary part (left) and real part (right) of the self-
energy at U = 0.5 and T = 0.06 obtained in DMFT (�DMFT) and
parquet DF (�DF) for the FKM at filling nc = 0.15, nf = 0.5. The
nonlocal corrections resulting from the parquet DF approach are
smaller at this filling compared to the half-filled case in Fig. 4. Right
inset: Brillouin zone with the Fermi surface in DMFT for the c-doped
system (black line).
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FIG. 13. Imaginary part of the dual self-energy at U = 0.5, T =
0.06 at k = ( π

3 , π

3 ) as resulting from the full parquet DF approach, a
ph + ph- and pp-ladder approximation for an occupation nc = 0.15.
As in the half-filled case (Fig. 5), the ph ladder approximates the full
parquet results very well, indicating the dominance of the ph channel
also in the doped FKM.

at half filling. The resulting occupation in the DF calculation
is nc = 0.1542, only slightly different from the DMFT value
nc = 0.15 [34].

As in the half-filled system, also in the c-doped system,
the ph channel remains the dominating one. This can be seen
in Fig. 13, where the dual self-energy from the full parquet
calculation is compared to corresponding ladder approxima-
tions at k = ( π

3 , π
3 ). Again, the self-energy containing the ph-

and the ph-ladder approximates the parquet results very well,
whereas the self-energy in the pp ladder shows a qualitatively
different behavior.

3. Optical conductivity

As in the case of half filling, we again first study, in Fig. 14,
the vertex corrections to the optical conductivity for the doped

FIG. 14. Bubble term σ0 and total optical conductivity σ at U =
0.5 (above) and U = 0.9 (below) as resulting from the pp-ladder
approximation at T = 0.1, T = 0.06, and T = 0.02 for the c-doped
FKM, nc = 0.15. The effect of weak localization is clearly visible
when employing only the pp ladder.

FIG. 15. Top: Optical conductivity for real frequency (main
panel) and the corresponding current-current correlation function in
Matsubara frequencies (insets) for the filling nc = 0.15 at U = 0.5
and at T = 0.1 and T = 0.06, showing the bare bubble (σ0) and the
full conductivity (σ ), including vertex corrections (in the insets χ0

j j

and χ j j , respectively). Bottom: Corresponding vertex correction to
the current-current correlation function χ j j separated into ph, ph,
and pp contributions. Also the contributions of a ph and a pp ladder
are shown. As can be seen, the full parquet calculation shows very
different effects compared to Fig. 14.

FKM as obtained from only the pp ladder, which can be as-
sociated with weak localization corrections. At the c-electron
occupation nc = 0.15, the Drude-like peak in the bubble term
σ0 is accompanied by a small side peak corresponding to
transitions from the Fermi level to the upper subband in the
spectral function. Including the pp-ladder vertex corrections,
optical spectral weight is reduced at and around ω = 0, as to
be expected from weak localization corrections.

The optical conductivity in the full parquet DF approach is
shown in Fig. 15 at U = 0.5. As opposed to the results of the
pp-ladder approximation and the results in the half-filled case
(Fig. 7), the vertex corrections in the full parquet calculation
now lead to an increase of the optical conductivity at low
frequencies; the small side peak is suppressed. The corre-
sponding vertex contribution to the current-current correlation
function shown in the lower panel of Fig. 15 is negative and
therefore has opposite sign to the bubble shown in the inset in
the upper panel.

The largest contribution stems, as for the half-filled system,
again from the ph channel. These are also at the origin of
the negative current-current correlation function, whereas the
contribution from the pp channel in parquet DF and the pp
ladder yield positive vertex corrections to the current-current
correlation function.

When we investigate in Fig. 16 the k′ − k-dependence
of the vertex part of the current-current correlation function
stemming from the ph channel, we determine that it is the
( π

3 , 0) point that yields the largest contribution at filling
nc = 0.15. However, for the doped FKM, other contributions
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FIG. 16. Vertex corrections to the current-current correlation
function χ j j resulting from the ph channel in the parquet DF calcu-
lation (black) for different representative k′ − k for the doped FKM
at doping nc = 0.15, nf = 0.5, interaction U = 0.5, and T = 0.06.

are only slightly smaller, so the current-current correlation
obtained with the reducible vertex 	ph does not show such a
distinct connection to a single momentum as for the half-filled
system (Fig. 9).

The vector k′ − k = ( π
3 , 0) is also, for the doped FKM,

the momentum where the static charge susceptibility χd is
strongest in the doped system. This is visible in Fig. 17, where
χd for the whole lattice in momentum and real space is shown
at T = 0.06 and U = 0.5.

IV. CONCLUSION

In this paper, effects of nonlocal correlations in addition
to the local ones as described in DMFT have been analyzed.
To this end, a full parquet DF approach was employed to
obtain such nonlocal vertex corrections for the FKM. This
goes beyond previous investigations using ladder approaches
[17–19]. Our code can be found at GITHUB [35] with imple-
mentation details given in Ref. [36].

As expected, ph + ph diagrams corresponding to CDW
fluctuations are dominating in the FKM, and such a ladder
approach already is a good approximation for the numerically
very cumbersome parquet approach. However, the ph channel
cannot directly couple to light, since the former has a momen-
tum (π, π ) at half filling and (π/3, 0) for the doped case con-
sidered in this paper, whereas light transfers momentum q = 0
to the solid. One may expect weak localization corrections in
the pp channel instead to play an important role for vertex

FIG. 17. Charge susceptibility χd at ωn = 0 for the c-doped
FKM at nc = 0.15, U = 0.5, T = 0.06, both in momentum space
(left) and real space (right). The visible features with q = ( π

3 , 0) as
the strongest point are not as distinctive as in the half-filled system
(compare Fig. 10). In real space, χd consists mostly of the on-site
correlation of a c electron, as the amplitude decreases rapidly around
the origin.

corrections to the conductivity. In this situation, a method
unbiased in the choice of diagrams employed, such as the
parquet approach, which takes all of the different fluctuations
into account is necessary.

We find that the pp contributions, aka weak-localization
corrections, are present if we only consider the pp ladder.
However, if we include all scattering channels, other effects,
originating from the ph channel, dominate. This ph channel
can couple light to CDW fluctuations by exciting two elec-
trons and two holes whose momentum differences match the
dominating momentum of the CDW fluctuations, i.e., either
(π, π ) or (π/3, 0) here. This is distinctively different from
an exciton with a single particle-hole excitation and has been
coined π -ton in Ref. [33]. That means that weak localiza-
tion corrections in the pp channel are not the dominating
vertex corrections to the optical conductivity, at least not in
the parameter regime studied where the ph channel is more
important. It becomes even more clear for the doped system,
where the reduction of conductivity observed within a pp-
ladder calculation is inverted when applying the full parquet
calculation.
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