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We design ultra-thin, entirely flat, dielectric lenses using crystal momentum transfer, so-called Umklapp
processes, achieving the required wave control for a new mechanism of flat lensing; physically, these lenses
take advantage of abrupt changes in the periodicity of a structured line array so there is an overlap between
the first Brillouin zone of one medium with the second Brillouin zone of the other. At the interface between
regions of different periodicity, surface, array guided waves hybridize into reversed propagating beams directed
into the material exterior to the array. This control, and redirection, of waves then enables the device to emulate
a Pendry-Veselago lens that is one unit cell in width, with no need for an explicit negative refractive index.
Simulations using an array embedded in an idealized slab of silicon nitride (Si3N4) in air, operating at visible
wavelengths between 420–500 THz demonstrate the effect.
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I. INTRODUCTION

Inspired by the ability to create flat lenses, such as the
Pendry-Veselago lens [1], there has been a drive towards
developing flat optical devices to manipulate light [2,3]. Ad-
vances in metasurface-based technologies paved the way for
these planar devices, with realizations in a variety of settings,
operating by several different modalities. These operational
regimes include plasmonic waveguide structures [4], i.e., bulk
materials composed of alternating metal-dielectric layers [5],
or all dielectric inhomogeneous layered lens antennas [6].
Alternate flat lens devices focus on controlling abrupt phase
changes endowed to incident wavefronts upon transmission
[7,8], taking advantage of gradient index structures [9], or by
manufacturing protruding subwavelength elements, enabling
generalized refractive laws to be observed [2].

Less exotic materials which achieve anomalous refractive
phenomena are photonic crystals (PCs). These structures exert
their control over electromagnetic radiation through effects,
such as Bragg scattering, which arise due to their periodic
structure, allowing all angle negative refraction to be achieved
[10] without the existence of simultaneously negative ef-
fective permittivity and permeability, which is the case in
metamaterials [1]. All-angle negative refraction, together with
restoring evanescent wave components, is the hallmark of the
perfect lens [1]. Either or both aspects have been used in
PC devices to enable superresolution [11–13]. Unlike conven-
tional metalens or diffractive lenses [14], here we present a
new, novel, flat dielectric lens antenna (DLA) device based
on simple one-dimensional periodic structures, with positive
permittivity and permeability, operating in narrow frequency
bands over the frequency range 420–500 THz. These devices
operate by promoting Umklapp scattering [15] at a designed
region, and offer a new, unconventional, modality of flat
lensing, as shown in Fig. 1 and demonstrated in Fig. 2. The
proposed structures act to emulate negative refractive effects;

no superresolution is achieved as we do not reconstruct any
evanescent wavefields or use resonant materials. As such the
proposed devices mimic only one property of the perfect lens,
and can be considered a new type of “poor man’s superlens.”

A thorough review of anomalous refractive effects in two-
dimensional photonic crystals [16] outlines the techniques in
analyzing isofrequency contours, or wave-vector diagrams,
of periodic media, enabling the design of simple photonic
crystals with remarkable refractive properties, taking use of
Umklapp refracted beams. We will focus on this scattering
mechanism throughout the article, elucidating on nuances
that arise when interpreting periodic media, particularly in
terms of crystal momentum transfer. The advantages, if any,
of studying simpler one-dimensional (1D) periodic structures
are not immediately apparent as compared to their two-
dimensional (2D) counterparts; many effects in 2D photonic
crystals arise due to the periodicity in both directions. For
1D structures, analysis has only been concerned with cases
that have interfaces chosen along the stacking direction (the
direction of periodicity), which is the only symmetry direction
for the 1D grating system [16,17]. A clear advantage of 1D
devices is that they are substantially thinner, but would require
the ability to manipulate waves propagating with the periodic
direction. In this article we show that not only is this possible,
but it is also effective in creating new unconventional lensing
applications, through promoting crystal momentum transfer.

