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Topology and magnetism in the Kondo insulator phase diagram
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Topological Kondo insulators are a rare example of an interaction-enabled topological phase of matter in
three-dimensional crystals—making them an intriguing but also hard case for theoretical studies. Here, we aim
to advance our theoretical understanding by solving the paradigmatic two-band model for topological Kondo
insulators using a fully spin-rotation invariant slave-boson treatment. Within a mean-field approximation, we
map out the magnetic phase diagram and characterize both antiferromagnetic and paramagnetic phases by their
topological properties. Among others, we identify an antiferromagnetic insulator that shows, for suitable crystal
terminations, topologically protected hinge modes. Furthermore, Gaussian fluctuations of the slave-boson fields
around their mean-field value are included in order to establish the stability of the mean-field solution through
computation of the full dynamical susceptibility.

DOI: 10.1103/PhysRevB.101.161112

Introduction. Landau’s theory of spontaneous symmetry
breaking and topological phenomena are often cited as two an-
tipodal concepts by which phases of matter can be organized.
However, in strongly correlated topological systems, which
are surprisingly rare in three-dimensional systems, they can
show an intriguing interplay. One of the paradigmatic exam-
ples are topological Kondo insulators (TKIs) [1,2], in which
d and f electron bands partially overlap and hybridize. This
band overlap sources the band inversion central to topological
band theory, while correlations from the strongly localized
f electrons induce a robust hybridization gap between these
bands and thus bring about an insulating ground state.

Several materials fall in this category, with SmB6 being the
best-studied example. The nature of its ground state is still
under debate despite intense experimental investigations, with
evidence for a topological [3–8] as well as a nontopological
[9] scenario, while some works even report indications for
a metallic state [10–12]. Another point of controversy is the
magnetic order of SmB6, with indications for paramagnetic
(PM) [13], A-type antiferromagentic (AFM) [8,14], Neel-
AFM [9,15,16], and surface-ferromagnetic phases. The pres-
ence of magnetism would crucially influence the topological
classification of the material. Jointly, these results demon-
strate that SmB6 and, more broadly, TKIs are at a nontrivial
intersection of topology, symmetry-breaking, and correlated
phenomena.

This renders the systems not only as highly relevant but
also an intrinsically hard case for theoretical studies. Ana-
lytical and numerical methods are challenged by a strongly
correlated interplay between localized and delocalized as well
as spin and orbital degrees of freedom. In this work, we adopt

*rthomale@physik.uni-wuerzburg.de
†titus.neupert@uzh.ch

Kotliar-Ruckenstein’s formulation of the slave-boson formal-
ism [17], which matches with the Gutzwiller approximation in
infinite dimensions, to map out its magnetic and topological
phase diagram. We use Kotliar and Ruckenstein’s scheme
among the many variants of slave-boson formulations because
it has been extended to a spin-rotation invariant description
[18,19], including Gaussian fluctuations [20–22], and refer to
it shortly as slave bosons from here on.

In the slave-boson treatment, one replaces the fermionic
creation and annihilation operators by a new set of fermionic
ones combined with an auxiliary bosonic field. The bosonic
fields are chosen such that the fermionic interaction terms are
replaced by quadratic bosonic terms in the action, while the
resulting pseudofermionic fields also only enter quadratically.
When local constraints are imposed through Lagrange multi-
plier fields to constrain the values of bosonic fields to physical
ones, one obtains an exact representation of the original prob-
lem. We employ a mean-field approximation for the bosonic
fields, which imposes the constraints on average and allows
for magnetic and nonmagnetic solutions. Following Ref. [22],
one can acquire the expressions with the physical information
of the original system, e.g., effective mass, spin, and charge
susceptibility. Together with the periodic Anderson model,
Kondo systems have been considered as a particularly suitable
target to prove the accuracy of slave bosons for their physics
including interacting electrons as well as hybridized orbitals.

In this work, we numerically implement the analytical
representations from the slave-boson formalism and present
the phase diagram for a model that resembles the low-energy
physics in SmB6, but can be seen as paradigmatic for generic
three-dimensional Kondo models with cubic and time-reversal
symmetry. We find a total of seven phases, which are mag-
netically or topologically distinct, by tuning the strength of
the electron-electron interactions as well as the on-site energy
of the f electrons. Besides various PM insulating topological
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phases, we find two topologically distinct insulating phases
with (π, π, π ) (Neel-)AFM order.

