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Domain wall motion in a diffusive weak ferromagnet
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We study the domain wall motion in a disordered weak ferromagnet, induced by injecting a spin current from
a strong ferromagnet. Starting from the spin-diffusion equation describing the spin accumulation in the weak
ferromagnet, we calculate the force and torque acting on the domain wall. We also study the ensuing domain
wall dynamics and suggest a possible measurement method for detecting the domain wall motion via measuring
the additional resistance.
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I. INTRODUCTION

Current-driven domain wall motion has been an active field
of research due to its applications in memory-storage devices
[1]. Following a series of phenomenological theoretical works
[2–5] and experimental confirmations, [6–10] a microscopic
theory of domain wall motion was presented more than a
decade ago [11]. The essential mechanism of such effects is
the transfer of momentum and spin to the local magnetization
due to a force and a (spin) torque, respectively, exerted by a
spin-polarized current passing through the domain wall [12].
However, spin-polarized currents may reduce the spin torque
efficiency with an increasing temperature due to Joule heating
[13,14].

One suggestion to reduce the Joule heating is to replace
the spin-polarized charge current with the pure spin current to
induce the domain wall motion. Such pure spin currents have
been realized in a lateral spin valve geometry [15–17], see,
for example, Fig. 1. The scenario in this case is as follows.
A spin-polarized current is injected from a ferromagnet to
a nonmagnetic material, transported, and absorbed by the
second ferromagnet containing a domain wall. The absorbed
pure spin current then induces a domain wall motion. It was
shown that the domain wall motion, in this case, is also
very efficient in terms of the change in the magnetization
at the interface of the ferromagnet where the spin current is
absorbed. The force and torque in this structure have also been
calculated for a case of weak impurity scattering [18], but
the ensuing domain wall dynamics have not yet been studied
theoretically.

One important feature of the pure spin current compared
to the spin-polarized current is that it decays within a length
scale called spin-relaxation length due to the spin-relaxation
processes. In fact, spin relaxation significantly affects the
current-driven domain wall motion [12]. For example, the
spin relaxation of conduction electrons is one of the most
relevant mechanisms for the damping of the domain wall
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motion. Moreover, it enhances the nonadiabaticity parameter
of the domain walls close to the adiabatic limit [19,20]. In
disordered ferromagnets, it has also been shown that the
domain wall motion is very efficient even in the case of weak
ferromagnetism with low spin polarization [21]. Therefore,
studying the domain wall dynamics in the presence of pure
spin current without the accompanied charge current may give
rise to interesting new features.

Here, we consider a similar structure with the one in
Ref. [18], except that the nonmagnetic metal is replaced by
a weak ferromagnet containing a domain wall, and a spin-
polarized current is injected from a strong ferromagnetic
electrode. We define the concepts of the weak and strong
ferromagnets based on the size of the spin polarization and
the possibility of using the spin-diffusion equation to describe
the two systems. In particular, in the strong ferromagnet, we
assume a spin-polarized Fermi surface, described by spin-
dependent densities of states Nσ , diffusion constants Dσ , and
conductivities σσ = e2Nσ Dσ [22]. In this case, we can study
the spin-polarized current in a homogeneous ferromagnet by
writing diffusion equations separately for the two spin bands.
On the other hand, the weak ferromagnet has a weakly spin-
split Fermi surface (small exchange field) for which σ↑ = σ↓.
In this case, we can include the Hanle precession term into
the kinetic equations and, therefore, rigorously describe spin
accumulation in the case of an inhomogeneous magnetization.

The spin-polarized current injected from the strong ferro-
magnetic electrode creates a spin accumulation in the weak
ferromagnet which decays exponentially due to the spin-
relaxation processes. This spin accumulation can be described
by a spin-diffusion equation with spin-independent param-
eters, and it describes a spin current in a disordered wire.
The solutions for the position-dependent spin accumulation
around the domain wall allows us to compute the force f
and torque τz on the domain wall residing at a distance X
from the injector. We show that they are characterized by
three length scales: domain wall size λ, spin-relaxation length
�s, and the magnetic length �h. These length scales can, in
principle, show up in any order, and we find how the force
and torque depend on the order of those scales. In particular,
due to the spin relaxation, both the force and the torque are
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FIG. 1. Schematic of the structure considered in this paper. A
spin-polarized current is injected from a strong ferromagnet to a
diffusive weak ferromagnet containing a domain wall.

exponentially decaying as functions of the distance of the
domain wall from the injector, similar to the case in Ref. [18].
We also study the resulting domain wall dynamics and show
that the domain wall motion with decaying force and torque
has its characteristic features. In particular, the dynamics can
cross between different dynamic regimes depending on the
position of the domain wall and depending on the hierarchy
of the length scales affecting the relative size of force and
torque: In the case of a large torque and weak force, the
domain wall motion can cross over from the unpinned mo-
tion for τz(X ) > k⊥α0 to the limit of intrinsic pinning with
τz(X ) < k⊥λ, eventually stopping the domain wall. Here, k⊥
is a quantity characterizing the hard-axis anisotropy. On the
other hand, if the force dominates and is large enough close to
the injector, there is a crossover between oscillatory dynamics
for f (X ) > α0k⊥ and linearly (in time) decaying dynamics for
f (X ) < α0k⊥. Here, α0 describes damping.

We also suggest a possible measurement of the domain
wall motion via the changes in the injection resistance, linked
to the dependence of the injection resistance on the local
spin accumulation at the position of the contact. Since the
latter depends on the position of the domain wall, so does the
injection resistance.

The outline of the paper is as follows. We first introduce
the model, a weak ferromagnet containing a domain wall
in contact with a spin-polarized ferromagnetic injector in
Sec. II. We also solve the spin-diffusion equation with proper
boundary conditions which describes the spin accumulation
in this model. The force and torque due to the spin current are
calculated in Sec. III. We study the domain wall dynamics in
Sec. IV and the possible measurement method accessing this
dynamics in Sec. V before the conclusions in Sec. VI.

II. MODEL AND METHOD

We study the domain wall motion in the structure in Fig. 1.
A spin-polarized current is injected from a strong ferromagnet
to a diffusive weak ferromagnet containing a domain wall.
The injected current circulates on the left side of the injector,
and a spin accumulation is induced in the weak ferromagnet.
The decaying spin accumulation results in a spin current in
both directions, capable of inducing a force and a torque on
the domain wall.

