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Enhancement of local pairing correlations in periodically driven Mott insulators
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We investigate a model for a Mott insulator in the presence of a time-periodic modulated interaction and a cou-
pling to a thermal reservoir. The combination of drive and dissipation leads to nonequilibrium steady states with a
large number of doublon excitations, well above the maximum thermal-equilibrium value. We interpret this effect
as an enhancement of local pairing correlations, providing analytical arguments based on a Floquet Hamiltonian.
Remarkably, this Hamiltonian shows a tendency to develop long-range staggered superconducting correlations.
This suggests the possibility of realizing the elusive η-pairing phase in driven-dissipative Mott Insulators.
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The Floquet engineering of complex quantum systems is
a very active line of research in today’s condensed matter
physics [1]. It consists in the design of periodic perturbations
to achieve nonequilibrium driven states remarkably different
from their undriven counterparts. Examples are the dynamical
control of band topology [2,3] and of magnetic interactions
[4] in ultracold atoms in optical lattices, and of effective
Hamiltonian parameters in solids under intense laser-pulse
excitation [5–7].

A useful description of a periodically driven quantum
system is in terms of effective static Hamiltonians derived
with large-frequency expansions [8–11]. In general, however,
the drive affects also the distribution function of the sys-
tem, eventually leading to thermalization to a trivial infinite-
temperature state [12,13 ]. Nevertheless, when heating can be
avoided for finite but long times, interesting prethermal Flo-
quet states can be observed. This is the case, for example, for
very large drive frequency [14–17] or systems close to integra-
bility [18–23]. In particular, Ref. [24] showed that strong elec-
tronic correlations lead to finite-frequency prethermal states
with remarkable properties as a function of drive frequency.

A natural question concerning the Floquet prethermal state
is whether the coupling to external reservoirs would cancel out
its interesting features, or rather preserve them and possibly
make them more accessible. Particularly interesting is the
possibility to control the distribution function of the system
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by means of a dissipation mechanism of the energy injected
by the drive [25–29].

To investigate this point, in this work we consider the
Fermi-Hubbard model with a periodically driven interaction
and coupled to a thermal reservoir. Starting from the Mott-
insulating phase, our numerical calculations show that the
combination of drive and dissipation leads to steady states
that are not accessible in the corresponding isolated model. In
particular, we reveal a regime with a remarkably large number
of high-energy doublon excitations, well above the maximum
equilibrium value for the half-filled repulsive Hubbard model.

We interpret this steady-state large double occupancy as an
enhancement of local pairing correlations, and we describe the
effect as a thermalization to a lowest-order Floquet Hamilto-
nian. Remarkably, we find that higher-order terms promote
finite-momentum doublon superfluidity, namely, staggered
long-range pairing correlations among fermions (η pairing),
which spontaneously break the hidden SUC(2) charge sym-
metry of the half-filled Hubbard model [30–32]. This suggests
a nonequilibrium protocol for Floquet engineering exotic
superconducting states in driven-dissipative Mott insulators,
as also very recently investigated in similar contexts [33–36].

Our results are relevant for current experiments on laser-
pumped organic Mott insulators [5,6] and ultracold Fermi
gases in driven optical lattices [37,38]. We discuss the latter in
particular, suggesting to explore a possibly overlooked regime
in future experiments.

Model. The Hamiltonian of the driven-dissipative Fermi-
Hubbard model reads H = HHub + Hdiss, where

HHub =
∑
i j,σ

Vi jc
†
iσ c jσ + U (t )

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(1)

Hdiss =
∑

iα

ωαb†iαbiα + λ
∑

iα

gα (ni − 1)(biα + b†iα ). (2)
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FIG. 1. (a),(b) Time evolution of double occupancy and kinetic energy for drive frequency � = 9 > �∗: oscillations (shaded area) and
their average (symbols). Inset in (a) is common to (a)–(d). (c),(d) Long-time averages as a function of drive frequency, and approximate
analytical expressions based on Eq. (3) (dashed lines). (e),(f) Long-time average of double occupancy as a function of bath coupling and of
bath temperature for λ = 0.2 and drive frequencies � = 7 < �∗ and � = 9 > �∗.

