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We theoretically investigate concomitant topological properties of twisted bilayer graphene by a continuum
model when gaps are opened in its two monolayers. An effective Hamiltonian is derived for the flat bands
of a twisted bilayer in the vicinity of its Dirac points, then the topological characteristics of these flat bands
can be identified for different valleys. Numerical calculations show that topological phases can be induced and
modulated by the gaps in the two single layers. A phase diagram is obtained and is divided into three regions
with the Chern number C = 0, ±1, respectively, separated by two straight lines. These observed phenomena can
be well explained using simplified analytical treatments. Moreover, we can distinguish the flat bands into four
topologically different states, which will bring applications into electronics and valleytronics.
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I. INTRODUCTION

The experimental discoveries of superconductivity and
strongly correlated Mott insulating state in twisted bilayer
graphene [1,2] are significant achievements after much pre-
vious impressive research [3–23]. A twisted graphene bilayer
(TGB) is constructed with two rotationally stacked graphene
single layers, and its electronic band structure is sensitively
dependent on the twist angle θ . At a series of special angles,
called magic angles, the lower-energy bands around the zero
Fermi energy are nearly flat with extremely narrow bandwidth
due to strong interlayer coupling. When the bandwidth be-
comes comparable to or smaller than the interaction energy,
the interaction-induced instability is expected to appear. Ex-
periments reported that the flat-band effect is obvious after
strong correlation is reached at a twisted angle larger than the
magic angle when a hydrostatic pressure is applied [24]. A
surge of theoretical works have been done on this subject for
explaining these exotic phenomena [25–39].

At a small twist angle θ , a slight difference in the lattice
orientation gives rise to a long-period moiré interference
pattern, which means the number of carbon atoms in a unit
cell will be very large. It is a challenging problem to strictly
solve the single electron’s wave equation in such a complex
system. An alternative way is to calculate the band structure
using a continuum model in the vicinity of the Dirac points in
graphene monolayers (GMLs) [5,16]. However, the obtained
continuum energy spectrum still contains a number of energy
bands. A more simplified model is needed to describe the
band structure at the zero Fermi energy. In fact, the nearly
flat bands at the lowest energy are well separated by sizable
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energy gaps from other bands at the first magic angle. With the
help of symmetry analysis, some previous works argued that it
is possible to construct a two-band hexagonal lattice model to
exclusively describe the flat bands [40–43]. Several effective
real-space lattice models are widely used in calculating the
pairing symmetry of superconducting phase in TGBs [25,33–
36,44].

There is an important issue to be explored that if it is
possible for the flat bands of a TGB to have any topolog-
ical phase and phase transition. This is interesting but not
very intuitive since the nearly flat bands are gapless in the
well-known lattice models or continuum models. The gapless
nature of the Dirac points are protected by the twofold rotation
(C2) and time-reversal (T ) symmetries. If C2T is broken,
then the Dirac points will become gapped. For instance, if
one of the GMLs in the TGB is nearly aligned with the
hexagonal boron nitride substrate, the broken C2 symmetry
will introduce a nonnegligible band gap in this layer [45,46]. It
should be noted that a band gap arisen in any one of the GMLs
will drastically change the energy dispersion at the hexagon
corners of the moiré Brillouin zone (MBZ). In this paper, we
will investigate the band dispersion and the Chern number
of a TGB by introducing gaps in its two individual GMLs.
One can find that a small gap at the hexagonal corners of the
MBZ is opened, and the Chern number can be well defined
if the Fermi energy locates inside this gap. The nonzero
Chern numbers of the flat bands in the TGB are very robust.
Furthermore, we can derive an effective Hamiltonian in the
vicinity of the Dirac points for the flat bands. With the help
of this effective Hamiltonian, the topology of the flat bands
can be identified exactly as that for a GML. Generalizing the
results of the GMLs, we can discuss the Chern numbers and
the topological phase boundaries by modulating the gaps of
the two monolayers. The numerical calculations also support
the theoretical deduction. Analytical treatment shows that the
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FIG. 1. (a) Schematic illustration of the Brillouin zone folding
in a TGB with a small twisted angle θ . The two large hexagons
represent the first Brillouin zones of the two GMLs distinguished by
red (layer 1) and green (layer 2). (b) The small hexagon is the moiré
Brillouin zone of the TGB. ±K1,2 represent the valleys in the GMLs
while K and K

′
represent the valleys in the TGB. (c) The three qn

are the momentum transfers that correspond to the three interlayer
hopping processes. Gi are the reciprocal lattice vectors.

magic angle is not influenced by the corrugation of the TGB,
it is only controlled by the hopping parameter in the AB/BA
stacking region which is the narrowest region in the TGB.
Nevertheless, the topological property of the flat bands are
strongly influenced by the corrugation tendency.