When dealing with periodic media, analysis in reciprocal
space via the Brillouin zone (BZ) [18] is invaluable. To
understand, predict, and interpret the existence and direction
of any refracted beams at the interfaces involving periodic me-
dia, isofrequency contours (wave-vector diagrams) are used
[19]; these contours offer simplistic yet powerful insight into
interactions within periodic media. An important concept is
that the Bloch wave vectors in a periodic structure are defined
up to a reciprocal lattice vector G = 2π/a, with a the width
of the unit cell. Band folding interpretations are commonly
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FIG. 1. Umklapp scattering mechanism yielding negative refrac-
tion and focusing. A source incident on region 1 of the device excites
an in-coupled (leaky) guided mode (red arrow). This propagates
to regions 2, where the periodicity is abruptly changed. Similar
guided modes are excited in these regions (blue arrows), along with
transfer of crystal momentum via Umklapp scattering, resulting in
out-coupled, backwards-bended, Umklapp beams.

used to infer higher-order interactions within periodic media,
as a direct consequence of the Floquet-Bloch nature of the
waves; in periodic media, wave vectors define a superposition
of plane waves through Bloch’s expansion. As a consequence
the phase of the envelope wave, which carries fast oscillatory
solutions, lies within the first Brillouin zone [16,20,21]. Con-
serving the sum of reduced wave vectors leads to descriptions
of such interactions by the addition of a phase factors, or
phase-matching conditions [22], due to the periodicity of
the medium and nature of the Bloch solutions it supports.
Throughout this article we will promote Umklapp scattering
to convert surface guided waves into backward-bent propagat-
ing bulk modes by physically exploiting anharmonicity within
the lattice; we design an abrupt transition in periodicity within
a one-dimensionally periodic dielectric waveguide. Using this
technique allows focusing of energy to be achieved, and as
such we term the presented devices Umklapp lenses.

There is a long history of controlling waveguide modes in
1D periodic structures, particularly through anomalous refrac-
tion and, notably, light propagation in planar waveguides is
extensively investigated in [23]. The structures we consider,
and subsequent analysis, is similar to that presented in [23],
in that we design 1D periodic waveguides using wave-vector
diagrams. There are, however, some important distinctions
between previous work and the new devices we design. To
highlight these we compare our device to the 1D periodic
corrugated plane waveguide in [23], with the distinctions out-
lined in Fig. 3. First, typical 1D periodic devices are extended
in the orthogonal direction to the periodicity (in the plane of
the device), providing a long interaction length for so-called
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FIG. 2. Dielectric thin flat lens (2D simulation): logarithm of
electric field log(|Ez|) (arbitrary units), perpendicular to the page,
excited by current line source, marked at white star operating at
frequency 484THz. (a) Array centered source, giving reversed con-
version via the Umklapp mechanism. (b) Flat lensing by source
placed at −8λ, producing image at opposite focal spot. The array
is shown on the left: device length is L = 12.3 μm, with width
w = 500 nm, and infinite in z. The maximum amplitude in each focal
spot in (a) is ∼10% of the source amplitude.

phase matching conditions to occur. In the devices we con-
sider, the orthogonal direction is very much finite with respect
to the direction of the periodicity, i.e., there are no propagating
modes in the orthogonal direction. Second, to ensure efficient
coupling tapered, or graded, regions are used in corrugated
waveguides. Contrary to this we have no grading. We are
in fact utilizing, indeed advocating, Umklapp scattering at a
region of abrupt transition in periodicity. Third, the corrugated
guide has only one periodicity, the region in reciprocal space
where coupling to directed waves is efficient is local to the
band edge (of the first Brillouin zone), and is only achieved by
means of Bragg scattering. By designing, as we do here, two
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FIG. 3. Comparison between conventional 1D periodic grated
structures, with differing refractive indices shown as ni, as in [23]
(a) and the presented Umklapp devices (b). (a) Shows a 1D periodic
corrugated device, with the periodicity a, shown. Prior to this region
is a tapered region. This is not present in (b), showing a portion of the
Umklapp lens, as an abrupt transition region is used between the two
differing periodicities a1, a2 (the simulations throughout the article
are considered for a similar device, but infinite in the z direction).
Further to this, in the orthogonal direction to the periodicity, the
spacing �y, in the grating case is such that �y � a to provide a
long interaction length. This is not the case for the Umklapp devices,
where �y ∼ a. Finally, the red arrow in (a) shows the direction,
perpendicular to the grating interfaces, in which no refractive effects
can be achieved [23]. The same direction is shown in (b) in blue,
where the effects are maximally achieved.