On the right side of the injector, the weak ferromagnet con-
tains a domain wall, and the magnetization is inhomogeneous.

The inhomogeneity is shown in the exchange field as

h = h(sin θ cos φ, sin θ sin φ, cos θ ), (1)

where h is the strength of the exchange splitting. Here, θ

and φ are the in-plane and out-of-plane components of the
magnetization angle. For domain wall motion, φ is only a
function of time [11], and the rotation is described by angle
θ . A Néel domain wall is energetically favored in thin films,
namely, the rotation of the magnetization happens on the plane
of the domain wall (φ = 0). Then, θ can be expressed by a
variational ansatz [23],

θ (z) = π


(
z − X − λ

2

)

+ π

λ

(
z − X + λ

2

)



(
z − X + λ

2

)



(
X + λ

2
− z

)
,

(2)

where 
(z) is the Heaviside step function, X is the position
of the domain wall center, and λ is the domain wall size.
The variational ansatz to the rotation angle, instead of the
typically used hyperbolic functions [12] with slightly lower
domain wall energy, brings certain conveniences to the analyt-
ical treatment of the problem whereas capturing the essential
physics of the domain wall. Since the derivative of θ (x) is a
constant inside the domain wall, the spin-diffusion equation,
which describes the nonequilibrium spin accumulation, can be
simplified [see Eq. (4)]. The nonanalyticity of the derivative
of θ (x) at the domain wall boundary can be transformed
into boundary conditions of the spin-diffusion equation [see
Eqs. (5)–(7)].

The spin accumulation in the weak ferromagnet is de-
scribed by a spin-diffusion equation in Eq. (A3). With the
domain wall structure in Eq. (2), it can be written as

h̄D ∂2
z s = h̄

τs
s − 2h × s,

where D is the diffusion constant, τs is the spin-flip relaxation
time, and s = (s1, s2, s3) is a spin accumulation vector. The
spin-relaxation length is defined as �s = √

Dτs.
We can use a SU(2) gauge transformation to treat the

exchange field as homogeneous. We define a rotation matrix
as

R̂ = eiσ2θ/2eiσ3φ/2,

so that we can write the spin accumulation as

s · σ = R̂†s0 · σR̂, (3)

where σ = (σ1, σ2, σ3) is a vector of Pauli spin matrices. Here,
the rotated spin accumulation s0 = (s0

1, s0
2, s0

3) satisfies the
following spin-diffusion equation:

h̄D ∂̂2
z s0 = h̄

τs
s0 − 2hẑ × s0, (4)

where ẑ = (0, 0, 1), ∂̂zY = ∂zY + ∂zθ (z)(ŷ × Y ) from
the fact that ∂̂zY · σ = ∂zY · σ − [A,Y · σ] = ∂zY · σ +
∂zθ (x)(ŷ × Y ) · σ in which A = iσ2∂zθ (z)/2 is a SU(2)-type
vector potential Y = s0 or ∂xs0 and ŷ = (0, 1, 0). The
derivative of θ (z) divides the weak ferromagnet into three
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regions. In the domain wall region, it is a constant, and to the
left and the right sides of the domain wall region, θ ′(z) = 0.
However, θ ′(z) is discontinuous at the boundary of the domain
wall. Therefore, we need a boundary condition to describe a
continuous spin accumulation.

We can integrate Eq. (4) at the boundary of the domain
wall,and obtain the boundary conditions,

∂zs
0
1

∣∣
z±

b
− ∂zs

0
1

∣∣
z∓

b
= −π

λ
s0

3

∣∣∣∣
z±

b

, (5)

∂zs
0
2

∣∣
z±

b
− ∂zs

0
2

∣∣
z∓

b
= 0, (6)

∂zs
0
3

∣∣
z±

b
− ∂zs

0
3

∣∣
z∓

b
= π

λ
s0

1

∣∣∣∣
z±

b

. (7)

At the domain wall edges, z = z±
b = ±(X ± λ/2), and ±

refers to the right and left sides of the domain wall boundary.
The second group of boundary conditions represents the in-

jection of the spin-polarized current. As we show in Appendix
C, the spin injection from a contact with a strong ferromagnet
with magnetization oriented in the z direction and biased with
potential V can be described with the spin currents at the
injection point,

h̄D ∂zs
0
1 = 0, (8)

h̄D ∂zs
0
2 = 0, (9)

h̄D ∂zs
0
3 = kI h̄D

(
s0

3 − PIγV N0
)
, (10)

where kI is an injector transparency, PI is an injector polariza-
tion (see Appendix C for precise definitions of these quantities
in terms of the properties of a ferromagnetic injector wire), V
is the voltage at the injector, and N0 is the density of states at
the Fermi level. The voltage is rescaled by a factor γ [defined
in Eq. (C7)] due to fact that the spin accumulation in the
weak ferromagnet is affected by the spin accumulation in the
injector, see the details in Appendix C.

Making the equations dimensionless, we find that the do-
main wall physics is here described by three length scales:
(i) domain wall size λ, (ii) spin-relaxation length �s, and
(iii) the magnetic length lh = √

h̄D/h. The latter indicates the
length within which a noncollinear component of the spin
accumulation rotates a full period around the local magnetiza-
tion direction. This is an important scale since both the force
and the torque depend on such noncollinear components as
shown in Eqs. (16) and (17).

The “phase diagram” of different dynamical regimes de-
pends on two dimensionless parameters corresponding to
the ratios of these scales. In addition, the injector spin-
polarization PI describes the efficiency of spin injection (the
size of spin current for a given amount of charge current),
whereas the interface transparency parameter kI determines
how strongly the resistance of the injector depends on the
domain wall position.