Model and method. We start with a short exposition of
our model and the main ingredients of the spin-rotation in-
variant slave-boson formalism. The Hamiltonian introduced
in Ref. [23] as a minimal model for SmB6 reads

H = H0 + Hhyb + Hint, (1)

H0 =
∑

i

f̃
†
i ε f f̃ i −

∑
〈i, j〉

( f̃
†
i t f f̃ j + c†i t d c j + H.c.)

−
∑
〈〈i, j〉〉

( f̃
†
i t f ′

f̃ j + c†i t d ′
c j + H.c.) −

∑
i

μ0ñi,

Hhyb =
∑

α

∑
〈i, j〉α

iV ( f̃
†
i τ

αc j + c†i τ
α f̃ j + H.c.),

Hint = U
∑

i

f̃ †i,↑ f̃i,↑ f̃ †i,↓ f̃i,↓

representing f - and d-electron hopping on a simple cubic
lattice, their hybridization, and the local repulsive Hubbard

interaction, respectively. The spinors f̃
†
i := ( f̃ †i,↑, f̃ †i,↓) and

c†i = (c†i,↑, c†i,↓) are formed by the creation operators of d- ( f -)

electrons c†i,σ ( f̃ †i,σ ) with spin σ ∈ {↑,↓}, and ñi = f̃
†
i f̃ i +

c†i ci represents the local density of all electrons at site i.
We denote by 〈i, j〉α a nearest-neighbor bond in the α di-
rection and τα as the αth component of the vector of Pauli
matrices τ := (τ 1, τ 2, τ 3) acting in spin space. The notations
for nearest-neighbor (〈·〉) and next-to-nearest-neighbor (〈〈·〉〉)
pairs of sites are adopted in conventional form.

Following Ref. [23], we consider a half-filled band struc-
ture throughout and choose t d = 1, t f = −0.1, t d ′ = −0.4,
t f ′ = 0.04, and V = 0.5; all energy scales will be given in
units of t d . The form of Eq. (1) and the chosen parameters
account for negligible interactions as well as bigger hopping
amplitudes among the d electrons as compared to the f
electrons. We chose the relative energy shift between f - and
d-orbitals ε f and the interaction strength U as free parameters
as a function of which we will map out the phase diagram.
We complement simplified slave-boson studies, which did
not consider the possibility of magnetic order [23] or were
performed at infinite interaction U [24].

Slave-boson representation. To account for interactions,
we apply the slave-boson representation of the operators

f̃
(†)
i , originally introduced by Kotliar and Ruckenstein [17],

which has been generalized to be spin-rotation invariant (SRI)
[18,19] and to consider fluctuations around the PM saddle
point [20,21]. We introduce the bosonic fields ei, di, pi,0 and
pi := (pi,1, pi,2, pi,3), labeling empty, doubly, and singly oc-
cupied states, respectively, i.e.,

e†i |vac〉 := |ṽac〉, d†
i f †i,↑ f †i,↓|vac〉 := f̃ †i,↑ f̃ †i,↓|ṽac〉,

1

2

3∑
α̃=0

∑
σ ′

(p†i,α̃τ α̃ )σσ ′ f †i,σ ′ |vac〉 := f̃ †i,σ |ṽac〉, (2)

with |vac〉 being the vacuum of the slave-boson representa-
tion containing a new set of auxiliary fermionic operators

f †i := ( f †i,↑, f †i,↓). The unity matrix is denoted by τ 0. The
Hilbert space defined by the slave particle operators has to be
projected onto the physical Hilbert space by the application
of constraints (see Supplemental Material [25]), which are
inserted via Lagrange multiplier terms in the Lagrangian by
introducing five new fields iαi, iβi,0, and iβi,α per site i.