The paper is organized as follows. In Sec. II, we briefly
review the effective continuum model for a TGB and calculate
the low-energy spectrum in the vicinity of the Dirac points
with and without the monolayer gap. In Sec. III, we discuss
the topological characteristics of the flat bands from the
analytical treatment. In Sec. IV, we numerically calculate the
energy spectrum in the whole MBZ at the first magic angle
θ = 1.05◦ and the Chern numbers for different Fermi ener-
gies. The results show that the nonzero Chern numbers just
come from the lowest-energy bands. Moreover, we discuss
the topological phase transition caused by the gap difference
between the two layers. A brief conclusion is presented in
Sec. V.

II. EFFECTIVE CONTINUUM MODEL FOR THE
TWISTED GRAPHENE BILAYER

We construct a TGB by rotating layer 1 and layer 2 with
angles −θ/2 and +θ/2, respectively, in a totally overlapping
graphene bilayer. In the momentum space, the two Dirac
points from one valley are separated by kθ = 2K0 sin(θ/2),
where K0 = 4π/3a and a is the lattice constant of each GML.
After the band reconstruction, +K1 and −K2 are folded onto
one corner (K

′
) of the MBZ of the TGB, while −K1 and

+K2 are folded onto the other inequivalent corner (K), as
shown in Fig. 1(a). When the twisted angle is small, the
electronic structure can be described by a continuum model
[5,16], where the intervalley mixing can be safely neglected.
In a single valley, taking ξ = + as an example, the low-energy
band structure can be described by a Dirac model around the
Dirac points of the monolayer shown in Fig. 1(b) and coupled

through the moiré potential T (r) [47]:

H =
(−ivFσθ/2∇ + m1σz T (r)

T †(r) −ivFσ−θ/2∇ + m2σz

)
, (1)

where σθ/2 = e−(iθ/4)σz (σx, σy)e(iθ/4)σz , ∇ = (∂x, ∂y) and
T (r) = ∑3

j=1 Tje−iq j ·r. The three-momentum transfers

q j are q1 = kθ (0,−1), q2 = kθ (
√

3/2, 1/2) and q3 =
kθ (−√

3/2, 1/2), as shown in Fig. 1(c). According to the
mass-gap correspondence in the Dirac equation [48], m1(2) is
the GML mass term coming from the gap of layer 1(2) and it
is reasonable to assume m1(2) � vFkθ . The symmetry of the
TGB requires the interlayer coupling to have the form

Tj = wAAσ0 + wAB[σx cos( j − 1)φ + σy sin( j − 1)φ], (2)

where φ = 2π/3, and wAA and wAB are the interlayer hop-
ping parameters in the AA and AB stacking regions. As the
first step, we assume wAA = wAB = w and m1 = m2 = m for
simplicity. In the rest of the paper, we will focus on this valley
if there is no special statement.

As the low-energy states are expected to be dominated by
the individual graphene eigenstates near the original Dirac
points, the dimension of Hamiltonian (1) can be cutoff to a
finite value. By examining the simplest limit in which the
momentum lattice is truncated at the first honeycomb shell,
the Hamiltonian in the vicinity of the K point is expressed as

Hk =

⎛
⎜⎜⎜⎝

hk T1 T2 T3

T †
1 hk+q1

0 0

T †
2 0 hk+q2

0

T †
3 0 0 hk+q3

⎞
⎟⎟⎟⎠, (3)

where k is in the MBZ, hk and hk+q j
are the Dirac Hamil-

tonians of the GML. The dependence of hk and hk+q j
on

the twisted angle θ is small and can be neglected. Hamil-
tonian (3) acts on an eight-component spinor wave function
� = (ψ0, ψ1, ψ2, ψ3)T, where ψ0 comes from layer 2 and
ψ1, ψ2, ψ3 come from layer 1. By solving the Schrödinger
equation Hk� = Ek�, we have⎛

⎝Ek − hk −
3∑

j=1

Tj
1

Ek − hk+q j

T †
j

⎞
⎠ψ0 = 0. (4)

Normally, Eq. (4) will generate eight eigenvalues of Ek.
However, at the first magic angle there exist two lowest bands
well separated from other bands [1,2,42]. In the following,
we intend to analytically solve Eq. (4) to obtain the effective
Hamiltonian for the lowest bands.