Here the c’s operators describe fermions hopping with ampli-
tude Vi j and subject to a driven local interaction U (t � 0) =
U0 + δU sin �t . The bare density of states is semicircular
with bandwidth 4V and we measure energy, frequency, and
inverse of time (h̄ = 1) in units of V [39]. The thermal bath is
implemented by independent sets of bosonic modes b which
couple to density at each lattice site, with spectral function
J (ω) = ∑

α g2
αδ(ω − ωα ) ∝ ω2e−ω/ωc (ωc = 1) and coupling

λ [39]. Importantly, the bath allows energy dissipation but
commutes with density ni = ni↑ + ni↓ and preserves particle-
hole symmetry. The system remains half filled at all times
(〈niσ 〉 = 0.5).

Starting from a thermal-equilibrium state, we calculate
the time evolution by means of nonequilibrium dynamical
mean-field theory (DMFT) [40,41] with the noncrossing ap-
proximation as impurity solver [42,43], including the effect
of dissipation at weak coupling in λ [44] (see Supplemental
Material [45] Sec. I for implementation details, and Sec. II for
one-crossing-approximation benchmarks). We calculate dou-
ble occupancy D(t ) = 〈ni↑(t )ni↓(t )〉, kinetic energy K(t ) =∑

Vi j〈c†iσ (t )c jσ (t )〉, and local Green’s function Gσ (t, t ′) =
−i〈T ciσ (t )c†iσ (t ′)〉. For definiteness, we choose U0 = 8 for the
initial Mott-insulating state in equilibrium at T = 1 [46] and
δU = 2 for the drive amplitude (see Supplemental Material
[45] Sec. VI for a discussion on δU ). The bath temperature
is Tbath = 1 unless specified differently. In the absence of
dissipation, Floquet prethermalization is observed at all fre-
quencies except for the resonance �∗ = 8.12 	 U0 [24]. We
restrict ourselves to paramagnetic states, leaving the interplay
of drive, dissipation, and magnetism to future studies.

Time evolution. In the driven-dissipative model, as well
as in the isolated case, double occupancy and kinetic energy
display a separation of timescales between fast oscillations

synchronized with the drive and a slowly varying average
value. However, after a common transient, the thermal reser-
voir starts to be effective and changes substantially the long-
time behavior of both observables.

For weak bath coupling and drive above resonance, the
double occupancy grows substantially larger than in the
isolated model, going to a stationary average above 0.25
[Fig. 1(a), λ = 0.2]. Such a large value would be possible,
at equilibrium, only if the interaction were attractive. This
striking effect highlights the peculiarity of this nonequilibrium
steady state, as we discuss thoroughly below.

Upon increasing the bath coupling [Fig. 1(a), λ = 1.0], the
double occupancy decreases and eventually remains below the
limit of 0.25 at all times. Moreover, we notice that the bath is
effective only after a transient time ∼1/λ2, which makes the
regime of very weak coupling not accessible by the numerical
simulation (see also Ref. [47]).

At the same time, the kinetic energy is also largely affected
by dissipation [Fig. 1(b)]. Here the effect is more intuitive: in
the isolated model the drive leads to a prethermal state with
positive kinetic energy, indicative of a population inversion
[22,24]. On the other hand, the thermal reservoir dissipates
the excess kinetic energy, which remains negative as at equi-
librium, and inhibits the population inversion, as we also
explicitly show below.

Long-time average. To study the role of drive frequency
and bath coupling in a more systematic way, we consider the
long-time average of double occupancy and kinetic energy.
For weak bath coupling, the dissipative model has double
occupancy larger than the isolated one at all frequencies
[Fig. 1(c), λ = 0.2)]. However, a remarkable change happens
crossing the resonance �∗ 	 U0. Below resonance, the dissi-
pation has only a quantitative, rather weak effect. In contrast,
above resonance, we systematically observe a large increase
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of double occupancy across the limit of 0.25, as discussed
previously for a selected frequency. Lower values are then
recovered upon increasing the frequency further, as the system
eventually becomes transparent to the drive.