In many strong ferromagnetic metals, such as iron and
cobalt, the exchange splitting h is on the order of 1 eV [24].
This then leads to a very small lh, on the order of the atomic
lattice spacing. For a weak ferromagnet, for example, CuNi,
it is around 0.05 eV [25]. This leads to a magnetic length lh
between 10 and 25 nm [25,26]. On the other hand, depending

FIG. 2. Solutions of the spin-diffusion equation. The solutions
in the rotated space are shown in (a) and (b), and, in the unrotated
space, the solutions are shown in (c) and (d). We also compare
s0

3 and s3 with the spin accumulation in the case of homogeneous
magnetization (no domain wall). Here, the results are plotted for
�s = 3.2lh, PI = 0.5, kI lh = 0.5, and λ = lh. The injector is placed
at x = 0, whereas the domain wall center is at X = 0.5λ marked in
the figure.

on the exact materials or sample properties (e.g., thickness and
concentration of Ni), the domain wall size λ and the spin-
relaxation lengths �s of CuNi range from 15 to 25 nm [27]
(estimated from measured anisotropy energy and exchange
stiffness constants) and from 7 to 25 nm [28], respectively.
This yields λ/lh ∼ 0.5 · · · 1.5 and lh/�s ∼ 0.4 · · · 3.6. As there
are also other materials with weak ferromagnetism, we also
cannot exclude the other possibilities. In order to understand
various properties of the domain wall motion induced from
a spin current, we also consider these ratios outside of these
ranges in the following discussions.

With the boundary conditions in Eqs. (5)–(7) and in
Eqs. (8)–(10), we can solve the rotated spin-diffusion equation
in Eq. (4). They can be solved analytically (see Appendix B),
but the solutions are, in general, quite lengthy. Rather, we plot
the components of the spin accumulation for an example set
of parameters as a function of position in Figs. 2(a) and 2(b).
We can see that s0

1 is a monotonously increasing (decreasing)
function of position in the region to the left (right) side of the
domain wall and reaches a minimum in the domain wall cen-
ter. The second component of spin accumulation s0

2 smoothly
goes to zero away from the domain wall center. Compared to
the spin accumulation in the case without the domain wall,
s0

3 changes sign in the domain wall region and exponentially
decreases in the region to the right of the domain wall.

The unrotated spin accumulation is given by Eq. (3). More
specifically, we can write

s1 = cos φ
(
s0

1 cos θ + s0
3 sin θ

) − s0
2 sin φ, (11)

s2 = s0
2 cos φ + sin φ

(
s0

1 cos θ + s0
3 sin θ

)
, (12)

s3 = s0
3 cos θ − s0

1 sin θ. (13)
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FIG. 3. Force and torque for smaller domain walls in (a) and
(b) and for larger domain walls in (c) and (d) as a function of domain
wall center position X − X0, where X0 = λ/2 is the shortest distance
of the domain wall center to the right of the injector. Here, the results
are plotted for �s = 3.2lh, PI = 0.5, and kI lh = 0.5.

The unrotated components of the spin accumulation are plot-
ted for φ = 0 in Figs. 2(c) and 2(d). Compared to the rotated
solution, s2 remains the same, but s1 changes sign on the two
sides of the domain wall center, and s3 makes a difference
compared to the case without the domain wall. In the next
section, we use these spin accumulations to calculate the force
and torque.

III. FORCE AND TORQUE

The force and torque acting on the domain wall are given
by [11,12]

F = −
∫

d3z ∇h · s, (14)

Tz = −
∫

d3z(h × s)z, (15)

where exchange field h is given in Eq. (1) and the compo-
nents of the spin accumulation s = (s1, s2, s3) are shown in
Eqs. (11)–(13). Substituting these to the force and torque in
Eqs. (14) and (15), we obtain

F = −hπW

λ

∫
dz s0

1, (16)

Tz = −hW
∫

dz s0
2 sin θ, (17)

where W is the cross-sectional area of the weak ferromagnet.
The force and torque as a function of the domain wall

position X are plotted in Fig. 3 for a few sets of parameters.
The common feature of all the cases are that both decay
exponentially as a function of X . This is due to the fact that
the spin accumulation and the resulting spin current, which
induces the domain wall motion, decays exponentially within
the spin-relaxation length �s. These features are also very
similar to the ones in Ref. [18]. From Figs. 3(a)–3(c), we can
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FIG. 4. Force and torque for smaller domain walls in (a) and
(b) and for larger domain walls in (c) and (d) as a function of inverse
spin-relaxation length �s. Here, the force and the torque are plotted
for the domain wall position X0 = λ/2. The parameters used in the
calculations are PI = 0.5 and kI lh = 0.5.

see that the force is independent of the domain wall size for
small domain walls, and it is smaller for larger domain walls.
On the other hand, the torque has a nonmonotonic dependence
on the domain wall size λ as shown in Figs. 3(b) and 3(d). It
first increases as λ increases up to on the order of lh and then
becomes smaller for larger domain walls. This is not the same
with the case of current-driven domain wall motion where the
torque is much larger than the force for larger domain walls
[12]. This is due to the fact that when a spin-relaxation length
�s is smaller than the domain wall size λ (�s < λ) due to the
decaying spin current, less spins are transferred to the domain
wall. This results in the smaller torque for larger domain wall
sizes in Fig. 3(d).

The dependence of the force and the torque on the spin-
relaxation length is shown in Fig. 4. We can see that the
torque is a monotonously decreasing function of the inverse
relaxation length, i.e., decreasing spin relaxation increases
the torque as expected from the fact that torque results from
spin transfer. On the other hand, the force is a nonmonotonic
function of lh/�s. It also decays if the spin relaxation becomes
strong (i.e., lh 	 �s). However, it also becomes small for a
small magnetic length lh 
 ls. This is due to the fact that
contrary to the torque, which, within our model, only comes
from the domain wall region [that is where θ �= 0 in Eq. (17)],
the force depends on the spin accumulation component s0

1
also around the domain wall. However, for small lh, this
component oscillates rapidly, and, thus, the average force
becomes small. Analogously, both the force and the torque
become smaller for larger λ/lh. This is due to the oscillations
of the spin accumulation inside the domain wall region.