Previous research showed that at the first magic angle of
the pristine TGB there exists two lowest bands, which are
degenerated at the corners of the MBZ. Therefore, in the
vicinity of K and K

′
points, we would expect |Ek| � |hq j

|
for the lowest bands. It should be stressed that we added a
mass term to the GML Hamiltonian, i.e., hk = vFk · σ + mσz,
as can be found in Eq. (1). Now for simplicity we define a bare
Hamiltonian h′

q = vFq · σ, and then hk+q j
can be expressed as

hk + h′
q j

. Because Ek and hk are relatively small compared to
h′

q j
, Ek and hk can be treated as the perturbation terms for the
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lowest bands. Using the Dyson equation, 1/(Ek − hk+q j
) can

be expanded to the first order of (Ek − hk) as

1

Ek − hk − h′
q j

= −h′
q j

−1 − h′
q j

−1(Ek − hk)h′
q j

−1
. (5)

Using this technique, one can expand Eq. (4) to the first order
of (Ek − hk), and finally get the lowest bands equation as

⎡
⎣Ek − hk +

3∑
j=1

Tjh
′
q j

−1T †
j +

3∑
j=1

Tjh
′
q j

−1(Ek − hk)h′
q j

−1T †
j

⎤
⎦ψ0 = 0. (6)

After a little detailed derivation (see the Appendix), we obtain
a simple expression(

Ek − 1 − 3α2

1 + 6α2
h′

k − 1

1 + 6α2
mσz

)
ψ0 = 0, (7)

where α = w/vFkθ . From this equation we can see that if
α2 = 1/3, which corresponds to the first magic angle, the
effective velocity vanishes. The third term shows that the
GML mass term is just modified by a factor 1/(1 + 6α2) in
the TGB. If we set m = 0, Eq. (7) is retrieved back to(

Ek − 1 − 3α2

1 + 6α2
h′

k

)
ψ0 = 0, (8)

which is the result first obtained by Bistritzer and MacDonald
[16].

It is worth mentioning that, with the same method, one can
prove that the equation for the lowest two bands in the vicinity
of the K

′
point has the same form as that for the K point.

III. ANALYTICAL RESULTS OF BERRY
CURVATURE AROUND VALLEYS

Equation (7) can be seen as the effective Schrödinger
equation of the lowest two bands. In other words, the effective
Hamiltonian of the lowest two bands in the vicinity of the K
point is

HK = v′
Fk · σ + m′σz, (9)

where v′
F = (1 − 3α2)/(1 + 6α2)vF and m′ = 1/(1 + 6α2)m

are, respectively, the renormalized velocity and renormalized
mass. This effective Hamiltonian is identical to the continuum
model Hamiltonian of a GML with a finite mass in the vicinity
of the Dirac points. Hence we can determine the topological
properties of the flat bands according to the results from the
individual GMLs. In each of the two GMLs, the Berry phase
is mainly contributed to by the Berry curvatures concentrated
in the two inequivalent valleys [49,50]. Making use of the
monolayer Hamiltonian H = vF(ξqxσx + qyσy) + mσz, where
ξ = ± for the ±K valleys, the analytical expression of the
Berry curvature of the valence band in the vicinity of valleys
is given as

�(k) = −ξ
mv2

F

2
(
k2v2

F + m2
)3/2 . (10)

As shown in Fig. 2(a), the Berry curvatures change sign for
the +K and −K valleys, so the Chern number of the valence
band C = 1

2π

∫
�(k)dk is zero as the Berry curvatures at the

two valleys exactly cancel out each other. However, in the case

of the TGB, the two inequivalent valleys K and K
′
in the MBZ

come from the same valley (but different layers) of the GMLs.
As shown in Fig. 2(b), the Berry curvatures have the same sign
for the K and K

′
valleys. Hence the Chern number of the flat

valence band in valley ξ = + is nonzero. Furthermore, around
the first magic angle, the topology of the flat bands is stable
during the process of the velocity sign changing. The main
reason is that the sign of any Berry curvature does not depend
on the sign of the velocity according to Eq. (10), so the Chern
number remains unchanged with the velocity sign changing.

