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Molecule-electrode interfaces in molecular electronic junctions are prone to chemical reactions, structural
changes, and localized heating effects caused by electric current. These can be exploited for device functionality
or may be degrading processes that limit performance and device lifetime. We develop a nonequilibrium Green’s
function based transport theory in which the central region atoms and, more importantly, atoms on molecule-
electrode interfaces are allowed to move. The separation of timescales of slow nuclear motion and fast electronic
dynamics enables the algebraic solution of the Kadanoff-Baym equations in the Wigner space. As a result,
analytical expressions for dynamical corrections to the adiabatically computed Green’s functions are produced.
These dynamical corrections depend not only on the instantaneous molecular geometry but also on the nuclear
velocities. To make the theoretical approach fully self-consistent, the same time-separation approach is used to
develop expressions for the adiabatic, dissipative, and stochastic components of current-induced forces in terms
of adiabatic Green’s functions. Using these current-induced forces, the equation of motion for the nuclear degrees
of freedom is cast in the form of a Langevin equation. The theory is applied to model molecular electronic
junctions. We observe that the interplay between the value of the spring constant for the molecule-electrode
chemical bond and electronic coupling strength to the corresponding electrode is critical for the appearance
of structural instabilities and, consequently, telegraphic switching in the electric current. The range of model
parameters is identified to observe structurally stable molecular junctions as well as various different kinds of
current-induced telegraphic switching. The interfacial structural instabilities are also quantified based on current
noise calculations.
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I. INTRODUCTION

A molecular electronic junction is a single molecule chem-
ically bonded to two macroscopic electrodes. The struc-
tural flexibility of the organic framework makes the current-
induced atomic motion one of the most critical processes
to the performance of molecular electronic devices. Atomic
nuclei feel the tug of the tunneling electrons, which can induce
nonequilibrium excitations in the molecular vibrations [1–5],
atomic rearrangements and rotations [6,7], as well as large-
scale current-driven conformational changes such as chemical
reactions [6,8–12], bond ruptures [13,14], telegraphic switch-
ing between multiple geometries [15–22], and structural in-
stabilities [23–29]. Current-induced forces exerted by out-of-
equilibrium electrons on nuclei result in heating within the
system, consequently straining molecular bonds and decreas-
ing the functionality and lifespan of the system. The structural
instabilities and switching between different conformations
introduced by these interactions can be detrimental to the
performance of a nanoscale system. From another perspective,
the small size and high sensitivity of nanoscale junctions re-
sult in the capability of utilizing the current-induced forces as
a mechanism for satisfying specific tasks: such as a molecular
switch, mass and charge sensors, as well as nanoscale motors
[30]. Moreover, the ability to directly manipulate temperature
within the system using quantum mechanical effects such as
quantum backaction enables new ways of quantum control of
nanomechanical systems [31].

One observed consequence of the sensitivity of a molecular
junction to the voltage bias is voltage-induced breakage due
to quantum heating: molecular junctions can rarely sustain
experimentally more than 1–2 V of applied voltage bias
[32,33]. In molecular junctions, the energy of the flowing
current is dispersed by inelastic scattering of electrons through
the system. There is a delicate balance between the heating
due to inelastic processes and heat dissipation within molec-
ular systems; if a molecular junction is allowed to get too
hot, instabilities, and bond breakages can occur. The absence
of the fluctuation-dissipation theorem, which balances these
energy gain and loss processes in equilibrium, complicates
considerably the theoretical consideration [12,34,35].

Another experimental manifestation of the current-induced
forces in molecular junctions is the telegraph noise, which
is the stochastic switching over time between two different
values of the electric current. Numerous studies of molecular
junctions have observed a discrete switching between two or
more states in the system, which can be observed via analysis
of the measured time evolution of the current through the
system [15–18,20]. While the exact source of telegraph noise
in molecular junctions depends on the particular experimental
configuration, it is usually due to either dynamic switching
between two different conformations of the molecular bridge
or, more often, due to bond fluctuations of the metal-molecule
contact. The telegraph noise is heavily influenced by the pres-
ence of inelastic interactions between the tunneling electrons
and nuclear degrees of freedom within the junction, which can
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provide the energy required for conformational changes. In
order to ensure the stability of the current-voltage properties
of a given molecular junction, we would generally like to
avoid these fluctuations between states which may have un-
foreseen effects. However, perhaps the existence of telegraph
noise for specific systems may enable them to replicate certain
functions of electric circuits due to their inherent molecular
properties [20].