In order to get further insight on the relative magnitudes of
the force and torque, we examine the adiabaticity parameter
βs = λF/Tz as a function of lh/�s for different λ’s in Fig. 5.
Since F and Tz both decay in the same manner, βs is indepen-
dent of the distance X from the injector. Comparing the values
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FIG. 5. Adiabaticity parameter βs as a function of the inverse
spin-relaxation length �s for different domain wall sizes. The results
are plotted for PI = 0.5 and kI lh = 0.5. The analytical estimate for
βs in Eq. (18) is shown as the black dashed curve in (a).

of βs in Figs. 5(a) and 5(b), we can see that βs is, indeed,
smaller for larger domain walls, but the spin relaxation also
plays an important role. We can see that βs 	 1 for strong
spin relaxation, i.e., force is much larger than the torque. On
the other hand, the torque is much larger than the force for
large domain walls λ � lh, provided the spin-relaxation length
is also longer than lh [Fig. 5(b)]. For small domain walls
λ 
 lh, βs is proportional to λ−1. We can estimate βs in this
limit for lh < �s by

βs = 8

π

lh
λ

l2
h

�2
s

. (18)

This is plotted in Fig. 5(a) as the black dashed curve.
This behavior can be compared to the case of strong

ferromagnets in the ballistic limit [11]. There the only nona-
diabaticity (nonvanishing βs) comes from the finite λF /λ. The
spin-diffusion equation employed here assumes that the Fermi
wavelength λF is much smaller than any other length scale.
However, we see that, in this case, other length scales, such as
lh and �s, govern the behavior of the adiabaticity parameter.

IV. DOMAIN WALL DYNAMICS

In the absence of an external pinning and a negligible
domain wall mass [29], the dynamic equations of domain wall
motion are [11,12]

φ̇ + α0
Ẋ

λ
= λ

h̄NS
F (19)

Ẋ − α0λφ̇ = K⊥λ

2h̄
S sin(2φ) + λ

h̄NS
Tz, (20)

where φ is the out-of-plane angle in Eq. (1), α0 is the Gilbert
damping parameter of the local magnetization, K⊥ is the
perpendicular anisotropy energy, and S is the size of the
localized spin. Also, N = 2λW/a3

0 is the number of spins in
the domain wall, and a0 is the lattice constant. The force and
torque are given in Eqs. (14) and (15), respectively.

The unit of F and Tz/λ is hγV N0W . In order to make the
dynamic equations dimensionless, we multiply

t0 = h̄NS

λhγV N0W
= 2h̄S

a3
0N0hγV

,
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FIG. 6. Full numerical solutions of the dynamic equations of
domain wall motion in Eqs. (21) and (22). The case where the force
is much larger than the torque is shown in (a) and (b), and the one
where the torque is much larger than the force is shown in (c) and (d).
In (a) and (b), we use λ = 0.01lh and �s = 3.2lh. In (c) and (d), λ =
20lh and �s = 100lh. The other parameters used in the calculations
are PI = 0.5, kI lh = 0.5, X0 = λ/2, and α0 = 0.2. In the insets of
(c) and (d), the results are shown for a smaller timescale.

to both sides of Eqs. (19) and (20), and after reorganizing the
terms, write

Ẋ

λ
= 1

1 + α2
0

[
α0 f + τz

λ
+ k⊥ sin(2φ)

]
, (21)

φ̇ = 1

1 + α2
0

[
f − α0

τz

λ
− α0k⊥ sin(2φ)

]
. (22)

Here, we defined

f = − π

λγV N0

∫
dx s0

1,

τz = − 1

γV N0

∫
dx s0

2 sin θ, (23)

k⊥ = K⊥S2

a3
0N0hγV

.

We first discuss the case where the force is much larger
than the torque (βs � 1). We can see from Fig. 5 that this is
the case for small domain walls and large domain walls with
strong spin-relaxation lh 	 �s. For convenience, we consider
a small domain wall λ 
 lh. The full numerical solutions of
the dynamic equations of domain wall motion in Eqs. (21) and
(22) are shown in Fig. 6.

If the force is a constant f = f0 in the absence of the
torque, Eq. (22) yields φ̇ = 0 for f0 < α0k⊥. Then, the domain
wall moves with a constant velocity and a constant out-of-
plane angle,

Ẋ = λ f0

α0
, (24)

φ = 1

2
arcsin

(
f0

α0k⊥

)
. (25)
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In the spin current induced domain wall motion, the force
decays as a function of the domain wall position X . If we
write the force as f = f0e−X/�s , then φ̇ → 0 for t → ∞, and
this yields

Ẋ = λ f0

α0
e−X/�s . (26)

This equation can be solved as

X = X (0) + �s ln

[
1 + f0λt

�sα0

]
, (27)

and

Ẋ = f0�sλ

�sα0 + f0λt
,

where X (0) is the domain wall position where φ̇ → 0. This
is exemplified by the curves in Figs. 6(a) and 6(b). There,
the blue curve shows the behavior in the case where the
force is everywhere below α0k⊥ and where φ̇ → 0 at around
t ≈ 200t0. From Eq. (22), we can also determine

φ = 1

2
arcsin

[
f0�s

k⊥

e−X (0)/�s

�sα0 + f0λt

]
. (28)

If f0 > α0k⊥, the constant force leads to an oscillatory
domain wall motion. This is known as the Walker breakdown
[30]. The red dashed-dotted curves in Figs. 6(a) and 6(b) show
the situation where the force is initially above this threshold,
and only as the domain wall has moved further from the
injector f gets below this threshold (around t � 1500t0). After
that, the domain wall motion follows Eq. (26).

From Fig. 5, we can see that the torque is much larger than
the force for large domain walls and weak spin relaxation.
In the case of a constant torque in the absence of the force,
the domain wall does not move if τ 0

z < k⊥λ. The reason is
that the perpendicular anisotropy energy described by the
coefficient k⊥ absorbs the torque completely. This is known
as intrinsic pinning [11]. Otherwise, if τ 0

z > k⊥λ, the domain
wall moves with a finite velocity. Similar to the force, we can
write the torque as τz = τ 0

z e−X/�s . When the torque decays
until τz[X (t )] < k⊥λ so that φ̇ → 0, the domain wall stops
moving. It takes a longer time for a smaller k⊥ to absorb
the torque completely. The domain wall position and φ̇ as a
function of time for a decaying torque are plotted in Figs. 6(c)
and 6(d).