regions of differing periodicity we are able to move further
away from the edge of the BZ in reciprocal space; coupling
between different order frequency bands of the geometrically
distinct regions permits operation at several frequencies. This
is achieved by the transfer of crystal momentum, emphasizing
the attribution to the Umklapp mechanism. Fourth, and per-
haps most pertinent, is that in conventional periodic structures
“cross coupling is a special property of wave propagation at
oblique angles with respect to the grating, it cannot exist for
waves at normal incidence to the grating lines [23].” We show
here that our structures have maximal coupling with back-
bended propagating modes for guided waves which propagate
at normal incidence to the grating lines/periodic direction.

The ability to excite counterpropagating modes in cou-
pled periodic waveguides by phase matching arguments is
well established [24], as is leveraging momentum transfer
for negative refraction effects [25]. However, the Umklapp
devices presented here possess a certain novelty in that the
conversion takes place not only in the opposite direction,
but from a guided surface mode to a propagating beam, all
through promoting Umklapp scattering at a desired region.

The design of structures capable of supporting guided
surface modes is not limited to the field of optics. Recent
design paradigms for adiabatically graded arrays have re-
sulted in a remarkable level of wave control, and phenomena
being observed, in multiple disciplines within wave physics
stretching beyond electromagnetism, from elastic vibrations
to acoustics. The inspiration of many such designs stem from
the rainbow trapping effect, originating in electromagnetism
[26], whereby the speed and phase of localized array guided
modes is manipulated by graded geometrical changes of the

array components. Elementary resonant, often subwavelength,
devices were proposed [27,28], and built [29], for elastic
media enabling trapping, and mode conversion transferring
energy from surface to body waves, effects for array guided
surface states for applications to energy harvesting [30] from
vibration. Recently, a reversed conversion phenomena which
emulates negative refraction by a line array [31] was devel-
oped using a counterintuitive effect hybridizing both trapping
and conversion; this relies upon band crossings and phase
matching all within the first Brillouin zone and uses adiabatic
grading of an array all in the setting of elastic waves.

In this article we propose a much more versatile de-
sign paradigm employing Umklapp “flip-over” processes to
achieve flat lensing. Despite its origins in thermal transport,
we can readily adapt the Umklapp mechanism for our di-
electric structures since they are periodic; these processes are
inherent to any system permitting Floquet-Bloch waves. The
operation rests on the segregation of the device into structured
regions of different periodicities, thereby creating two differ-
ent Brillouin zones in reciprocal space, and the subsequent
analysis of the corresponding dispersion curves. Contrary to
the adiabatically graded arrays considered in [31], there is
no grading between the regions but instead an abrupt change
in the array periodicity; undesirable scattering of the field at
such an interface is anticipated, but by carefully engineering
the design we can recapture the scattered field by promoting
Umklapp processes thereby providing a remarkably simple
way to achieve flat lensing, without the need for exotic ma-
terials or inhomogeneities.