Many theoretical approaches have been developed to deal
with nuclear dynamics in molecular junctions, which gen-
erally fall into two categories. The first is typically based
on treating nuclear motion as quantum harmonic vibra-
tions around equilibrium and assuming linearized electron-
vibration coupling. Then either a master equation based
method [36–45] or a NEGF method [1,2,2,5,46–50] is used
to describe the system. Most theoretical methods in the first
category assume that the amplitudes of nuclear motion are
small and nuclei vibrate harmonically about the zero-current
equilibrium geometry. Furthermore, they require that either
electron-vibration coupling or molecule-electrode interaction
should be small, allowing for a perturbative treatment. A very
promising approach was recently proposed by Kantorovich
[51]; in his work the atomic displacement was considered
quantum mechanically with respect to a classical trajectory,
enabling for the consideration beyond the simple vibrational
motion around a fixed geometry.

The second approach has gained significant attention re-
cently; it is based on the nonequilibrium Born-Oppenheimer
approximation—nonequilibrium quantum electrons exert
nonconservative stochastic forces on the nuclear degrees of
freedom, which are treated classically [11,12,24,29,34,35,52–
61]. It does not assume that the amplitude of nuclear motion
is small or harmonic, nor is it required that the electron-
vibration interaction be treated as small or linear in nuclear
displacement. However, the significant drawback of the ap-
proach is the reliance on the classical description of nuclear
degrees of freedom. This approach casts the stochastic nuclear
dynamics in the form of a Langevin equation. There are a
number of varying methods for calculating the friction tensor
and random force which are the main ingredients of the
Langevin equation. These include the use of NEGF methods
[35,54,56,62–68], which we will also employ in this paper, as
well as scattering theory approaches [34,35,69,70], path inte-
gral methods, and influence functional methods [61,71,72].

With a handful of exceptions [14,54,56,60,65,73,74], all
these theoretical approaches largely focus on nuclear motion
localized in the central region; however, the motion at the
molecule-electrode interface is at least equally important.
Large amplitude conformational changes such as chemical
reactions, switching between different geometries, localized
heating, and electromigration of atoms predominantly occur
on the interface in molecular electronic junctions. Our goal
is to derive a Langevin equation to describe the dynamics
of nuclear motion on molecule-electrode interfaces and then
utilize computational simulations to provide insight on the
impacts of nuclear motion on the measured current noise
through the system with relevance to physical applications.
To this end, we do not only obtain the Langevin equation
with all parameters fully determined from adiabatic Green’s
functions, but also solve approximately the time-dependent

Kadanoff-Baym equations along the generated stochastic tra-
jectory. The solution of the Kadanoff-Baym equations makes
use of the Wigner space and gradient expansion methods to
separate fast electronic and slow nuclear timescales. As a
result, we have produced a theory where the nuclear motion
on molecule-electrode interfaces and electronic dynamics is
treated self-consistently.

The paper is organized as follows. Section II describes the
theory: solution to the Kadanoff-Baym equations, derivation
of dynamical corrections to the current, and also derivation
of all components of the current-induced forces in terms of
NEGF. The physical model and the results of calculations
are presented in Sec. III. The conclusions of the paper are
summarized in Sec. IV. The technical details of electronic
diffusion coefficient derivation is relegated to the Appendix.
We use atomic units throughout the paper, both in derivations
and in the calculations (h̄ = e = 1).

II. THEORY

A. Hamiltonian

Let us consider the general tunneling Hamiltonian which
describes a molecular junction

H (t ) = HM (t ) + HL + HR + HLM (t ) + HRM (t ) + Hcl (t ).
(1)

Here HM is the time-dependent Hamiltonian for the molecule,
HL is the Hamiltonian for the left lead, and HR is the Hamil-
tonian for the right lead. The terms HLM and HRM are time
dependent and describe the tunneling of electrons between the
molecule and the left and right leads, respectively. Hcl (t ) is
the classical Hamiltonian, which describes the time-evolving
molecular geometry.

We assume that the molecule contains noninteracting elec-
trons and is described by some quadratic Hamiltonian

HM (t ) =
∑

i j

hi j (t )d†
i d j . (2)

Here d†
i and d j are fermionic creation and annihilation opera-

tors for single-particle states localized in the molecular space;
hi j is the corresponding matrix elements of the molecular
Hamiltonian. The left and right leads of the molecular junction
are macroscopic reservoirs of noninteracting electrons

HL + HR =
∑
kα

εkαa†
kα

akα, (3)

where a†
kα

creates an electron in the single-particle state k of
the α = L/R (left/right) lead with energy εkα , and akα is the
corresponding electron annihilation operator. The tunneling
interaction is

HLM (t ) + HRM (t ) =
∑
kαi

vkαi(t )a†
kα

ai + H.c. (4)

where the tunneling amplitudes vkαi(t ) are time-dependent
tunneling amplitudes.