Independent of the bath coupling, the kinetic energy of the
dissipative model is rather featureless and negative for all fre-
quencies [Fig. 1(d), λ = 0.2, 1.0]. Thus, the thermal reservoir
cancels the region of positive kinetic energy characteristic of
the isolated case [Fig. 1(d), λ = 0.0].

The difference between below and above resonance ap-
pears also in the dependence on bath coupling [Fig. 1(e)] and
bath temperature [Fig. 1(f)]. Below resonance (� = 7) the
double occupancy is almost independent of bath coupling and
decreases on lowering the bath temperature. Quite differently,
above resonance (� = 9) it increases on lowering the bath
temperature at weak bath coupling.

Notice that the observed behavior does not depend on the
details of the bath spectral function as long as we deal with
bosonic modes [39]. In contrast, a fermionic reservoir does
not lead to the same steady-state large double occupancy
(see Supplemental Material [45] Sec. III) because it can
change the local density even at zero hopping, spoiling the
quasiconservation of doublons which is the basis of Floquet
prethermalization in this system [24].

Spectral function. To gain insight into the nature of the
steady state, we calculate the spectral function Ā(ω) and
occupation function N̄ (ω) as the average Wigner transforms
of the retarded and lesser components of the local Green’s
function [24]. While the spectral function is the same in the
isolated and dissipative models, the occupation function, and
thus the distribution function F̄ (ω) = N̄ (ω)/Ā(ω), changes
drastically for drive frequency above resonance and weak bath
coupling.

In the isolated model, N̄ (ω) is shifted towards high
energy with respect to Ā(ω) [Fig. 2(a)]. There is there-
fore a population inversion within the Hubbard bands.
Indeed, the local behavior of F̄ (ω) for ω 	 ±U0/2 has
the shape of a Fermi function with negative temperature
[Fig. 2(c)].

The thermal reservoir completely changes the situation.
First, as the dissipation enhances the energy redistribution
within the Hubbard bands, N̄ (ω) is pushed back to lower
energy [Fig. 2(b)], canceling the population inversion. As a
consequence, F̄ (ω) assumes the shape of a Fermi function
with positive temperature for ω 	 ±U0/2 [Fig. 2(d)]. Then,
the overall weight of N̄ (ω) in the upper band grows and
becomes even larger than in the lower band, meaning the
creation of a large number of high-energy doublon excita-
tions. These two effects are qualitatively related to the ones
discussed above: change of sign of kinetic energy and growth
of double occupancy.

Discussion. The above numerical results demonstrate that,
in the strongly repulsive Fermi-Hubbard model, the combina-
tion of a time-periodic interaction and a dissipative bath leads
to steady states with a remarkably large number of doublon
excitations. Interestingly, this large double occupancy imme-
diately translates into enhanced local pairing correlations D =
〈c†i↑c†i↓c j↓c j↑〉|i= j , although a full calculation of the lattice

FIG. 2. (a),(b) Long-time average spectral function Ā(ω) (solid
line) and occupation function N̄ (ω) (filled area) of the isolated model
(λ = 0) and the dissipative model (λ = 0.2) for drive frequency � =
9 > �∗. The isolated model (a) has population inversion, signaled by
the blueshift of N̄ (ω) with respect to Ā(ω) (arrows). In the dissipative
model (b), the thermal reservoir cancels the population inversion
(horizontal arrows) and unveils a nonthermal state with large double
occupancy, signaled by the increase of N̄ (ω) in the high-energy band
(vertical arrows). (c),(d) Long-time average distribution function
F̄ (ω) for the same parameters of (a) and (b) with Fermi-function fit
around the Hubbard-band center. The extracted effective temperature
is Teff = −1.6 for the isolated model (c) and Teff = 1.1 	 Tbath for the
dissipative one (d). See Supplemental Material [45] Fig. S3 for a plot
of Teff(�).

susceptibility within DMFT is beyond the scope of this Rapid
Communication.