We next examine the domain wall motion in the presence of
both force and torque (βs ≈ 1). In the case of constant force
and torque, a small force is enough to destroy the intrinsic
pinning. The domain wall moves with a constant velocity, see
Eq. (24). This is also the case with decaying force and torque,
and the domain wall motion follows Eq. (26). We can use
Eq. (22) to obtain φ for φ̇ → 0 as

φ = 1

2
arcsin

[
1

k⊥

(
f0

α0
− τ 0

z

λ

)
α0�s

�sα0 + f0λt
e−X (0)/�s

]
. (29)

The numerical solutions of the dynamic equations of the
domain wall motion in Eqs. (21) and (22) in the presence
of comparable force and torque, namely, the domain wall
position X and the time derivative of the out-of-plane angle
φ are plotted in Figs. 7(a) and 7(b).

In the above discussions, the voltage at the injector is
considered to be positive V > 0. If the voltage changes sign
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FIG. 7. Domain wall dynamics in the presence of comparable
force and torque for different k⊥’s in (a) and (b). Forward and
backward moving domain walls for different domain wall sizes in
(c) and (d) for a fixed k⊥ = 1.2| f0/α0 − τ 0

z /λ|. In (a) and (b), we
use λ = lh and �s = 3.2lh. In (c), �s = 3.2lh, and, in (d), �s = 100lh.
The other parameters used in the calculations are PI = 0.5, kI lh =
0.5, X0 = λ/2, and α0 = 0.2. In (c) and (d), we use a small arrow to
denote when the voltage changes sign.

at some instant of time, then the sign of the force and torque
also changes, and they start pulling the domain wall instead
of pushing it. This leads to the reversed motion of the domain
wall. The reversed domain wall motion for small domain walls
λ < lh are shown in Fig. 7(c). In this case, the domain wall
reverses back to its original position X = 0 at an equal amount
of time as the one needed to push it further. The reversed
domain wall motion for large domain walls with weak spin
relaxation is shown in Fig. 7(d). In this case, the domain
wall had stopped before the sign change of the injected spin
current.

The above analysis is based on the dynamics described
by Eqs. (19) and (20) with force and torque obtained from
the solutions of the spin-diffusion equations. Those equations
were derived [12] by assuming a clean ferromagnet and an
instant electronic response to the domain wall motion. It
was shown [29,31–37] that taking into account the delayed
electron dynamics, extra “inertial” terms proportional to φ̈

and Ẍ can also appear, leading, for example, to a hysteretic
dynamics of the domain wall. The prefactor of those terms, an
effective mass of the domain wall, is proportional to the time
it takes for the electrons to traverse the domain wall width λ.
If λ is large compared to the elastic mean free path as assumed
in the present paper, this effective mass is also likely to change
from the ballistic limit considered in Ref. [29]. This is why we
did not yet consider its possible effect on the dynamics in the
present paper.
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V. DOMAIN WALL RESISTANCE

The current induced from the injector electrode is given by
[see Appendix C Eq. (C9)],

I = G[−�γV + PI s3(0)/N0],

where G is the conductance of the injector and � is defined
in Eq. (C8). We can see from Appendix B that the spin
accumulation is linear in the injection voltage V . Taking that
into account allows us to include an extra resistance that
depends on the relaxation of s3 along the wire. In particular,
we may study this extra resistance in the presence of the
domain wall at position X and without it (formally X → ∞).
This domain wall resistance provides a direct method to detect
the domain wall motion.

If we denote the spin accumulation at the position of the in-
jector as s3(0) = μzPIγV N0, where μz = μz(X, lh, �s, kI , λ)
is a dimensionless quantity, then the current through the
contact can be written as I = G(−� + μzP2

I )γV . The spin
accumulation, thus, adds a “spin resistance,”

Rs = 1

GμzP2
I γ

. (30)

The contribution of the domain wall to the spin resistance in
Eq. (30) can be found by taking the difference of Rs with the
resistance in the absence of the domain wall R0

s as Rdw = Rs −
R0

s . Here,

R0
s = 1

Gμz(X → ∞)P2
I γ

= 2 + kI�s

GP2
I kI�sγ

,

where μz(X → ∞) is determined from Eq. (B2) and kI is the
injector transparency. Again, the analytic formula for Rdw is
long, but we show its behavior for some selected parameters
in Fig. 8.

We can see that the domain wall contribution to the resis-
tance Rdw reduces exponentially as the domain wall moves
away from the injector as is natural due to the fact that
Rdw depends on the size of the spin accumulation around
the domain wall. Close to the injector X = λ/2 [Fig. 8(c)],
the domain wall contribution is maximal for lh 
 �s and for
λ ≈ lh.

VI. CONCLUSION

In conclusion, we have studied the domain wall motion in
weak ferromagnets in a nonlocal spin-injection setup. We have
used a spin-diffusion equation to calculate the spin accumula-
tion and evaluated the force and torque acting on the domain
wall. Both decay exponentially as a function of domain wall
position. We have studied the domain wall dynamics and
have showed that the domain wall motion exhibits interesting
features due to the decaying force and torque. For example,
if the force close to the injector is larger than the torque and
a threshold for Walker breakdown, the domain wall exhibits
first an oscillatory dynamics, but further from the injector,
spin relaxation necessarily takes the force below that threshold
value, resulting into an algebraically decaying domain wall
speed. On the other hand, for a large torque close to the
injector, compared to both the force and an intrinsic pinning
value due to anisotropy, the relatively steady initial motion
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FIG. 8. The additional resistance Rdw introduced from the do-
main wall plotted as a function of the domain wall position in (a) and
(b), and the dependence of the maximum Rdw at X0 plotted as a
function of λ and �−1

s in (c). In (a), Rdw is plotted for different domain
wall sizes and �s = 3.2lh, and, in (b), for different spin-relaxation
lengths for λ = 2lh. The other parameters used in the calculations
are kI lh = 0.5, PI = 0.5, and X0 = λ/2.

ceases when the torque becomes smaller than the intrinsic
pinning value, and the domain wall essentially stops. Since the
sign of both the force and the torque depends on the sign of
the injection current, the domain wall motion can be reversed
by reversing the sign of the current. This is why the pure spin
current can also be used to pull the domain wall back towards
the injector. Besides the analysis of the force and torque and
their result on the dynamics, we have also described a means
to detect the domain wall position via monitoring the injection
resistance that depends on the domain wall position.