FIG. 2. Schematic illustration of the band structures (black
dashed lines) and Berry curvatures (red solid lines) of a (a) GML and
(b) TGB of the valence bands in the vicinity of the Dirac points. (a) In
the GML, the Berry curvatures are negative in the +K valley but
positive in the −K valley, hence the total Berry phase vanishes. (b) In
the TGB, the Berry curvatures are negative for both K and K

′
valleys,

hence the total Berry phase is nonzero. The negative values come
from the fact that K and K

′
both come from the ξ = + valley of the

GMLs. For illustration only, we set m = m′ = 0.1 and vF = v′
F = 1.
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IV. NUMERICAL RESULTS OF BAND STRUCTURES
AND PHASE DIAGRAM

Unfortunately, the analytical approach cannot be general-
ized to the arbitrary Bloch vector k in the MBZ. It works only
around the K and K

′
points. Away from these points, taking �

point as an example, we can only obtain the eigenvalues from
Hamiltonian (1) numerically. Notice that the moiré potential
T (r) hybridizes the graphene’s eigenstates at q = k + n1G1 +
n2G2, where n1, n2 are integers and G1 = kθ (

√
3, 0), G2 =

kθ (
√

3/2, 3/2) are the reciprocal lattice vectors of the MBZ,
as shown in Fig. 1(c). Therefore, the Hamiltonian for a single
Bloch vector k in the MBZ owns the infinite dimensions. As
the low-energy states are expected to be dominated by the
GML eigenstates near the original Dirac points, we truncate
the Hamiltonian to the finite dimensions and just keep q
with |n1| � 4 and |n2| � 4 [42]. Then we numerically di-
agonalize the Hamiltonian and obtain the eigenenergies and
eigenstates.

Here we take vF = 3at/2, where t = 2.6 eV is the hopping
energy between the nearest-neighbor atoms on a graphene
layer. The moiré potential T (r), representing the interlayer
coupling, is controlled by the two parameters wAA and wAB,
which are slightly different in the real TGB. Earlier stud-
ies assumed wAA = wAB, which corresponds to a perfectly
flat TGB [20–22]. Afterwards, deepened theoretical research
predicted that the optimized lattice structure of the TGB is
actually corrugated in the out-of-plane direction. As a result,
the interlayer spacing is the widest in the AA stacking region
and the narrowest in the AB/BA stacking region. It makes
wAA a little smaller than wAB. As shown in a numerical work
[42], the difference between wAA and wAB makes sure that
the lowest bands at the magic angle are well separated from
other higher bands. In the following calculations, we take
wAA = 0.08 eV, wAB = 0.1 eV, and m1 = m2 = m.

Figure 3 shows the band structures of the TGB at the magic
angle θ = 1.05◦ for m = 0 and m = 2 meV, respectively. In
Fig. 3(a), the dispersion curves basically overlap with each
other while in the enlarged plot of the zero-energy region,
Fig. 3(b), the lowest flat bands indeed opens a full gap which is
one order smaller than the GML mass term. Away from the K
and K

′
points, the eigenenergy is slightly changed. The lowest

bands are about 7-meV wide in the energy axis and separated
from the excited bands by an energy gap about 16 meV in the
upper and lower sides. If the Fermi energy lies in one of these
gaps, the summation of the topological number associated
with the gap can be calculated using the TKNN formula [51]

C = i

A

∑
Eα〈EF

∑
Eβ 〉EF

〈α|∂H/∂kx|β〉〈β|∂H/∂ky|α〉 − c.c.