We consider the full, three-component time harmonic elec-
tric fields E using the finite element method (FEM) with
COMSOL multiphysics [32] to solve the equation

∇ × (μ−1
r × E ) − k2

0

(
εr − jσ

ωε0

)
E, (1)

where μr and εr are the relative permeability and permittivity
tensors, respectively, ε0 is the vacuum permittivity, k0 is
the free space wave number, σ the conductivity, and ω the
angular frequency. For the purely dielectric devices consid-
ered throughout, μr = 1 and σ = 0. We focus on localized
guided electromagnetic waves confined to a dielectric slab
in air, choosing silicon nitride Si3N4 as the dielectric as it is
widely used in applications due to its high relative permittivity
(εr = 9.7), ubiquity in integrated circuitry [33] and trans-
parency over the visible range in nanoengineered structures
both with low contrast (n ≈ 2) and loss [34]. Throughout this
article we will work with an idealized slab of Si3N4, whose
properties are assumed to be frequency independent, as such
n = √

εrμr , since the important characteristics arise from the
periodicity of the structure (and not its composition). The
supported guided states manipulated throughout are neither
surface plasmon polaritons, or their spoof counterparts [35,36]
since we do not deal with opposing signs of permittivities or
structured metallic interfaces. Indeed the proposed structuring
takes place within the device, leaving its edges completely
flat (Fig. 4). As such we are free to model these devices
efficiently in air operating in the terahertz frequency range; the
corresponding device dimensions are achievable in waveguide
technologies [37,38]. We do not exploit resonance effects, and
so the imaging is not subwavelength, yet the proposed DLA
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FIG. 4. Typical electric fields, of similar mode symmetry, as |E |
for each regions 2(1) with unit cells a2(1). Elliptical inclusions have
semi-major and minor axes ra and rb, respectively, detailed in Table I.
FEM method and boundary conditions are shown in Supplemental
Fig. S3 [41].

devices, are ideal for demonstrating the efficacy of Umklapp
scattering.

Our analysis of where (spatially) and how Umklapp mech-
anisms can be exploited to produce back-bended reversed
beams is, theoretically, independent of the material and device
size and rests upon exploiting the dispersion curves and
isofrequency contours of the different periodicities within the
device, as detailed in Sec. II. The performance of the device
as a flat lens, however, is strongly dependent on the sizes
of the constituent regions, as demonstrated in Sec. III. The
methodology can be readily extended for dielectric coatings or
substrates, i.e., the device does not have to have identical me-
dia on either side. Using this, we then outline how to harness
this promoted scattering effect to generate a new mechanism
for flat lensing, and investigate the effects of losses in the
device. Suitable scaling to other materials, and sizes, permits
the tunability of the frequency bandwidth, leading to a new
operational capacity for dielectric substrates.

II. DESIGN METHODS

When analyzing periodic media it is naturally convenient
to display the dispersion diagrams of such materials within the
irreducible Brillouin zone (IBZ) [18]. Conventionally, we con-
centrate upon modes below the dispersionless light line of free
space waves, that is, within the first BZ; Umklapp processes,
arising due to the transfer of crystal momentum from higher
BZs, are often thereby ignored. We demonstrate that there
are advantages in using these processes by considering two
regions of differing periodicities within the same dielectric
array, such that there is an overlap between the first BZ of
one periodic region and the second BZ of the other. At the
abrupt transition between these regions Umklapp scattering
is dominant and reversed conversion can be achieved and
utilized for flat lensing.

The Umklapp mechanism, first hypothesised by Peierls in
1929 [15] is conventionally used to describe thermal transport
and resistivity of metals at high temperatures, and is now
prevalent in the quantum theory of transport [39,40]. It is
a manifestation of the transfer of crystal momentum within
the system, and exploits the fact that in periodic media wave
vectors are defined up to a reciprocal lattice vector G ≡ 2π/a,
with a being the periodicity of the unit cell. Thus in the case of
scattering two initial wave vectors, say, k1, k2 then if the resul-
tant k3 lies beyond the first Brillouin zone it experiences the

Region 1 Region 2

a 300nm 330nm
w 500nm 500nm
ra 110nm 80nm
rb 170nm 130nm

Table I: Parameters within
dielectric slab; region 1(2)

coloured red(blue) in Fig 7(g)
(z−direction taken to be

infinite).

FIG. 5. Dispersion curves for region 1 (2) in red (blue), plotted
from X2 to X1, i.e., in the second BZ of region 2 while in the first
of region 1. The dashed line represent the dispersionless light line,
with the “folded” light line also shown. Matching mode shapes
promotes U-processes. Full dispersion curves, and domain probe
method used to eliminated spurious modes (green curves) are shown
in supplemental Fig. S2 [41].

