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The results of the commented paper seem to disagree with the prediction of the paper by Safaei ef al. [Phys.
Rev. B 88, 045305 (2013)]. Some of the definitions of surface unit cells used in the commented article do not
lead to the first surface Brillouin zone, defining instead a folded Brillouin zone. This is the source of the seeming
discrepancies. To dispel the misunderstandings we present general rules for Brillouin zone shapes and L points
projections for (ppq) surfaces of the rock salt crystals. We show that using the first Brillouin zones allows a

simple, straightforward prediction of the topological properties of the surface states.

DOLI: 10.1103/PhysRevB.101.157103

I. COMMENT

Plekhanov and Weber in their paper [1] discuss the inter-
esting topic of topologically protected surface states in the
recently widely studied class of materials, i.e., topological
crystalline insulators (TCI). The authors study the existence of
such states on surfaces of [IV-VI TCI inclined at small angles
to the three main surfaces: (001), (110), and (111), which
were discussed already in detail in Refs. [2] and [3]. It should
be noted here that in Ref. [2] the existence of topologically
protected surface states for other surfaces was also predicted.
Namely, in Ref. [2] (in the Discussion section and in the
Appendix) it was pointed out that surface states with at least
two protected Dirac points appear on all {ppg}-type surfaces.

In IV-VI TCI the energy gaps in L points of the bulk
Brillouin zone (BZ) are inverted. Thus, one can expect that in
the surface 2D BZ Dirac points should appear at the L point
projections. They are topologically protected (TP), however,
only for {ppq}-type surfaces, which are symmetric about any
of the {110} mirror planes. The TP projection points should
be situated at the mirror line. On the other hand we note that
all four nonequivalent L points as well as their projections
are time reversal symmetric (TRS). We also note that the
eigenstates of the mirror plane symmetry operators form +k
Kramers pairs. When the L points are projected separately,
single Dirac points should appear exactly in TP TRS points,
where these pairs are degenerate. When two L points are
projected to the same point of 2D BZ, then two TRS Dirac
points will be energetically split by valley interaction and
two secondary crossings (also called Dirac points) should
appear along the mirror line. In this case the Kramers pairs
are formed by opposite mirror plane symmetry eigenstates
in the two £k split secondary crossings. In Refs. [2-4] two
special cases, i.e. {001} and {111} surfaces were considered.
Indeed, it was shown that for {111} surfaces the L points are
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projected separately to four TP TRS points, whereas in the
{001} surfaces they are projected in two pairs to two such
points. For other {ppq} surfaces, depending on the parities of
p and g numbers, either two single or one double projection
to the TP TRS points take place. In our work [2], we have
shown that when the parities of p and g are the same the L
points are projected in pairs, while for opposite parities the L
points are projected separately. This result holds for p and ¢
which are relatively prime. Of course other surface definitions
can be reduced to those with relatively prime indices. Thus,
the same parity of p and ¢ means that they are odd numbers.
In the following text we will assume that p and ¢ indicies
are always co-prime. As shown in the next section, 2D BZ
of a surface with indices of opposite parity has a rectangular
shape. The L points are projected in pairs to the topologically
protected X point and unprotected M or Y point (we use here
the same notation for the high symmetry points of BZ as given
in Ref. [1], which is different from that in Ref. [2]). Finally,
we note that for indices of the same (odd) parity the shape of
BZ is hexagonal and the points are projected separately: one
to T (protected), another one to the protected M point, and two
to the other two unprotected M points. In this case M points
are situated in the middle of the hexagon edges. Examples of
such 2D BZs are presented in Figs. 1(a) and 1(b).

The results of Ref. [1] seemingly differ from the above
predictions. This is probably the reason that the authors, when
citing our paper, claim that we take into account only the three
main surfaces. A careful analysis shows, however, that our
predictions are in reality confirmed in Ref. [1]. The source of
the seeming discrepancy lies in the definition of the surfaces
and their unit cells in Ref. [1]. The authors define the inclined
surfaces by fixing two vectors b and b, of the surface unit cell
and the vector b3 perpendicular to the surface. These vectors
determine the surface indices. The definitions in the paper do
not always lead to the primitive unit cells. Although we agree
that one can define the unit cells in different ways and we
understand that the choice made in Ref. [1] was convenient for
performing the calculations, in our opinion it is not apposite
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for the discussion of results. For example, for surfaces tilted
in respect to (001) and (110) the indices are: (m, m, —2n). As
can be seen the n and m parameters given in Table I determine
surfaces with coprime indices of opposite parities, p odd and
q even. It means that in all presented cases the pair of Dirac
points in the X point should be TP and the other pair should
be in the topologically nonprotected (TNP) M point. In Table I
such classification appears only for half of the cases. For the
other half T as the TP point and Y as TNP are reported. In
the latter, the surface unit cells defined by the authors are
twice longer in the direction perpendicular to [1, —1, 0] than
the primitive cell. Accordingly, they lead to a folded BZ. Thus,
the points X and M of BZ are folded into T" and Y.