Our model is an alternative description of domain wall
motion compared to majority of the models [12] dealing with
essentially ballistic electron systems. In those cases, the only
relevant length scales are the domain wall size and the Fermi
wavelength. We show how, in disordered systems and weak
ferromagnets, there may be also other essential length scales
governing the domain wall dynamics, especially the magnetic
length lh and the spin-relaxation length �s. Our approach
is made possible by the use of the spin-diffusion equation
also in the presence of inhomogeneous magnetism, which
would not be straightforward when the spin polarization in
the ferromagnet is large. To be able to use this equation, we,
hence, need to assume weak ferromagnetism, which limits
the applicability range of our approach. On the other hand,
it provides hints on the types of effects expected also in the
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case of strong ferromagnets for which, to our knowledge, an
analogous theory does not exist.

Moreover, our model can be used as a reference in the study
of the domain wall motion in superconductor/ferromagnetic
insulator hybrid structures. In such structures, the spin accu-
mulation in the superconductor is described by a set of kinetic
equations, which reduce to the spin-diffusion equation in the
normal state. The equilibrium properties of such a structure
are studied in Ref. [23]. A thermally induced torque is studied
in a superconductor/ferromagnet bilayer in the clean limit
[38], but, to our knowledge, this has not been extended to the
experimentally more relevant disordered limit.
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APPENDIX A: SPIN-DIFFUSION EQUATION

As a useful tool in describing the electronic transport prop-
erties of magnetic materials, we start by the spin-dependent
Boltzmann equation in the diffusive limit [22,39],

(∂t − D∇2) fz(r, ε, t ) = − 1

τs
fz(r, ε, t ), (A1)

where D is the diffusion constant (in a weak ferromagnet
assumed independent of the spin index), fz = f↑ − f↓ and fσ
is the distribution function of electrons with spin σ = ↑ / ↓,
and τs is the spin-flip relaxation time. This equation has been
widely used in spintronics, for example, in the description of
the spin accumulation at an interface between a ferromagnet
and a nonmagnetic metal [40].

Here, we assume a quasistatic description where the do-
main wall moves slowly compared to the electrons so that the
spin-diffusion equation can be solved in the static case. We
can estimate the validity range of this assumption by com-
paring the timescale τ = �sα0/( f0λ) of domain wall motion
through a length �s [given in Eq. (27)] to the characteristic
electron diffusion time D/�2

s through a similar length scale.
The quasistatic approximation is valid when τ 	 D/�2

s , or

eV 
 h̄D

λ�s

2Sα0

N0a3
0hγ

, (A2)

where we assumed f0 on the order of unity. In this limit, we
can, hence, disregard the time derivative in Eq. (A1).

In the case of an inhomogeneous exchange field, other
spin components should be taken into account, and we can
replace fs by f · σ = ( fx, fy, fz ) · σ, where σ = (σ1, σ2, σ3)
is a vector of Pauli spin matrices. Considering the Heisenberg
equation of motion for f · σ, and substituting back to the
Boltzmann equation (see a similar derivation in Refs. [41,42],
except that those articles write an opposite sign of the Zeeman
energy term), we obtain for a steady state,

D∇2 f · σ = 1

τs
f · σ + i

h̄

[gμB

2
B · σ, f · σ

]
,

where the other component of the commutator is the Zeeman
energy. There, g = 2 is the g factor, μB is the Bohr magneton,
and B is the magnetic field. By denoting h = gμBB/2 and

reorganizing the terms, we obtain

h̄D∇2 f = h̄

τs
f − 2h × f ,

where we used the relation (a · σ )(b · σ) = 2i(a × b) · σ. This
equation is an extension of Eq. (A1) to the case with inhomo-
geneous magnetization as it reduces to Eq. (A1) for the case
of homogeneous magnetization in the steady state.

Integrating over energy on the two sides, we finally obtain
the spin-diffusion equation,

h̄D∇2s = h̄

τs
s − 2h × s, (A3)

where

s(r) = N0

∫
dε f (r, ε) (A4)

is the spin accumulation at position r. The spin-diffusion
equation was used to describe the spin Hanle effect in
ferromagnet-normal metal-ferromagnet systems [41,43,44].
Here, we use it to calculate the spin accumulation in a weak
ferromagnet, including the Hanle effect from the inhomoge-
neous exchange field.

The spin current is given by the derivative of the spin
accumulation,

j(r) = h̄D∇s(r).

The spin current is a tensor as it depends on position for all
three spin components. This spin current plays an important
role in the domain wall motion.

APPENDIX B: SPIN ACCUMULATION WITH
INHOMOGENOUS MAGNETIZATION

Since the rotation angle in Eq. (2) is a step function,
the spin-diffusion equation in Eq. (4) is separated into three
regions. On the left and right sides of the domain wall, the
general solution of Eq. (4) is given by

s0
1 = 1

η
{cosh(zην)[ηC1i cos(zημ) + (μC2i + νC4i ) sin(zημ)]

+ [(νC2i − μC4i ) cos(zημ)+ηC3i sin(zημ)] sinh(zην)},
s0

2 = 1

η
{cosh(zην)[ηC3i cos(zημ)+(−νC2i+μC4i ) sin(zημ)]

+ [(μC2i + νC4i ) cos(zημ)−ηC1i sin(zημ)] sinh(zην)},
s0

3 = ez/�sC5i + e−z/�sC6i, (B1)

where i = 1, 3 refers to the left and right sides of the domain
wall and Cni’s are constants which are determined from the
boundary conditions. Here, we also defined