Umklapp, or “flip-over” mechanism via crystal momentum
transfer [20]. Two types of scattering processes are defined:
normal (N-processes) and Umklapp (U-processes) through

k1 + k2 − k3 =
{

0 N-process,
G U-process. (2)

This mechanism has recently been observed to cause excess
resistivity in graphene [42] and used to explain the coupling
of acoustic and optical branches in crystals [43]. We apply it,
for the first time, in a flat lensing scenario, circumnavigating
any ambiguities considered with Umklapp scattering [20], by
adopting the conventional description in Eq. (2), analyzing
U-processes for scattered wave vectors lying outside the first
BZ; this is a natural way to distinguish between N- and U-
processes and is critical in this design process.

For the application of the Umklapp mechanism to localized
guided electromagnetic (EM) waves for flat lensing, we parti-
tion a dielectric slab into two regions of differing periodicities,
see Fig. 1. To set the context, we first analyze a perfectly peri-
odic medium of consisting of a slab of Si3N4 in air structured
with a periodic array of elliptical inclusions with pitch a1, with
geometrical parameters given as region 1 in Table I as shown
in Fig 4. Then consider the same dielectric material but with
the array having a larger periodicity a2 and different inclusion
size (region 2 in Table I). The two regions are defined with
unit cells of length a1, a2, respectively, such that a2 > a1.
Consequently, the first BZ of region 2 is smaller than that of
the region 1. Thus, the edges of the first BZ for the regions,
Xi ≡ π/ai, satisfy X2 < X1 and are offset from each other. The
dispersion curves within this overlapping region are calculated
using the FEM software COMSOL multiphysics and shown in
Fig. 5. The frequencies where overlap between the dispersion
curves of similar mode shapes are where U-processes take
effect efficiently; the excited mode in region 1 must be able to
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FIG. 6. Conventional mode coupling diagrams, as in [22]. Panel
(a) shows a schematic of an incident wave vector (blue arrow)
coupling to a waveguide mode (red arrow) through some interaction
with a periodic medium, thanks to the transfer of crystal momentum.
This is shown in the wave-vector diagram in (b) due to phase
matching, which is really a result of crystal momentum transfer.

excite a mode that exists in the region 2, otherwise an effective
hard boundary is reached at the transition region, resulting in
undesirable scattering; typical fields showing similar modal
symmetries in the two regions are shown in Fig. 4. While not
a requirement for the transfer of crystal momentum, designing
the band crossings to have opposite signs of group velocity
enhances the coupling between the surface guided modes and
the propagating waves excited by Umklapp scattering [20,40].
This effect is achieved for several of the overlapping bands
shown in Fig 5, ranging between 420–500 THz, and therefore
has potential for broadband performance. A further example
of the reversed conversion effect is shown in supplemental
Fig. S1[41].

We now consider the implications of structuring a finite
slab of Si3N4 into two distinct regions, one with the period-
icity and unit cell structure of region 1, in Table I, that then
transitions abruptly to incorporate the parameters associated
with region 2. Conversion of the array guided mode occurs
into a beam in the exterior medium that is backward-bent;
the angle of the reversed conversion is predicted by inspect-
ing the isofrequency contours of the two regions. Shown in
Fig. 7 are simplistic isofrequency contours for the respective
components of the dielectric slab; we show for clarity the
isofrequency contour of each medium as a circle, acknowl-
edging that it, in fact, corresponds to a point on the κx

axis when projecting the dispersion curves into wave-vector
space. This is how wave-vector diagrams are historically used
when the device dimensions in the orthogonal direction to
the periodicity are large [23], as such the periodicity acts
to modulate the free-space wave-vector diagrams. Despite
our devices not having any propagating components in the
orthogonal direction to the periodicity, we adopt this picture
for familiarity and clarity. Exploiting the coupling at a sharp
change in periodicity is inspired by conventional diffractive
mode coupling theory [22]; incident radiation of wave vec-
tor κ in a media with refractive index n0, is coupled to a
waveguide mode of vector κwg through phase matching by
incorporating the periodicity, such that