Mean-field approximation. We apply a mean-field ansatz,
incorporating a static spin spiral with ordering vector Q of
a possible magnetic ground state. Following Ref. [26], we
replace the bosonic fields at the lattice site labeled by i with
lattice vector ri by bi → b, where bi represents any of the
fields ei, di, p0,i, αi, β0,i, and define

pi →
⎛
⎝cos(φi )

sin(φi)
0

⎞
⎠p, and iβi →

⎛
⎝cos(φi)

sin(φi )
0

⎞
⎠β. (3)

Here, we have φi = Q · ri, β ∈ R and b, p ∈ R+
0 . Within this

mean-field ansatz, the free energy per site is given by [25]

F

N
= −T

N

8∑
ν=1

∑
k

ln
[
1 + e−εν

k,Q/T ] + Ud2

+ nμ0 − β0
(
2d2 + p2 + p2

0

) − 2βp0 p, (4)

where εν
k,Q are the renormalized eigenvalues of the effec-

tive mean-field Hamiltonian, which implicitly depend on the
slave-boson fields, and T is the temperature. The index ν is a
combined label for the spin, orbital, and sublattice degrees of
freedom. The filling is fixed at n = 2. As shown in Ref. [25],
the free energy F is invariant under global SO(3) rotations
of pi.

We distinguish mean-field solutions with p = 0, describing
a PM state, and p 	= 0, signaling magnetic order. They are
obtained by minimizing the free energy with respect to d, p0,
and p, while maximizing with respect to β, β0, and μ0. Since
there is a plethora of possible ordering vectors Q to consider,
we first calculate the PM mean field by explicitly setting p =
β = 0 and then perform a stability analysis of the saddle point
by expanding the action S up to second order in fluctuations
of the bosonic fields.

Fluctuations around the paramagnetic saddle point. Within
this expansion, the charge and spin susceptibility in momen-
tum space are obtained as

χc(q) := 〈δn f (−q) δn f (q)〉,
(5)

χαβ
s (q) := 〈δSα (−q) δSβ (q)〉,

where Sα = p0 pα represents the spin density operator pro-
jected to direction α and n f = 2d2 + p2

0 + p2 is the charge
density operator expressed in bosonic fields. We find χ

αβ
s (q)

to be proportional to the unit matrix and will hence refer to
it as a scalar function χs(q) [22]. Here, q := (q, ω) is the
four-vector of the wave vector q and frequency ω, and 〈·〉 is the
thermal expectation value of Gaussian fluctuations around the
saddle point. We adopt the expressions for the susceptibilities
from Refs. [22,27]. A sign change in the real part in the
zero-frequency limit signals the onset of spontaneous charge
or magnetic order. In the explored parameter domain, we do
not find any charge instabilities. However, the real part of χs

exhibits a sign change in the two-dimensional parameter space
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FIG. 1. (a) Topological phase diagram in the parameter space of (ε f ,U ). BI, WTI, STI1, and STI2 phases are found in the PM region,
whereas Non Metallic, Metallic, and HOTI phases appear in the AFM region. The phase boundaries are indicated by solid black lines. We
further show trajectories of equal f -electron filling nf = 1.5, 1, 25, 1.0, 0.75 as dashed gray lines. (b) Gap plot as a function of ε f for U = 15
featuring topological gap closings as well as the metallic AFM region. (c) Bulk band structure for ε f = −12 and U = 10 (STI1) on the
high-symmetry path -X -M-R- in the first BZ of the simple cubic lattice. (d) Bulk band structure for ε f = −12 and U = 12 (HOTI, AFM)
on the high-symmetry path X --L-X in the first BZ of the face-centered-cubic lattice. Cyan (red) colored lines represent strong f (c) occupation
and (+|−) the inversion eigenvalues of each Kramer’s pair. Red band weights in the occupied spectrum of (c) and (d) indicate band inversion.

(ε f ,U ), implying magnetic order. We compare the critical
U at vanishing ω for the instability with q = (π, π, π ) to
that of other ordering vectors. None of the latter led to an
instability at smaller U , and thus we conclude that the mag-
netic ordering vector is Q = (π, π, π ) (see Ref. [25]). The
magnetic phase boundary can be seen in Fig. 1, containing
a magnetic region approximately bound by the f -electron
fillings n f = 0.75 and n f = 1.25 for interactions larger than
U = 5. The AFM mean-field spectrum allows for an insulator-
to-metal transition by pushing noninteracting d electrons to
the Fermi level, which emerges at large U around n f = 1.
Investigating possible (incommensurate) magnetic or charge
instabilities which could emerge on the AFM band structure
deeper in the phase would require a susceptibility analysis of
the magnetic band structure, which is beyond the scope of
this Rapid Communication. A general form of the mean-field
Hamiltonian for arbitrary ordering vector Q is derived in
Ref. [25].

