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Electron spin transport driven by surface plasmon polaritons
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We propose a mechanism of angular momentum conversion from optical transverse spin in surface plasmon
polaritons (SPPs) to conduction electron spin. Free electrons in the metal follow the transversally spinning
electric field of the SPP, and the resulting orbital motions create inhomogeneous static magnetization in the metal.
By solving the spin diffusion equation in the SPP, we find that the magnetization field generates an electron spin
current. We show that there exists a resonant condition where the spin current is resonantly enhanced, and the
polarization of the spin current is flipped. Our theory reveals an alternative functionality of SPPs as a spin current
source.
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Introduction. The optical transverse spin is one of the
universal properties of evanescent waves [1–3]. It is an exotic
circular polarization of an evanescent field whose spinning
direction of the field is perpendicular to the propagation
direction, unlike ordinary propagating fields. When the decay
direction of the evanescent field is not parallel to its propa-
gation direction, the transverse spin exists in the evanescent
fields due to the transversality requirement from Gauss law.

A surface plasmon polariton (SPP) is an electromagnetic
wave coupled with plasma oscillations localized at a metal-
dielectric interface [4]. The SPP possesses transverse spin
[5,6] because the decay direction is normal to the interface
along which the SPP propagates. The transverse spin in the
SPP generates an inhomogeneous magnetization field in the
metal. This is because the electron gas in the metal makes
orbital motions, following the transversally spinning electric
field of the SPP. The electric current given by the curl of
this magnetization is divergenceless (∇ · ∇× = 0), and it
cannot be detected [7]. However, a detectable spin current is
generated by the magnetization as shown below.

In metals, there are generally two kinds of electronic
transport, not only charge currents but also spin currents. It
is known that the spin transport is driven in media with the
presence of spin-dependent potentials, such as a strong spin-
orbit coupling [8–11], and spin-vorticity coupling [12–14]. In
particular, the gradient of effective magnetic fields is utilized
in Refs. [11–14]. Effective magnetic fields are created by
inhomogeneous spin-orbit coupling [11] or by spin-vorticity
coupling [12–14]. That is, a variety of Stern-Gerlach-like
effects are exploited for generating spin currents. In this Rapid
Communication, we identify the inhomogeneous magnetiza-
tion field of SPPs as an alternative candidate for driving spin
currents, and thus the transverse spin in SPP could be detected
via spin current measurements.

In this Rapid Communication, we solve the spin diffusion
equation in the presence of inhomogeneous magnetization

generated by SPP (Fig. 1), and we find that the spin ac-
cumulation and thus the diffusive spin current are created
by inhomogeneous magnetization. The spin current can be
detected since the divergence of the spin flow does not vanish,
unlike the charge current. This means that the transverse spin
in SPP drives the electron spin current in the metal. We use
Gaussian units in this Rapid Communication, except in the
final part where we estimate the order of the magnitude of the
spin currents so as to investigate whether or not they are mea-
surable. We bridge two seemingly distant fields: plasmonics
and spintronics.

Transverse spin and inhomogeneous magnetization in a
surface plasmon polariton. The electric and magnetic fields
of a SPP are given by [5,7,15,16]
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Here, we use the Heaviside unit step function θ (x), and set
k0 = ω/c. The wave number of the SPP is defined by

kp =
√−εk0√−1 − ε

, (3)

and the decay coefficients in vacuum and in metal are defined
by

κ1 = k0√−1 − ε
, (4)

κ2 = −εk0√−1 − ε
, (5)
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FIG. 1. Schematic of a setup for angular momentum conversion
from SPP to electron spin, which we analyze here. We have a
dielectric-metal interface where a SPP is excited. The transverse
spin of SPP excites the orbital motion of electrons, which create the
magnetization field in the metal. Since the transverse spin density
decays exponentially, there is a steep gradient of the magnetization
field in the metal. This inhomogeneous magnetic field drives the spin
current carried by conduction electrons in the metal, whose flow
direction is perpendicular to the interface.

respectively. We can obtain these quantities by applying the
boundary matching condition at the interface to Maxwell’s
equations with a Drude free-electron model,

ε(ω) = 1 − ω2
p

ω(ω + iγ )
. (6)

Here, we set the plasma frequency ω2
p = 4πne2/m and the

permeability μ = 1. In Eq. (1), we can see the imaginary
unit i at �uz while not at �ux. This implies that there is a
phase difference between the longitudinal z component and
the transverse x component of the field, and the electric field
rotates in the transverse y direction both on the dielectric side
and on the metal side. Note that the rotation direction on the
dielectric side and that on the metal side are opposite to each
other.