κwg = κn0 sin θ + 
, (3)

where, for integer m, 
 = 2mπ/a. This is shown in Fig. 6.
Using this mode-coupling picture we can interpret the

hybridization mechanism from the “contours” of the medium
composed of differing periodicities; while the following re-
sembles this diffractive theory, the mechanism is fundamen-
tally achieved through Umklapp processes by crystal momen-
tum transfer. The coupling into the waveguide by gaining
momenta of multiples of G is therefore distinct to Umklapp
processes, in which momenta are subtracted, which leads
to the out-coupling into back-bended beams. Understanding
both momentum transfer mechanisms is important for the
performance of the device in terms of exciting the guided
modes on the device and their conversion.

In Fig. 2(a), the array is excited with a source to generate
a guided wave with wave vector in region 1. This is shown
schematically in Fig. 7(a), with the corresponding wave-
vector diagram below. Despite being 1D periodic we show
this as a half circle as is customary in these interpretations
[22]. The corresponding “contour” is defined within the first
BZ such that κ ∈ [−π/a1, π/a1] ≡ [−X1, X1]. At a designed
spatial position, we then abruptly change the periodicity to
that of region 2, marked by the schematic of the blue region in
Fig. 7(b). Below this shows the corresponding wave-vector
diagram where the length of the wave vector is the same
as in Fig. 7(a) as we are operating at the crossing of two
supported dispersion curves; the material properties have not
changed, only the geometry has altered. At this frequency,
the wave vector now lies in the second BZ of region 2 since
X2 < κ < X1. This is highlighted in Fig. 7(c), by drawing a
“band folded” version of the contour describing this wave
vector. This is actually formed by translating every point
outside the first BZ by G = 2π/a2. The critical observation
is that this initial wave vector, marked by the red arrow,
experiences a transfer of crystal momentum via the Umklapp
effect, resulting in the translation of a collinear reciprocal
lattice vector G, denoted by the folded isofrequency contours.
The resultant flipped vector is shown in Fig. 7(d). Shown
in Fig. 7(e) is the superimposed isofrequency contour of the
exterior medium (in this case, air) that surrounds the array
(yellow circle). Phase matching, by conserving the tangential
component of the flipped vector, with this contour gives the
resultant scattered wave vector that, in turn, predicts the
reversed conversion angles as in Fig. 2(a). Since the device
is surrounded by air on either side, there are two beams
shed with equal angle, highlighted in the compact diagram
in Fig. 7(f), with a schematic shown in Fig. 7(g). The wave
vector components of Fig. 2(a) are seen in the Fourier spec-
trum shown in Fig. 8, corroborating the adopted wave-vector
diagram analysis.

We stress that this methodology is completely general, and
as such the device can have different media on either side
of the interfaces, raising the possibility of different angles
of reversed conversion on either side. As such there is a
broad range of applications for these structures as dielectric
coatings, capable of mimicking generalised lenses [44]. The
angle is explicitly predicted from mode-coupling analysis by
rearranging Eq. (3) to incorporate the effect of the second
periodic region; in this setting 
 = 2π/a2 > κwg. Thus we
can generalize conventional mode-coupling techniques for a
wave confined to the array arriving at a region with altered
periodicity and notably U-processes provide coupling to the
first negative diffractive order of mode coupling theory [22].
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FIG. 7. Step-by-step wave-vector diagrams. Panels (a, b) show
schematics of the two periodic regions, with the corresponding wave-
vector diagrams below. Each has the same length of incident wave
vector, which lies in different BZs depending on the periodicity,
shown by the BZ boundaries ±π/a1,2, respectively. Panel (c) shows
a band folded, or irreducible, picture by translating points outwith the
first BZ of region 2 by a reciprocal lattice vector G = 2π/a2. Panel
(d) shows the resultant wave vector after Umklapp scattering takes
place through the transfer of crystal momentum. Panel (e) shows the
conserved wave vector by phase matching with the isocircle of the
free space surrounding the device. Panel (f) shows the previous five
wave-vector diagrams superimposed into a compact diagram which
allows for the prediction of the angles of the reverse converted waves.
Panel (g) shows a schematic of the process.