Topology of PM and AFM band structures. The solutions
of the mean-field equations for Q = (π, π, π ) yield magnetic
and nonmagnetic domains in the parameter space of (ε f ,U ).
The resulting PM phase boundary coincides with the one
obtained by analyzing the fluctuations around the paramag-
netic saddle point, separating the phase diagram in a PM
(green/blue) and AFM (red) domain in Fig. 1. The remaining
phase boundaries indicate either a change of topology or a
metal-to-insulator transition.

Using the renormalized band structure, we can study
the band topology. In the PM case, the effective hopping
Hamiltonian (see Ref. [25]) features antiunitary time reversal
T : (T c(†)

σ,kT −1, T f (†)
σ,kT −1) 
→ (σc(†)

−σ,−k, σ f (†)
−σ,−k ) and uni-

tary inversion I : (Ic(†)
σ,kI−1, I f (†)

σ,kI−1) 
→ (c(†)
σ,−k,− f (†)

σ,−k )

symmetry, where c(†)
σ,−k represents any fermionic operator with

quantum numbers (σ,−k). Because (T I )2 = −1, bands are
doubly degenerate at every k. We can define the Z2-valued
strong (νPM

0 ) and weak (νPM
α ) topological indices [23,28–30]:

strong:
8∏

j=1

∏
n∈occupied

ξ [n,  j] = (−1)ν
PM
0 , (6)

weak:
∏

j;kα=π

∏
n∈occupied

ξ [n,  j] = (−1)ν
PM
α . (7)

Here,  j represents the time-reversal-invariant momenta
(TRIM), which are PM = (0, 0, 0), X PM ∈ {(π, 0, 0),
(0, π, 0), (0, 0, π )}, MPM ∈ {(π, π, 0), (0, π, π ), (π, 0, π )},
and RPM = (π, π, π ) in the first Brillouin zone (BZ) of the
simple cubic lattice. ξ [n,  j] is the inversion eigenvalue
of the nth Kramer’s pair at the  j point. Due to the
cubic symmetry in the PM phase, all the weak indices
are equivalent, i.e., νPM

x = νPM
y = νPM

z . Therefore, we can
maximally have four topologically distinct phases given
by (νPM

0 , νPM
α ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We denote

these phases by band insulator (BI), weak topological
insulator (WTI) and strong topological insulator of type
one and two (STI1, STI2), respectively. We illustrate the
factors of the strong index νPM

0 for the STI1 phase at
(ε f ,U ) = (−12, 10) in Fig. 1(c): the eigenvalues ξ [1,  j] are
−1 (+1) for the blue- (red)-colored portions of the energy
bands, such that ξ [1, PM] = ξ [1, MPM] = ξ [1, RPM] = −1,
but ξ [1, X PM] = 1 and, consequently, νPM

0 = 1.
In the magnetically ordered phases with ordering vector

Q = (π, π, π ), the real-space primitive unit cell is doubled
in size since each site i is surrounded by six neighboring
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sites with opposite spin expectation value. In this AFM phase,
the system has a pseudo-time-reversal symmetry T ′ as the
combination of T and the translation by r̂α to a nearest
neighbor in the α direction. Moreover, inversion symmetry
I is retained. We find four doubly degenerate bands. The
change in the unit cell from simple cubic to face-centered
cubic results in eight new TRIMs, which are  := 0, L :=
b1/2, X := (b1 + b2)/2. Of these, L and X have, respectively,
four and three partners obtained by C4 rotations. Here, b1 :=
(−π, π, π ), b2 := (π,−π, π ), and b3 := (π, π,−π ) in units
of |r̂α|−1 are the three primitive reciprocal lattice vectors of
the fcc structure. Hence, the strong index,