We use the Minkowski representation for the spin angular
momentum density of an electromagnetic field,

�S := g

2
Im(ε̃ �E∗ × �E + μ̃ �H∗ × �H ). (7)

Here, g = (8πω)−1 is a Gaussian unit factor, the group per-
mittivity ε̃ = d (ωε)

dω
, and permeability μ̃ = d (ωμ)

dω
. As Bliokh

et al. demonstrated in the literature [7], we can decompose
the Minkowski representation of the spin angular momentum
density of a SPP into two contributions. One is a contribution
from the electromagnetic field and the other is from the
kinetic motion of electrons in the metal, which corresponds to
the dispersion corrected term of the spin angular momentum
density. For a SPP, we have

�S = �Sem + �Smat = gε

2
Im( �E∗ × �E )

+ gω

2

dε

dω
Im( �E∗ × �E ). (8)

FIG. 2. Frequency dependence of the magnetization density in a
SPP. Here, we define Msp ≡ M(ωsp). It is clear that the magnetization
is a monotonically increasing function of the SPP frequency. We use
the Drude parameter of gold ωp = 2.15 × 1015 Hz to draw this graph
[22].

Here, we ignore the magnetic field contribution to the spin
angular momentum density, because there is no rotation and
Im( �H∗ × �H ) = 0 in SPPs.

Electrons in a metal follow the motion of the electric fields
below the plasma frequency. This implies that the circular
motion of the electric field of SPP induces the orbital motion
of electrons in the metal, which can be confirmed by simul-
taneously solving Maxwell’s equations and the equation of
motion of electron gas in the metal [7]. The orbital motion
of electron gas creates an inhomogeneous magnetization field
in the metal, which is sometimes referred to as the inverse
Faraday effect [15,17–20]. Using the gyromagnetic ratio for
an orbiting electron [21], we can write the magnetization
density in metal,

�M = − e

2mc
�Smat = − geω

4mc

dε

dω
Im( �E∗ × �E )

= g|E0|2 e

2mc

2(1 − ε)
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≡ M0 f (ω)e2κ2x �uy. (10)

Here, we set M0 = |E0|2 e
2mc and f (ω) = 2g(1−ε)

√−ε

ε2 . Figure 2
illustrates the frequency dependence of the magnetization
density. Note that the plot is normalized by Msp = M(ωsp).
We can find that the magnetization density is a monotonically
increasing function of the frequency, which is maximum at the
surface plasmon resonance frequency ωsp = ωp/

√
2. From

(9), it is clear that the magnetization density exponentially
decays toward infinity in the metal. This inhomogeneous
magnetization field could drive the electron spin current.

Electron spin current in the inhomogeneous magnetization
field. In order to investigate whether the inhomogeneous
magnetization of SPPs can generate electron spin currents, we
solve the spin diffusion equation [23,24] with a source of the
inhomogeneous magnetization field,(

∂t − Ds∇2 + 1

τ

)
δμ = e

σ0
Ds∇ · �js. (11)
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Here, δμ is the spin accumulation, and Ds = λ2
s /τ and σ0

are the diffusion constant and the conductivity of the metal,
respectively. The source term on the right-hand side of the
diffusion equation (11) contains

�js = − h̄σ0

m
∇My. (12)

As can be seen, the source term comes from the inhomo-
geneous magnetization field created by the SPP. Due to the
inversion symmetry breaking at metal surfaces, the Rashba-
Edelstein (RE) effect plays a role in the interconversion of
spin and charge flows there, and it could modify the spin
diffusion length and the spin relaxation time. However, the
plasma oscillation of electrons is much faster than the spin
dynamics (ωp/2π � 1/τ ), and the effective magnetic field by
the RE effect ∝�p × �∇V rapidly oscillates, where �p is electron
momentum and V is the (static) scalar potential. Therefore, we
can safely neglect the RE effect when we analyze the diffusive
spin dynamics here.