In order to unveil the origin of this effect, let us first
consider the isolated model and its Floquet Hamiltonian. To
this end, we consider a frequency close to resonance � 	
�∗ 	 U0 and perform a rotating-frame transformation on the
Hamiltonian (1), followed by a high-frequency expansion
[9,48] (see Supplemental Material [45] Sec. V). At lowest
order we find

H̄ eff (0)
Hub = V K0 + (U0 − �)

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (3)

Here K0 = ∑
(Vi j/V )c†iσ c jσ (niσ̄ n jσ̄ + n̄iσ̄ n̄ jσ̄ ) are those hop-

ping terms in Eq. (1) that do not alter the number of dou-
bly occupied sites (n̄iσ = 1 − niσ , ↑̄ =↓, and ↓̄ =↑). Equa-
tion (3) can be interpreted as a Hamiltonian of doublons
and holons, where the first term contains hopping and the
second term acts as a chemical potential. The numerical
results around �∗ 	 U0 in the isolated model are quali-
tatively captured in terms of thermalization to this effec-
tive Hamiltonian. Indeed, we can extract the effective tem-
perature Teff(�) 	 (U0 − �)−1 (see Supplemental Material
[45] Fig. S3) and, since |Teff | � V for � 	 �∗, we can
disregard the kinetic term in Eq. (3) and calculate D =
0.5{1 + exp [0.5(U0 − �)/Teff]}−1 	 0.25 − (� − U0)2. This
captures the quadratic behavior for λ = 0.0 [Fig. 1(c), dashed
line] with finite-hopping corrections responsible for the quan-
titative mismatch.

161101-3



PERONACI, PARCOLLET, AND SCHIRÓ PHYSICAL REVIEW B 101, 161101(R) (2020)

We now turn to the dissipative model. Here two observa-
tions are crucial. First, the enhancement of double occupancy
is most pronounced for weak bath coupling [see Fig. 1(e)].
Second, the dissipation leaves largely unchanged the spectral
function of the system, while it profoundly changes its oc-
cupation (see Fig. 2). On this basis, we argue that at weak
coupling the bath does not change the Floquet Hamiltonian,
but only affects the effective temperature Teff 	 Tbath = 1 (see
Supplemental Material [45] Fig. S3). This leads to D 	
0.25 + (� − U0) which qualitatively reproduces the behavior
for λ = 0.2 around � 	 �∗ [Fig. 1(c), dashed line] where
again the mismatch is due to the finite hopping in Eq. (3).

The outcome of this analysis is that, at least for moderately
high temperatures Tbath 	 V , the driven-dissipative protocol
of Eqs. (1) and (2) leads at long times to thermal states of
the doublon Hamiltonian (3). Singly occupied sites, which
are relevant in the transient dynamics during doublon-holon
proliferation, are not relevant for the steady-state physics, and
can be considered as a reservoir of energy and particles to the
doublon-holon system.

A natural question now is whether the enhanced local
pairing correlations can propagate through the lattice giving
a superfluid state of doublons. To answer this, we consider the
next order in the Floquet Hamiltonian [45]:

H̄ eff (1)
Hub =

[
−iJ1

(
δU

�

)
V K+ + H.c.

]

+ V 2

�

[
J0

(
δU

�

)]2

[K+, K−]. (4)

Here Jn(x) is the nth-order Bessel function of the first kind,
K+ = ∑

(Vi j/V )c†iσ c jσ niσ̄ n̄ jσ̄ = (K−)†, and one has to note
that, in the case of weak drive amplitude considered here,
Jn(δU/�) ∼ (δU/�)n and therefore all terms in Eq. (4)
indeed vanish as the inverse drive frequency.

The first two terms in parentheses in Eq. (4) create or
annihilate doublon excitations, controlling the transient dy-
namics. However, these processes are largely inhibited in the
steady state. Indeed, these terms depend strongly on the drive
amplitude δU , which controls the transient timescale but does
not influence the long-time steady state, as found in both the
isolated [24] and the dissipative models (see Supplemental
Material [45] Sec. V).