νAFM :
∏

n∈occupied

ξ [n, ] ξ [n, X ] = (−1)ν
AFM

, (8)

corresponding to Eq. (7) remains Z2 valued, with the four
L points always yielding a trivial contribution. As shown in
Fig. 1, each Kramer’s pair at the L point has two different
inversion eigenvalues. Due to the translation operator in T ′,
which does not commute with the inversion operator at L,
we find the relative phase between the eigenvalues of the two
pairs to be exp(2ir̂αL) = −1. Thus, the weak index

νAFM
weak :

∏
n∈occupied

(ξ [n, X ])2 = 1 = (−1)ν
AFM
weak (9)

is always trivial. Therefore, apart from the metallic regime,
we find a region with the trivial topological index νAFM = 0,
which is labeled Non Metallic, and a higher-order topological
insulator (HOTI) νAFM = 1, exhibiting topological states in
two dimensions lower than the bulk [31–37]. We illustrate the
factors of the index νAFM for the HOTI phase at (ε f ,U ) =
(−12, 12) in Fig. 1(d).

The phase with nontrivial topology can further be classified
as an axion insulator (AXI), which, depending on the orien-
tation of the surfaces, can show gapless chiral hinge modes
while the surface and bulk remain gapped. These modes are
realized in a geometry that preserves I and breaks T ′. Exper-
imental evidence for such magnetically ordered topological
materials was recently observed in MnBi2Te4 and Bi2Se3 thin
films [38–40]. The hinge modes in a nanowire geometry are
shown in Fig. 2. Surfaces that preserve T ′ would feature a
gapless Dirac cone.

Phase diagram. To sum up, depending on the parameter set
(ε f ,U ) that we probe, the effective fermionic part of Eq. (1)
can realize a PM or an AFM phase with ordering vector Q =
(π, π, π ). There are four topologically distinct subphases (BI,
WTI, STI1, and STI2) in the PM phase, which are determined
by the two topological indices νPM

0 and νPM
α . On the other

hand, there are three subphases (metallic, nonmetallic, and
HOTI) in the AFM region. We find that the nonmetallic AFM
phase features surface states, which are not topologically
protected.

We further investigate the possibility of obtaining excitonic
states with our formalism [25]. These charge-neutral collec-
tive modes have been suggested to account for the longstand-
ing anomalies in SmB6 in several experimental observations
and point to the relevance of excitons for the electronic
structure of SmB6 [41,42]. However, we do not find any

FIG. 2. (a) Band structure in the inclined column geometry de-
picted in (b) at (ε f ,U ) = (−12, 12) featuring chiral hinge modes.
(b) An example of column geometry where the hinge mode appears.
The AFM spin texture in each plane is shown in the diamond-
shaped inset. Red (blue) circles indicate spin ↓ (↑) in the fermionic
part of the renormalized Hamiltonian. (c) Probability distribution
in real space of the hinge state indicated in (a) by the red circle.
20 × 20 + 19 × 19 = 761 sites are used for the plot.

evidence for excitonic states or bands separated from the band
continuum within the dynamical spin susceptibility within our
slave-boson treatment.

Conclusion. We studied the phase diagram of a paradig-
matic model for three-dimensional TKIs using the scheme
of Kotliar-Ruckenstein’s slave-boson representation. To that
end, we numerically implemented the analytical expressions
of charge and spin susceptibility of a cubic and time-reversal
symmetric system. We obtained a collection of phases in
which topological properties and magnetic symmetry break-
ing are intertwined, yielding, among others, an axion insulator
with chiral hinge modes.

Previous studies have theoretically predicted a bulk band
inversion of SmB6 at the X point and surface Dirac cones at the
X and  points of the surface BZ [23,43,44], which have been
observed experimentally [45]. These characteristics coincide
with the STI1 phase in our phase diagram. Further SmB6

shows strong indications of AFM ordering under pressure
[9,15], which is all captured in our minimal model within a
small parameter range of (ε f ,U ), corresponding to f-electron
fillings n f between 1.5 and 1.25. Judging from our results, we
expect an indication of the sequence of phase transitions STI1

to HOTI to nonmetallic AFM in the specific heat as a function
of pressure, which could be of interest to future experimental
investigations.
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