Our interest is to find the stationary state solution of the
diffusion equation (11) and to investigate whether or not a
spin current is generated. Explicitly writing the spin diffusion
equation (11) in the stationary state, we obtain

∇2δμ = δμ

λ2
s

+ h̄e

m
∇2My. (13)

By solving this differential equation (13), we can find that spin
accumulation is created in the stationary state,

δμ = h̄eM0

m

f (ω)(2κ2λs)2

(2κ2λs)2 − 1
e2κ2x. (14)

In Fig. 3, the dependence of the spin accumulation on the
SPP frequency and the spin diffusion length is shown. We can
clearly see that there is a resonant response whose condition
given by

(2κ2λs)2 − 1 → 0. (15)

The condition is determined by the SPP frequency and the
spin diffusion length of the metal. At the condition, the sign of
spin accumulation is flipped. The accumulation takes negative
values below the condition, whereas positive above it. This
Lorentz-type resonance occurs because two different param-
eters, the spin diffusion length λs and the decay length of
SPP κ2, compete with each other. We remind that the form of
the stationary spin diffusion equation (13) is the same as that
of the differential equation of a driven harmonic oscillator.
The inverse of the spin diffusion length (λs)−1 corresponds to
the eigenfrequency in the harmonic oscillator equation. These
facts imply that the flow direction of the spin current generated
by this SPP-induced spin accumulation can be controlled by
the frequency or the spin diffusion length.

Indeed, there exists a diffusive spin current driven by this
spin accumulation (14),

�jSP
s =σ0

e
∇δμ (16)

=2σ0 h̄M0

m

κ2 f (ω)(2κ2λs)2

(2κ2λs)2 − 1
e2κ2x �ux (17)

= 2(2κ2λs)2

(2κ2λs)2 − 1
�js, (18)

FIG. 3. The dependence of spin accumulation on the frequency
of the SPP ω and spin diffusion length λs. Note that we limit the plot
range of the spin accumulation from −1.5 × 10−8 stat V to 1.5 ×
10−8 stat V in order to clarify the sign change at the resonant con-
dition (15), and the accumulation takes much larger values near the
condition. The Drude parameter of gold ωp = 2.15 × 1015 Hz, γ =
17.14 × 1012 Hz is used as in Fig. 2, and we set E0 = 1.0 stat V/cm
for simplicity. For the spin diffusion length λs, we consider the range
from 10 to 100 nm, which is the typical range for gold [24].

whose flow direction is flipped at the resonant condition (15).
In Fig. 4, we show the dependence of the diffusive spin current
on the SPP frequency and the spin diffusion length. It is

FIG. 4. Diffusive spin current mediated by SPP. This color map
shows the amplitude of the spin current as a function of the frequency
ω and the spin diffusion length λs. We use the Drude parameter of
gold as in all previous figures, and we also set E0 = 1.0 stat V/cm
for simplicity. It is clear that there exists the resonant response
condition (15), and the flow direction of the spin current is flipped
at the condition. Note that we set the plot range of the spin current
from −1.0 × 10−4 stat A/cm2 to 1.0 × 10−4 stat A/cm2, and that the
amplitude can be larger near the resonant condition. We also have
a relatively large spin current generation near the surface plasmon
resonance frequency ωsp = ωp/

√
2.
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clear that there exists a resonant response at the condition (15)
where the direction of the spin current is flipped. In addition,
there is another resonant response at the surface plasmon
resonance frequency ωsp = ωp/

√
2 unlike the response of the

spin accumulation. This is because the decay length κ2, which
appears in (18), diverges at the frequency.