(Eα − Eβ )2
, (11)

where A is the area of the system and |α〉, |β〉 are the
eigenstates at momenta k below and above the Fermi en-
ergy, respectively. It is worth noticing that this number
is the summation of all the Chern numbers of the filling
bands. In Fig. 3(a), it is shown that if the Fermi energy
lies in the gaps above or below the lowest bands, we have
C = 0. However, if the Fermi energy lies in the gap be-
tween the lowest bands, i.e, EF = 0, we have C = −1. This

FIG. 3. (a) Energy band structure of the TGB at θ = 1.05◦ with
the GML mass term m = 0 (red lines) and m = 2 meV (black
lines; actually they can be seen only in the next enlarged figure.).
(b) Enlarged zero-energy region. The dashed lines represent the
Fermi energy in different gaps. The total Chern number is the sum
of all the Chern numbers below the Fermi energy. The inset shows
that the Chern number with EF = 0 does not change with twisted
angles.

indicates that the nonzero Chern number just comes from
the lowest bands, the valence band has the Chern number
C = −1 and the conduction band has the Chern number
C = 1. Furthermore, for EF = 0, we calculated the Chern
number with variation of the twisted angle, the results show
that the Chern number does not change with the twisted
angle varying from θ = 0.99◦ to θ = 1.35◦. The Chern num-
ber of each flat band in the TGB is very robust and no
topological phase transition occurs around the first magic
angle.

The numerical calculations agree well with the analytical
results in Sec. III. It means that the topology is mainly
controlled by the Berry curvature in the vicinity of the K
and K

′
points. According to the Berry curvature expression

in Eq. (10), the Chern number of the flat bands is only
controlled by the sign of the GML mass term. If the mass term
changes sign from +1 to −1, the Chern number of the flat
valence band will change sign from −1 to +1. Certainly these
states are both topologically nontrivial, but their chiralities
are opposite. It is no doubt that this chiral difference can
be verified experimentally by quantum Hall effect. The more
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FIG. 4. Phase diagram with the variation of the mass terms,
m1(2) for layer 1(2). The Chern number of the flat valence band
can have three values, C = 0,±1. The phase boundaries are de-
noted by two straight lines. The red line represents the equation
m1 + 3(1 − β2)m2 = 0 and the black line represents the equation
m2 + 3(1 − β2)m1 = 0. On these lines, the effective mass in the
vicinity of the K or K

′
point is zero. Numerical fitting of these lines

suggest that β = 0.76 which is very close to our parameter setting
β = 0.8.

interesting case is that the mass terms in the two layers are
made different from each other. This is feasible since a large
number of recent researches has shown that a band gap in a
GML can be produced via various ways, like substrate inter-
actions [52,53], hydrogen adsorption [54], spin-orbit coupling
[55], and uniaxial strains [56]. Would the topology of the flat
bands changes from nontrivial to trivial states or vice versa?
We numerically calculated this possibility where m1 and m2

are set as the different mass terms for layer 1 and layer 2,
respectively. For instance, if we let m1 = −m2, numerical
results show that the Chern number is exactly zero. This can
be understood from the viewpoint of the Berry curvature in the
vicinity of the K and K

′
points. Equation (10) shows that the

sign of the Berry curvature is only determined by the sign of
the effective mass at the Dirac points. If the effective masses
at different valley have opposite signs, the total Berry phase
cancels out for the entire MBZ.

For experimental realizations, one can introduce GML
gaps in different layers via a different mechanism, such as
strain engineering in one layer and substrate interaction in
the other [57]. To explore the possible topological phases in
the TGB by controlling the mass terms in separated layers,
we investigated the phase diagram with the variation of two
mass terms comprehensively. In Fig. 4 we can see that the
Chern number of the flat valence band has three values,
i.e, C = −1, C = 0, and C = −1. Like the GML, when the
effective mass of one Dirac point changes sign, the topology
will change from trivial to nontrivial or vice versa. Hence

the phase boundary is a line where the effective mass in the
vicinity of point K or K

′
is zero.

Let us modify Eq. (4) and solve it in the renewed situation.
Due to the corrugation in the TGB, wAA and wAB have
different values, we take wAA = βwAB where β = 0.8 in the
numerical calculations. Moreover, the two layers may have
different masses, then we note hk = h′

k + m1σz for layer 1 and
hk+q j

= h′
k+q j

+ m2σz for layer 2. Using the Dyson equation
and some simplification (see the Appendix), we have the final
form in the vicinity of the K point as[