η =
(

4

l4
h

+ 1

�4
s

)1/4

,

μ = sin

[
1

2
arctan

(
2�2

s

l2
h

)]
,

ν = cos

[
1

2
arctan

(
2�2

s

l2
h

)]
.
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In the domain wall region, the solutions are given by

s0
1 = −C12ezk1

(
α2 + �−2

s − k2
1

)
2α

√
N1k1

+ C22e−zk1
(
α2 + �−2

s − k2
1

)
2α

√
N1k1

− C32ezk2
(
α2 + �−2

s − k2
2

)
2α

√
N2k2

+ C42e−zk2
(
α2 + �−2

s − k2
2

)
2α

√
N2k2

− C52ezk∗
2
(
α2 + �−2

s − k∗2
2

)
2α

√
N2k∗

2

+ C62e−zk∗
2
(
α2 + �−2

s − k∗2
2

)
2α

√
N2k∗

2

,

s0
2 = C12ezk1 al2

h

36αβ2
√

N1k1
− C22e−zk1 al2

h

36αβ2
√

N1k1
+ C32ezk2 bl2

h

72αβ2
√

N2k2
− C42e−zk2 bl2

h

72αβ2
√

N2k2
+ C52ezk∗

2 b∗l2
h

72αβ2
√

N2k∗
2

− C62e−zk∗
2 b∗l2

h

72αβ2
√

N2k∗
2

,

s0
3 = C12ezk1

√
N1

+ C22e−zk1

√
N1

+ C32ezk2

√
N2

+ C42e−zk2

√
N2

+ C52ezk∗
2√

N2
+ C62e−zk∗

2√
N2

,

where

α = π

λ
, β =

[
α6 + 90α2

l4
h

+ 36α4

�2
s

+ 1

2

√
−4

(
α4 − 12

l4
h

− 12α2

�2
s

)3

+ 4

(
α6 + 90α2

l4
h

+ 36α4

�2
s

)2]1/3

,

and

k1 =
√

1

3

(
−2α2 + β + 3

�2
s

+ α4 − 12/l4
h − 12α2/�2

s

β

)
,

k2 =
√√√√ 1

12

[
−8α2 + 2i(i +

√
3)β + 12

�2
s

+ 2(1 + i
√

3)
( − α4 + 12/l4

h + 12α2/�2
s

)
β

]

are the solutions of the following characteristic equation:

α4

(
k2 − 1

�2
s

)
+

[
4

l4
h

+
(

k2 − 1

�2
s

)2
](

k2 − 1

�2
s

)
− 2α2

(
2

l4
h

− k4 + 1

�4
s

)
= 0.

The other coefficients are

a =
(

α4 + α2β + β2 − 12

l4
h

)2

+ 12α2

�2
s

(
−2α4 − 2α2β + β2 + 24

l4
h

)
+ 144α4

�4
s

,

b = −(1 − i
√

3)α8 − (1 + i
√

3)β4 − 48β2

l4
h

− 144(1 − i
√

3)

l8
h

+ α6

[
−2(1 + i

√
3)β + 24

�2
s

(1 − i
√

3)

]

+ 2α2

[
−(1 − i

√
3)β3 + 12(1 + i

√
3)β

l4
h

+ 12β2

�2
s

− 144(1 − i
√

3)

l4
h �2

s

]

+ 6α4

[
β2 + 4(1 + i

√
3)β

�2
s

+ 4(1 − i
√

3)

(
1

l4
h

− 6

�4
s

)]
,

N1 =
(
1 + l2

h k2
1

){
a2l4

h + 324β4
[
α4 − (

k2
1 − �−2

s

)2 + 2α2
(
k2

1 + �−2
s

)]}
1296α2β4k2

1

,

N2 =
(
1 + l2

h |k2|2
)(|b|2l4

h + 1296β4
{
α4 + ∣∣k2

2

∣∣2 + �−4
s − 2�−2

s Re
(
k2

2

) + α2
[
2�−2

s − 2 Re
(
k2

2

) + 4|k2|2
]})

5184α2β4|k2|2 .

The unknown coefficients are determined from the bound-
ary conditions. However, these coefficients are too long to be
printed here and rather have to be shown numerically [45]. We
plot some of the coefficients for different values of the domain
wall size λ in Fig. 9.

The solutions also yield C52 = C∗
32 and C62 = C∗

42, which
also imply real-valued spin accumulation. Moreover, the co-
efficients in region i = 3 are very similar with those in region

i = 1 but with opposite signs (C13, C33, and C63). For X 	 �s,
we also find

C61 = −C63 = kI�sPIγV N0

2 + kI�s
, (B2)

but, in general, the expression is more complicated.
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FIG. 9. Coefficients in the general solutions of the spin-diffusion equation. Here, the results are plotted for �s = 3.2lh, PI = 0.5, kI lh =
0.5, and X0 = λ/2.

The solutions in the domain wall region can, hence, be
written as

s0
1 = −α2 + �−2

s − k2
1

2α
√

N1k1
(C12ezk1 − C22e−zk1 )

− Re

[
α2 + �−2

s − k2
2

α
√

N2k2
(C32ezk2 − C42e−zk2 )

]
, (B3)

s0
2 = al2

h

36αβ2
√

N1k1
(C12ezk1 − C22e−zk1 )

+ Re

[
bl2

h

36αβ2
√

N2k2
(C32ezk2 − C42e−zk2 )

]
, (B4)

s0
3 = 1√

N1
(C12ezk1 + C22e−zk1 )

+ 2√
N2

Re(C32ezk2 + C42e−zk2 ). (B5)

The unrotated spin accumulation is given by the transfor-
mation in Eq. (3). We use these results to calculate the force
and torque in the equations of domain wall motion.

APPENDIX C: DESCRIPTION OF THE INJECTOR

We consider the case where the spin-polarized current is
injected to the weak ferromagnet from a strong ferromagnet
attached to it at a position z = 0. Since we assume the
injector magnetization to be homogeneous, we can write the
spin-diffusion equation separately in the two spin directions
collinear with the magnetization of the strong ferromagnet. If
we assume that the current is injected into the weak ferromag-
net from a wire placed in the y direction, the spin-diffusion
equation in the injector becomes [42]

∂2
y sI

σ = sI
σ − sI

σ̄

2l2
σ

,

where σ̄ is the opposite spin to σ =↑ / ↓ and lσ = √
Dσ τσ is

the spin-dependent spin-relaxation length. The general solu-
tion of this equation can be written as

sI
↑/↓ = l2

↓(C1 + C2y) + l2
↑(C3 + C4y)

l2
tot

± l2
↓/↑
l2
tot

[
(C3 − C1) cosh

(y

l

)
+ l (C4 − C2) sinh

(y

l

)]
,

155423-10



DOMAIN WALL MOTION IN A DIFFUSIVE WEAK … PHYSICAL REVIEW B 101, 155423 (2020)

where l2
tot = l2

↑ + l2
↓ and l = √

2l↑l↓/ltot. The unknown coef-
ficients can be determined from the boundary condition [39],