Next, Table IIT presents results for surfaces tilted to (110)
with surface indices given by (m;m; —2n). Also here, when
different than primitive unit cells are used, the classification
of TP points is different than expected. In particular, for
the surface defined by n =4 and m = 10 (i.e., p=15 and
q = 4), the TP point in the unfolded BZ should be X and
the TNP point should appear in M. In the other two cases:
n=1,m=10andn = 1, m = 6, the relatively prime surface
indices p and g are odd. It means that the unfolded BZ
should be hexagonal with two TP points: one in T' and the
other in M. The two TNP points should be now in the two
remaining M points [see the illustration in Fig. 1(b)]. In the
case of surfaces tilted to (111) (Table II), the authors do not
recognize that for n = 1 the surface is (001), thus both X and
Y points are TP. The energy spectrum presented in Fig. 3 of
the paper also corresponds to the (001) surface. Furthermore,
it should be noted that Figs. 4(a) and 2(b) present equivalent
surfaces belonging to the same {114} family. The illustration
in Fig. 2(b) differs from that in Fig. 4(a), because in the former
(as in several other figures) the BZ is folded and, therefore,
two times smaller than the first BZ.

Finally, the authors wrote “in the limit & = 0 each surface
TRS point acquires the projections from two L points, which
then form a bonding and anti-bonding combinations.” One can
easily check that all four nonequivalent L points of the 3D BZ
are projected in two pairs, one pair to X and the other either
to Y or M not only for n approaching an infinite value but for
all surfaces with indices p and g of opposite parity. As shown
in all discussed above cases, using the primitive unit cells and
unfolded BZs is essential for a unique classification of TP and
TNP points. It allows us also to distinguish between TP single
and double Dirac points. Using folded BZ is not a mistake, but
it does not allow to get such useful results.

II. BRILLOUIN ZONE SHAPES AND L POINTS
PROJECTIONS FOR (ppq) SURFACES OF CUBIC
FACE-CENTERED CRYSTALS. GENERAL RULES.

To clarify the description of the existence of topological
states on inclined surfaces we present general rules for the
construction of Brillouin zones for any (ppq) surface in a
cubic face-centered structure, in particular in a rock salt
crystal. We present conditions leading to either rectangular or
hexagonal shapes of the 2D BZ as well as show how L points
projections depend on the parity of p and ¢ numbers.

A. Primitive surface lattice vectors

In the cubic face-centered crystals atoms of the same
type form rows in (110) directions. The distance between
neighboring atoms in the row is equal to a/+/2, where a
is the lattice constant in the bulk. Because the [110] direc-
tion is parallel to any (ppq) plane, every (ppq) surface is
formed by atomic rows at various altitudes. Here and hereafter
we discuss only surfaces which can be obtained as cuts of
the bulk crystal without reconstruction of atomic positions.

(@)

(b)

FIG. 1. Three-dimensional view of the multiple (a) rectangular (223) and (b) hexagonal (331) surface 2D BZs with L-points projections.

The (110) mirror plane inside the bulk BZ is marked in yellow.
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FIG. 2. View of the (110) rock salt crystal cross section. The
projections of three planes, (332), (445), and (557), into this cross
section are shown as three oblique lines.

In Fig. 2 the (110) rock salt crystal cross section is presented.
In the figure each row of atoms perpendicular to this cross
section is represented by one dot (black for cations and green
for anions). Dots with the same radius correspond to rows
of atoms having the same coordinates along the [110] axis.
The bigger dots represent rows with an atom lying on the
cross section, while rows of atoms with positions shifted by
a/(24/(2)) are depicted by smaller dots. Atoms in the rows
are positioned periodically with the primitive lattice vector
given by:

-1}. (1

In order to find the second primitive vector 7 let us first
discuss the lattice vector 7| in the (ppq) plane in the direction
perpendicular to 7;. We choose the origin of the coordinate
system at one of the cations shown in Fig. 2. The z axis
points in the [001] direction. Axes x and y (in [100] and
[010] directions) are shown in the figure as the projections on
the (110) cross section. Let us consider various (ppg) planes
which cross the x, y and z axes at g, ¢ and p coordinates. In
Fig. 2 the projections of three such planes, (332), (445) and
(557), into the crystal cross section are shown as three oblique
lines. For each of these planes the vector | should point along
this line and connect pairs of atoms represented by dots of the
same color and radius. Thus,

q |- @

One can find that:

fL=—p(T + %)+ (p+q)T3, where 3)

1 1
o], z=-|1 @)
1 0

N

are primitive vectors of the bulk lattice. Because the pair of
integer numbers p and g is relatively prime also the pair p and
p + g is co-prime. Thus, there is no shorter lattice vector ¢
than that given by Eq. (2).

When p and g have opposite parities there are no lattice
vectors shorter than f; and 7 and thus the second primitive
vector is > = f,. When p and ¢ are both odd numbers, then
and only then one can find that both types of atomic rows
(shifted and not shifted) belong to the same (ppq) plane. In
this case a surface lattice vector 7, shorter than 7, and not
perpendicular to #; can be found. This 7, is the shortest lattice
vector connecting atoms in shifted and not shifted rows.

- 1. . a q+1
Iz=z(&+¢1)=z g—1 =—§(P+1)?1
—2p
1 . 1 -
- E(p— DT + §(p+q)fs )]

The integers (p+1)/2, (p —1)/2, and (p + g)/2 are rela-
tively prime for odd p and q.

Vectors 7, for three different surfaces are shown in Fig. 2.
We note that in the case of (557) #, is not in the cross section
plane and what is shown in the figure is its projection. For p
and ¢ both odd another interesting observation can be made,
again not noticed in Ref. [1]. Namely, in the case of rock
salt structure two types of surfaces exist: In the first type the
highest row contains cations while in the second type anions.

B. Reciprocal lattice vectors

With the use of #; and #, one can find reciprocal lattice
vectors G and Gy.
For p and ¢ with different parities:
Y B T 2 q
Gl =—1 -1 )

Gy= —FF= 6
al\ o g a(2p* + ¢?) ©

q
—2p
The vector G is perpendicular to G, due to the orthogonality

of #; and %. In this case BZ has a rectangular shape. In
contrast, when p and ¢ are both odd, the vectors G:

= ] 2 q
1=— )= )
a\ o a(2p* + %) —2p
. 47 4 7
=Tl ¢
a2p* +¢*) —2p

are not orthogonal and BZ is hexagonal.
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TABLE I. The dependence of the shape of the 2D BZ, type of the
L point projections, and their topological protection on the parity of p
and g numbers. The two special cases, i.e., (001) and (111) surfaces,
are shown in the two first rows.

)4 q Bz projection TP TNP
1 rectangular  double X, X,

1 1 hexagonal single  T,M,, M , M;

odd odd hexagonal single F M, My, M;

odd even rectangular double X M

even odd rectangular  double X Y

C. L points projections

As already mentioned, in our paper [2] we have shown that
all four nonequivalent L points in the Brillouin zone of the
bulk crystal project to high symmetry points of the surface
2D BZ either separately or in pairs, depending on the parity
of p and g numbers. As the L points are TRS points, their
projections should be TRS points in the 2D reciprocal space.
We note also that in a 2D BZ there are always only four TRS
points.

Let us first consider p and ¢ both odd, in which case the
L points project separately to four points of the hexagonal

2D BZ. Here the four TRS points are: T in the middle

of 2D BZ and three M points in the middle of BZ edges
M = 1G>, My = LG\, M5 = 1(Gy + G»)). All of them are
L point projections.

The case of p and g with opposite parities is more com-
plicated. We know already that in this case the L points are
projected in pairs to two TRS points in 2D BZ of rectangular
shape. Using similar methods as presented in the Appendix
to the paper [2] and using properties of the relatively prime
numbers we can show that:

(1) when p is even and q odd, L points are projected in two
pairs to X = —G2 andY = —Gl,

(2) when pis odd and g even, L points are projected in two
pairs toX and M = 2(G1 + Gz) points.

In summary, in this comment we have shown that for any
{ppq}-type surface the shape of the 2D BZ as well as the way
in which the L points are projected to the TRS points (both,
topologically protected TP and not protected TNP points)
depend on the parity of the p and ¢ numbers, as shown in
Table I.
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