Ek− 1 − 3α2

1 + 3(1 + β2)α2
h′

k− m1 + 3(1 − β2)m2

1 + 3(1 + β2)α2
σz

]
ψ0 =0,

(12)
where α = wAB/vFkθ . Equation (12) gives us three messages.
(1) The renormalized Fermi velocity can be modified by the
corrugation, however, the magic angle is not influenced by the
corrugation or the monolayer mass term. It is only determined
by the Fermi velocity vanishing condition 1 − 3α2 = 0, which
is controlled by the interlayer hopping parameter wAB in the
AB/BA stacking region. (2) The phase transition induced by
the monolayer mass term is also independent of the twisted
angle. It is only determined by the ratio wAA/wAB. This means
that similar topological phase transition can occur at other
twisted angles. (3) The effective mass in the vicinity of the
K point vanishes at m1 + 3(1 − β2)m2 = 0. Using the same
method, one can prove that the effective mass in the vicinity
of the K

′
point vanishes at m2 + 3(1 − β2)m1 = 0. These two

lines in Fig. 4 define the phase boundary which perfectly
matches with the numerical calculations.

V. ANALYSIS AND DISCUSSION

The stable and topologically nontrivial flat bands of the
TGB near the first magic angle rely on the fact that the
intervalley mixing is neglectable, then the continuum model
is correct and the total Hamiltonian can be block-diagonalized
into the two independent ξ = ± valleys. The K and K

′
valleys

in the MBZ come from the same valley of the two GMLs,
+K1,2 or −K1,2. When both of the GMLs have same topo-
logically trivial gap, i.e., their mass terms have same sign
for different valleys and layers, the Chern numbers of the flat
valence band in the TGB from ξ = + valley and ξ = − valley
have opposite signs. In this case, the TGB can be defined as
a valley Chern topological insulator (VCI), because the total
Chern number accounting for both valleys is zero. When only
one of the GMLs has a topologically nontrivial gap, i.e., the
mass term differs in the sign for different valleys, the Chern
number of the flat valence band in the TGB from one valley is
nonzero. In this situation, the TGB can be viewed as a Chern
valley insulator (CVI), because only one valley contributes
to the total Chern number. When both of the GMLs have
topologically nontrivial gaps, the TGB can be either a band
insulator (BI) or a Chern insulator (CI). All of the possible
cases are listed in Table I. It can be expected that these states
will show their different transport properties in electronics and
valleytronics.

The topology of the flat bands in a TGB at the first magic
angle is a cutting-edge topic. People are curious to know
whether the topology of the flat bands will influence the
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TABLE I. Topological states of twisted bilayer graphene with
the effective masses in two single layers. For simplicity, we assume
that the absolute values of the mass terms from different valleys and
layers are the same. They are only different in the sign. mξ

i stands for
the mass term from the valley ξ and the ith layer.

State VCI CVI BI CI

m+
1 + − + + − − + − + − + + − − + −

m+
2 + − + + − − − + − + − − + + + −

m−
1 + − + − + − + + − − + − + − − +

m−
2 + − − + − + + + − − − + − + − +

superconducting behavior of the TGB. The very first step
is to build an effective lattice model that exclusively de-
scribes the isolated flat bands near neutrality point. However,
the nonzero Chern number and various symmetries together
present an obstruction to construct well-localized Wannier
functions [29,41–43]. This Wannier obstruction can also be
understood as the lowest Landau level problem. A few works
[47,58] pointed out that the wave functions of the flat bands
in the TGB are reminiscent of the lowest Landau level wave
functions by omitting wAA term. An efficient way to overcome
this obstruction is to add more bands into consideration. One
can write a tight-binding model that produces multibands,
and tune parameters to make two isolated bands to have the
topology characteristic of the nearly flat bands of a single
valley of the TGB [29,43].

It was noted that the previous research did not take into
account the influence of wAA term on the topological property
of the lowest bands in the TGB, mainly based on two reasons.
One comes from the fact that, as we derived in Eq. (12),
the origin of the first magic angle is totally controlled by
the strength of wAB, it is legitimate to omit the wAA term
without changing the first magic angle. The other is that the
corrugation of the TGB mainly contribute to the separation
between the flat bands and the higher-energy bands, the value
of wAA is not interesting since its only function is to give us
the correct band structure.

In our work, we argue that the wAA term plays an important
role in understanding the topological property of the lowest
bands. In Fig. 4, we show that the topological phase bound-
aries are two straight lines, and the slopes of these lines are
only determined by the parameter β = wAA/wAB. If m1 and
m2 are fixed, the system can still undergos a topological phase
transition via the change of β. The analytical functions of
these lines m1(2) + 3(1 − β2)m2(1) = 0 give us two interesting
scenarios: if we set β = √

2/3 ≈ 0.82, then the two boundary
lines will merge into one which totally annihilate the topolog-
ical trivial phase (C = 0). In this case, any symmetry breaking
term will not destroy the topological nature of the flat bands.
This is unimaginable in the tight-binding model since the least
we can do is to give strong lattice on-site potentials and make
the system an atomic insulator (topological trivial state).