The last term in Eq. (4) is similar to the Schrieffer-Wolff
result [48,49], which is retrieved for δU → 0 at fixed � = U0.
It contains several contributions such as density and exchange
interactions, and correlated three-site hopping processes. At
equilibrium and half filling, in the relevant limit of zero double
occupancy, this gives the usual antiferromagnetic Heisenberg
model. In far-from-equilibrium situations, if a sizable pop-
ulation of doublons is achieved as in the present case, the
same term leads to a completely different physics (see also
Ref. [50]).

To discuss Hamiltonian (4) on states with very large double
occupancy, it is instructive to neglect processes involving
singly occupied sites and rewrite it as [45]

H̄ eff
Hub = Jeff

∑
〈i j〉

(c†i↑c†i↓c j↓c j↑ + ni↑ni↓n̄ j↑n̄ j↓). (5)

Here Jeff = 2V 2/�[J0(δU/�)]2, the first term is a doublon
hopping, and the second term a first-neighbor doublon in-
teraction. It is now convenient to consider a transformation
on spin-down operators ci↓ → c̃i↓ = (−1)ic†i↓ which recasts
Eq. (5) as H̄ eff

Hub = −Jeff
∑

ηi · η j , namely, as an isotropic
ferromagnetic Heisenberg model for the so-called η spins ηi =
1
2

∑
αβ c̃†iασαβ c̃iβ [45]. The invariance under η-spin rotation is

associated to the charge SUC(2) symmetry of Hamiltonian (1)
which can be used to build eigenstates of the Hubbard model
with staggered long-range superconducting correlations (η
pairing) [30,31]. These same correlations are encoded in
Eq. (5). Indeed, the η-spin ferromagnetic Heisenberg model
has magnetization 〈ηz〉 = D − 0.5 and below a critical tem-
perature ∼Jeff it has finite order parameter in the xy plane,
which corresponds to staggered long-range pairing correla-
tions 〈c†i↑c†i↓ + H.c.〉 = (−1)i〈2ηx

i 〉 = (−1)i
√

4D(1 − D).
We stress again that here, for simplicity, we do not consider

the interplay between doublons and singly occupied sites,
which would result in additional terms in Eq. (5). Moreover,
we notice that the SUC(2) symmetry implies a degeneracy be-
tween the xy plane and the z axis of the η spin, which translates
into a competition between superfluidity and charge-density
wave. We leave the investigation of these issues for future
work.

The model system investigated here can be realized in
current experimental platforms. Particularly promising are
Mott-insulating organic molecular crystals, where laser ex-
citations can induce an effective time-periodic modulation
of interaction [5,6]. More direct control is achieved with
ultracold atoms in optical lattices. Recent experiments [37,38]
have studied the Floquet prethermal state and remarkably
found large double occupancy for drive above resonance.
We suggest that also in these cases a key role is played by
dissipation, which is unavoidable even in cold atoms. Finally,
we notice that these experiments have focused on the regime
where the effective Hamiltonian reduces to a renormalized
Hubbard model. In contrast, here we have studied the case of
a doublon-only Floquet Hamiltonian. Therefore, we suggest
future experiments to investigate this latter regime to detect
the presence of staggered pairing correlations.

Conclusions. In this work, we have studied the combina-
tion of a periodically driven interaction and a dissipative bath
in the strongly repulsive Fermi-Hubbard model. For weak
bath coupling and frequency in a range above the resonance of
the isolated model [24], we find a large increase of double oc-
cupancy, well above the maximum equilibrium value, which
we interpret as an enhancement of local pairing correlations,
and understand in terms of thermalization to the lowest-order
Floquet Hamiltonian.

Remarkably, the next-order Floquet Hamiltonian con-
tains terms which promote staggered pairing correlations.
Therefore, provided a nonequilibrium protocol to reach low
enough effective temperatures (see, e.g., Ref. [51]) and
eventually further increase the doublon density, the steady
state of the driven-dissipative Fermi-Hubbard model would
contain off-diagonal staggered long-range order (η pair-
ing), hence a superfluid phase of doublon excitations, sim-
ilarly to what was very recently found in similar models
[35,36].
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