σ I
↑/↓AT ∂ysI

↑/↓(0) = 1

RI

[
sw
↑/↓(0) − sI

↑/↓(0)
]
, (C1)

where σ I
σ = e2Nσ Dσ is the spin-dependent conductivity in the

injector, Nσ is the density of states of spin σ at the Fermi
level, AT is the cross-sectional area of the tunneling junction,
RI is the resistance of the contact between the injector and
the wire, and sw

σ is the spin density for spin σ created at the
weak ferromagnet. If the voltage is applied at a distance L
away from the contact, then, we have two more boundary

conditions,

sI
↑(−L) + sI

↓(−L) = V N0,

sI
↑(−L) − sI

↓(−L) = 0,

where the upper equation states that the average potential of
the electrons at the distance L is V (e = 1), and the lower in-
dicates the vanishing of the spin accumulation in the electrode
where the voltage is applied.

With the determined coefficients, we can write the chem-
ical potential and the spin accumulation at the position of
injection as

μI (0)N0 = sI
↑(0) + sI

↓(0) = l2
totV N0σ↑σ↓ + 2aI L[l2

↓σ↑sw
↓ (0) + l2

↑σ↓sw
↑ (0)]

l2
totσ↑σ↓ + aI L(l2

↑σ↓ + l2
↓σ↑) + aI l

(
aI Ll2

tot + l2
↓σ↓ + l2

↑σ↑
)

tanh (L/l )

+
{
aI Ll2

totμw(0)N0 + l2
totV N0σF + (l2

↑ − l2
↓)[σ↑sw

↓ (0) − σ↓sw
↑ (0)]

}
aI l tanh(L/l )

l2
totσ↑σ↓ + aI L(l2

↑σ↓ + l2
↓σ↑) + aI l

(
aI Ll2

tot + l2
↓σ↓ + l2

↑σ↑
)

tanh (L/l )
, (C2)

sI
3(0) = sI

↑(0) − sI
↓(0) = aI ll2

tot

[
aI Lsw

3 (0) + V N0(σ↑ − σ↓)/2 − σ↑sw
↓ (0) + σ↓sw

↑ (0)
]

tanh(L/l )

l2
totσ↑σ↓ + aI L(l2

↑σ↓ + l2
↓σ↑) + aI l

(
aI Ll2

tot + l2
↓σ↓ + l2

↑σ↑
)

tanh (L/l )
, (C3)

where aI = 1/(RI AT ) and σ I
F = (σ I

↑ + σ I
↓)/2. Here, we also defined the chemical potential and the spin accumulation in the

weak ferromagnet as μw(0)N0 = sw
↑ (0) + sw

↓ (0) and sw
3 (0) = sw

↑ (0) − sw
↓ (0).

We assume, for simplicity, that the injector and the weak ferromagnetic wire cross sections are equal. Defining the injector
transparency κI = 1/(σwRI AT ), we can write the boundary condition analogous to Eq. (C1) for the weak ferromagnet wire as

∂zs
w
↑/↓(0) = κI [s

w
↑/↓(0) − sI

↑/↓(0)],

where σw is the conductivity in the weak ferromagnet. We then write this boundary condition in terms of μw(0) and sw
3 (0) and

choose the zero point of the potential so that μw(0) = 0. By substituting sI
↑/↓(0) in Eqs. (C2) and (C3), we obtain for l↑ = l↓,(

∂zμw(0)N0

∂zsw
3 (0)

)
= κI

aI l tanh(L/l )
(
aI L + σ I

F

) + aI Lσ I
F + σ I

↑σ I
↓

(
aI l tanh(L/l )σ I

F + σ I
↑σ I

↓ aI L(σ I
↑ − σ I

↓)/2

aI l tanh(L/l )(σ I
↑ − σ I

↓)/2 aI Lσ I
F + σ I

↑σ I
↓

)(−V N0

sw
3 (0)

)
.

This equation leads to an Onsager relation for the current
through the contact,

(
∂zμw(0)N0

∂zsw
3 (0)

)
=

(
�kI PI kI

PI kI kI

)(−γV N0

sw
3 (0)

)
, (C4)

where the injector polarization and transparency are defined
as

PI = aI L(σ I
↑ − σ I

↓)/2

aI Lσ I
F + σ I

↑σ I
↓

= L(σ I
↑ − σ I

↓)

2
(
Lσ I

F + σ I
↑σ I

↓RI AT
) , (C5)

kI = κI
(
aI Lσ I

F + σ I
↑σ I

↓
)

aI l tanh(L/l )
(
aI L + σ I

F

) + aI Lσ I
F + σ I

↑σ I
↓

=
(
Lσ I

F + σ I
↑σ I

↓RI AT
)
/σw

l tanh(L/l )
(
L + RI AT σ I

F

) + Lσ I
F RI AT + σ I

↑σ I
↓R2

I A2
T

,

(C6)

γ = l

L
tanh

(
L

l

)
, (C7)

and

� = L

l

aI l tanh(L/l )σ I
F + σ I

↑σ I
↓

tanh(L/l )
(
aI Lσ I

F + σ I
↑σ I

↓
)

= L

l

l tanh(L/l )σ I
F + σ I

↑σ I
↓RI AT

tanh(L/l )
(
Lσ I

F + σ I
↑σ I

↓RI AT
) . (C8)

The second row of Eq. (C4) yields the boundary condi-
tion for the spin-diffusion equation, whereas the first row in
the Onsager relation yields the current through the contact.
Multiplying the first row by σwW/N0, where W is the cross-
sectional area of the weak ferromagnet, we obtain

I = G
[ − �γV + PI s

w
3 (0)/N0

]
, (C9)

where

I = σwW ∂zμw(0), (C10)

and

G = kIσ
wW.

Since sw
3 (0) is linear in V N0 as shown in Eq. (B2), the spin

accumulation contributes an additional resistance to the total
resistance.
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