By (a)symmetrically introducing abrupt changes in period-
icity about a central point, we can image a line source on
the array to two focal spots on either side of the slab, as in
Fig. 2(a), and tune the position of these focal points.

III. UMKLAPP LENSING

Our arguments also generalize for excitation by a source
removed from the array. We again use the Umklapp and
the reversed conversion mechanisms at interfaces between
different regions of periodicity, but now introduce reciprocity
to generate focusing from one side of the slab to the other.

κwg

κwg-G

κx

κy

X1

X2

-X2

-X1

Γ

FIG. 8. Fourier transform of Fig. 2(a), normalized to maximum
Fourier amplitudes (arbitrary units). The periodicity is understood to
be in the direction of κy shown. We show one wave-vector component
of the initially excited guided mode, namely the vertical wave vector
κwg, lying between X2 and X1. This is flipped by Umklapp scattering
to the negatively pointing κwg-G, with respect to �. Conserving the
tangential component of this hybridizes the guided surface waves
with counterpropagating bulk waves, shown by the bright spots lying
on the isocircle of the free space waves; any wave-vector components
which lie off the vertical cyan dashed-dotted line are understood to
be propagating waves off the array. The center of the Brillouin zones
is shown (�), with the BZ boundaries of region 1(2) highlighted by
the dashed lines ±X1(2). This diagram is the scattering-simulation
counterpart of Fig. 7(f) obtained from the dispersion relation.

An isotropic current line source is placed at one focus of
Fig. 2(a), and an image is produced at the other side of the
array, showing the device is capable of emulating negative
refraction. The focusing response is due to the horizontal
wave component igniting the surface guided wave, which
propagates along the dielectric array to the regions of al-
tered periodicity, seen in Fig. 2. Upon reaching these altered
regions, Umklapp scattering takes place and the reversed
conversion effect acts to refocus this point source on the
opposite side of the device, as clearly shown in Fig. 2(b).
The device then acts as a lens in the sense that it can focus
incoming radiation at a given focal point. Unlike conventional
lenses, changing the source position will not alter the focal
spot position; the flexibility in the positioning of the focal
spots is, however, achieved through altering the position of
the transition regions, the relative periodicities, frequency of
excitation, and symmetry. This effect only takes place due to
the transfer of crystal momentum and as such we term these
devices Umklapp lenses.

The position of the source position does, however, unlike in
classical lenses, affect the performance of the structure. This
can be seen in Fig. 9, where we analyze the performance of
the Umklapp lens compared to two other structures; a plain
dielectric slab and a dielectric slab which is only patterned
with the periodicity and inclusions of region 1. The position
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(b) (c)(a)

FIG. 9. Performance of device with respect to horizontal distance
of source. Panel (a) shows schematic of the setup where the source
position (star) is gradually placed further from the device, along
the center line. The performance P is measured by integrating the
electric field |E| over a region encapsulating the focal spot predicted
from Fig. 2 (rectangular box). Panel (b) shows the power in this
region for three types of material: the Umklapp lens (green), a
dielectric slab patterned only with Region 1 (blue) and a blank slab
(red), normalized to the maximum performance of the Umklapp lens.
The optimal focal distance away from the device edge (shown as
grey region) for the Umklapp lens corresponds to the focal length.
Panel (c) shows schematics of the tested devices.

of the source is altered along the line which perpendicularly
bisects the device. The performance is analyzed by integrating
|E| over a region surrounding the focal spot predicted from the
device size and angles of the reversed conversion [Fig. 9(a)].
Exciting very close to the device couples most efficiently
the near vertical wave-vector components, parallel to the
direction of the periodicity, contrary to other 1D periodic
grating devices [23]. Increasing the distance of the source
from the center line of the device initially decreases the
performance, until the source is placed near the focal length of
this frequency. In the vicinity of the focal length, focusing is
enhanced on the opposite side of the device [Figs. 2(b) and 9]
due to the additional coupling of the wave-vector components
incident on the transition region, by reciprocity. As such,
unlike conventional “poor man’s superlenses,” these devices
have scope for emulating negative refraction in the far field,
as this focal length for this frequency is ∼8λ [45].