Another interesting case appears at β = √
4/3 ≈ 1.15, the

two boundary lines also merge into one but from the opposite
direction. In this case, the topologically nontrivial phase will
disappear. Recall the value β ≈ 0.8 in reality [29,42], it can
be confirmed that the topological nature of the flat band in

the TGB comes not only from the same chirality of the Dirac
nodes in each valley, but also from the corrugation tendency
in real materials. If the corrugation tendency reverses (the
interlayer spacing is the widest in the AB/BA stacking region
and the narrowest in the AA stacking region) or strong layer
coupling terms are introduced in the AA stacking region, we
will get topological trivial flat bands for most of the situation.

VI. CONCLUSION

In summary, we analytically solve the band structures in
the vicinity of the Dirac points in the MBZ by considering
monolayer mass terms. Using the Dyson equation, we deduce
an effective Hamiltonian in the vicinity of the K and K

′

points. We find that the effective Hamiltonian is equivalent
to the continuum model Hamiltonian of the GML with a
finite mass in the vicinity of the Dirac points. Hence we can
treat the topology of the flat band in the TGB as same as
in a GML. The topology is only determined by the sign of
effective mass term in the vicinity of the K and K

′
points. Our

analytical results show that the origin of the first magic angle
is totally controlled by the strength of the wAB term, while the
topological property of the flat bands is relevant to the wAA

term.
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APPENDIX: SUPPLEMENTARY DERIVATION TO EQ. (12)

Let us begin from Eq. (4). Including the corrugation effect
and mass difference for the two layers, Eq. (4) becomes⎛

⎝Ek − h1
k −

3∑
j=1

Tj
1

Ek − h2
k+q j

T †
j

⎞
⎠ψ0 = 0, (A1)

where h1(2)
k = h′

k + m1(2)σz. Using the Dyson equation,
1/(Ek − h2

k+q j
) can be expanded to the first order of (Ek −

h′
k − m2σz ) as

1

Ek − h′
k − m2σz − h′

q j

= −h′
q j

−1 − h′
q j

−1(Ek − h′
k − m2σz )h′

q j

−1
. (A2)

Then Eq. (A1) can be rewritten as⎡
⎣Ek − h′

k − m1σz +
3∑

j=1

Tjh
′
q j

−1T †
j

+
3∑

j=1

Tjh
′
q j

−1(Ek − h′
k − m2σz )h′

q j

−1T †
j

⎤
⎦ψ0 = 0.

(A3)
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Specifically, we have

Tj = wAB

(
β e−iφ j

eiφ j β

)
, (A4)

h′
q j

= vFkθ

(
0 e−iφq j

eiφq j 0

)
, (A5)

and

h′
k = vF

(
0 e−iφk

eiφk 0

)
, (A6)

where φ1 = 0, φ2 = 2π/3, φ3 = −2π/3, φq1
= −π/2, φq2

=
π/6, φq3

= 5π/6, and β = wAA/wAB = 0.8 in the main text.
Using the matrices (A4) to (A6), we can calculate the terms in
Eq. (A3) as

3∑
j=1

Tjh
′
q j

−1T †
j = 0, (A7)

3∑
j=1

Tjh
′
q j

−1Ekh′
q j

−1T †
j = 3(1 + β2)α2Ek, (A8)

3∑
j=1

Tjh
′
q j

−1h′
kh′

q j

−1T †
j = −3α2h′

k, (A9)

3∑
j=1

Tjh
′
q j

−1m2σzh
′
q j

−1T †
j = 3m2(1 − β2)σz, (A10)

where α = wAB/vFkθ . Combining these equalities, Eq. (A1)
is simplified to

{[1 + 3(1 + β2)α2]Ek − [m1 + 3m2(1 − β2)]σz

− (1 − 3α2)h′
k}ψ0 = 0. (A11)

It is Eq. (12) in the main text. If we set m1 = m2 = m and
β = 1, this equation will go back to Eq. (7).
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