Finally, we estimate the amplitude of the diffusive spin
current at the two resonant conditions, the surface plasmon
resonance and the Lorentz-type resonance. We here assume
the electric field amplitude of SPP is E0 = 6.14 × 102 V/m,
which can be excited by a laser beam with an intensity of
100 mW/cm2 with the standard Otto configuration [25].

At the surface plasmon resonance, the magnetization
reaches its maximum of the order of 10−9 G ≈ 10−13 T, and
the decay length is in the order of 10−7 m. With these values,
we can find that the amplitude of the source (12) is | �js| ∼
103 A/m2. In the case of the surface plasmon resonance, the
Lorentz-type resonance factor (2κ2λs )2

(2κ2λs )2−1 is asymptotic to 1
(0.99 when λs = 40 nm). The driven spin current is in the
order of 103 A/m2.

As for the Lorentz-type resonance, for example, when ω =
1.25 × 1015 Hz and λs = 60 nm, the Lorentz-type resonance
factor is of the order of 102, and we can estimate the source
| �js| ∼ 103 A/m2 by the same procedure as before. Therefore,
the diffusive current generated at the condition is in the order
of 105 A/m2. The spin current with an amplitude of 105 A/m2

can be measured via the inverse spin Hall effect (ISHE) (see,
for example, Ref. [26] for the ISHE measurement scheme).

There may be a deviation from the simple Drude model
(6) due to electronic excitations other than plasma oscillation.
However, at least below the threshold energy (≈0.5 PHz ≈
ωsp/3), the Drude model accurately fits experimental results,
and this allows our simple analysis by the spin diffusion
equation with the source term. We need further analysis with
a full quantum mechanical treatment beyond the threshold,
where the damping and the shift of the resonance peaks
potentially happen, and leave it for future work.

Conclusion. We reviewed the inhomogeneous magnetiza-
tion field in a surface plasmon polariton (SPP), and proposed
a mechanism of electron spin transport driven by the SPP
by solving the spin diffusion equation in the presence of the
inhomogeneous magnetization of a SPP.

We found that there are two conditions at which the dif-
fusive spin current is resonantly generated. One condition is
determined by the frequency of the SPP and the spin diffusion
length of electrons in the metal. At this condition, the direction
of the spin current is flipped so that we could control the
direction of the electron spin flow by utilizing the frequency
and the spin diffusion length. The other condition is the
surface plasmon resonance (SPR) condition (ω = ωsp), where
the decay length of the surface plasmon κ2 diverges. Unlike
the former condition, the flip of the spin flow direction does
not occur at this condition because the SPP cannot exist on the
interface beyond the SPR frequency.

When the electric field of the SPP is 6.14 × 102 V/m,
which can be created by a laser with a power of 100 mW/cm2,
the source current created by the SPP is in the order of
103 A/m2. The corresponding diffusive current at the station-
ary state is in the order of 105 A/m2 at one of the Lorentz-type
resonance conditions (ω = 1.25 × 1015 Hz and λs = 60 nm),
which is measurable with the inverse spin Hall effect scheme.
Conventionally, the magnetoplasmonic effect is too weak to
measure (see, for example, Refs. [27,28]); however, the SPP-
driven spin current proposed in this Rapid Communication is
large enough to detect via the inverse spin Hall measurement.
This is partly because of the enhancement of the spin current
by the Lorentz-type resonance which results from the compe-
tition between the two parameters, the spin diffusion length
λs and the decay length of the SPP κ2, in the spin diffusion
equation with a source term. That is also because the spin
current is driven not by the magnetization itself but by the
magnetization gradient, which can be large since the SPP is
tightly confined at the interface. This is similar to the fact that
spin currents are driven by the steep gradient of the effective
magnetic field created by spin-vorticity coupling in a flow of
liquid metal, although the effective magnetic field is rather
weak [12].

Our proposed system is simple enough to prepare, and this
plasmon-mediated spin current generation will be accessible
by experiments. This work will be a bridge between two
different research fields, plasmonics and spintronics.
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