Past this point, a critical angle is reached such that there
is very little coupling between the propagating wave-vector
components of the source with region 1. As such, the focusing
capabilities of the device are limited, depending on the source
position and the length of the central region 1.

Considering the fabrication of such devices atop other
structures, as is conventional in dielectric waveguides [37],
also permits tunability of the focal lengths on either side of the
device [31]. This, in turn, would effect the optimum source po-
sitions for focusing within each of the media. Improvements
in the limitation of the device can be made by the periodic
structuring of the lens surface, at the cost of it no longer being
entirely flat; more propagating wave-vector components can
contribute to the guided surface modes by an initial transfer
of momentum from the periodic structuring [46].

The validity of this concept for devices is further tested
by the introduction of losses within the material, through the
addition of an imaginary component to the permittivity. An
example is shown in Fig. 10, where the field strength along

FIG. 10. Same configurations and frequency as in Fig. 4, show-
ing logarithm of electric field, log(|Ez|), for the case with loses
introduced with εr = 9.7 + 0.2i. Side panels show comparisons of
normalized electric field norm between lossless (black) and lossy
(blue) media, plotted along the dashed white lines. Local periodicity
a as a function of position is shown (red). Losses reduce the field
strength along the array in (a), while showing that the lossy lens
(b) preserves the point spread function.

the center of the devices is compared with, and without, loss
for both configurations in Fig. 2. For a lossy material, there
is weaker propagation along the array and so the reversed
conversion is not as pronounced; the maximum amplitude at
the focal spots is now only ∼2% of the maximum source
amplitude. This can be mitigated by designing the position
of the transition region to lie closer to the point of excitation,
and will influence the materials and dimensions chosen to cir-
cumnavigate any losses. For decaying surface waves the effect
can still be achieved by incorporating the decay length, which
can be predicted through homogenisation techniques [27,31].
Despite this, the point spread function of the focal point in the
lossless and lossy case remains practically identical.

IV. CONCLUDING REMARKS

We develop the concept of Umklapp lensing by designing
an array that requires operation at wave vectors outside the
first Brillouin zone, and then manipulating confined surface
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waves by utilizing crystal momentum transfer. The resulting
electromagnetic radiation generates focal points, using high
permittivity dielectrics that are both entirely flat, and ultra
thin: Negative refractive effects can therefore be emulated
with by a line array with thicknesses of just one unit cell.

Similar to classical “poor man’s superlenses” the devices’
focusing capabilities are optimal for near-field excitation,
however, there is scope for far-field focusing capabilities
due to the additional coupling from wave-vector components
when the source is placed at a focal length. Unlike for true
superlenses, no evanescent components are reconstructed and
as such the imaging is not subwavelength.

Considering lossy materials motivates the design of the
transition region between differing periodicities, which is key
to employing the Umklapp effect. So too is choosing the
periodicities in such a way as to achieve maximal overlap
of mode shapes within the differing Brillouin zones. This
methodology can be trivially extended to finite 3D devices,

although an extra degree of freedom presents itself in an elec-
tromagnetic setting as the relative polarizations of the guided
leaky modes become important. As such these devices have
the capability of acting as polarization selective Umklapp
lenses. At present the proposed devices are purely passive,
but there is scope to achieve active components by utilising
piezoelectric materials to alter the periodicities and as such,
in theoretically demonstrating this new lensing mechanism,
we envisage motivation towards experimental verification.
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