We assume that the time-dependent trajectory of atomic
coordinates including atoms on the molecule-lead interfaces,
x(t ), is a classical variable. To simplify the notation, we
take x(t ) as a scalar rather than a multidimensional vector
throughout derivations in the paper, but all our results can
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be readily extended to the case of many classical variables.
Therefore, the classical Hamiltonian Hcl is

Hcl (t ) = p2

2m
+ U (x), (5)

where p is the classical momentum, m is the mass associated
with the classical degree of freedom, and U (x) is the potential.

The molecular Hamiltonian HM (t ) as well as the tunneling
molecule-lead interactions HLM (t ) and HRM (t ) depend on time
through the dependence on the molecular junction geometry
x(t ). Therefore, for example, HM (t ) means HM (x(t )).

B. Nonadiabatic expansion of Kadanoff-Baym
equations in Wigner space

The basic building blocks in our derivation are nonadia-
batic (exact) retarded, advanced, and lesser molecular Green’s
functions, calculated with a fully time-dependent Hamiltonian
along a given trajectory x(t ):

GR
i j (t, t ′) = −iθ (t − t ′)〈{di(t ), d†

j (t ′)}〉, (6)

GA
i j (t, t ′) = (

GR
ji(t

′, t )
)†

, (7)

and

G<
i j (t, t ′) = i〈d†

j (t ′)di(t )〉. (8)

These Green’s functions are computed using a system of
coupled Kadanoff-Baym equations of motion (note that we
consider the retarded and advanced equations collectively)
[75]

(i∂t − h(t ))GR/A(t, t ′)

= δ(t − t ′) +
∫

dt1�
R/A(t, t1)GR/A(t1, t ′), (9)

and

(i∂t − h(t ))G<(t, t ′)

=
∫

dt1(�R(t, t1)G<(t1, t ′) + �<(t, t1)GA(t1, t ′)). (10)

The Green’s function, Hamiltonian h, and self-energies are
written in the Kadanoff-Baym equations as matrices in molec-
ular space and the molecular orbital indices are omitted here
and in the subsequent derivations for brevity. Here h(t ) means
h(x(t )).

To transform these equations into the Wigner space, we
define the central time T and relative time τ as

T = 1
2 (t + t ′), (11)

and

τ = t − t ′, (12)

and introduce the Wigner transform of an arbitrary Green’s
function component

G̃(T, ω) =
∫

dτeiωτG(t, t ′). (13)

The inverse Wigner transform from the Wigner space to the
time domain takes the form

G(t, t ′) = 1

2π

∫
dωe−iωτ G̃(T, ω). (14)

Applying the Wigner transform to both sides of (9) and (10)
yields the Kadanoff-Baym equations of motion in the Wigner
space (

ω + i

2
∂T − e

1
2i ∂

G
ω ∂h

T h(T )

)
G̃R/A(T, ω) = I

+ e
1
2i (∂�

T ∂G
ω −∂�

ω ∂G
T )�̃R/A(T, ω)G̃R/A(T, ω), (15)

and(
ω + i

2
∂T − e

1
2i ∂

G
ω ∂h

T h(T )

)
G̃<(T, ω)

= e
1
2i (∂�

T ∂G
ω −∂�

ω ∂G
T )(�̃R(T )G̃<(T, ω) + �̃<(T, ω)G̃A(T, ω)).

(16)

The equations of motion in the Wigner space are solved by
treating the time derivatives with respect to the central time as
a small parameter. This treatment means that we treat changes
in the self-energies and Green’s functions as slow with respect
to central time and fast with respect to relative time. Central
time dependence arises through the classical variable x(t ) and
so the slow variation with respect to central time is associated
with slow nuclear dynamics. The relative time is associated
with the electronic timescale and, in our case, the character-
istic tunneling time for the electron to transport across the
molecule. Therefore the small parameter in our theory will
be the ratio between the characteristic timescales of nuclear
motion and electron tunneling. The tunneling timescale can be
estimated as 1/� where � is the molecular level broadening
due to the molecule-lead coupling. The timescale for nuclear
dynamics is given by 1/� where � is the characteristic
frequency for nuclear motion. Therefore the small parameter
in our theory is �

�
.

The solution described below follows closely the ideas of
previous authors [35,56–59,65]. The exponential operators in
Eqs. (15) and (16) are expanded up to the first order in the
time derivatives, where we result in a truncated equation of
motion for the retarded, advanced, and lesser components of
the Green’s functions(

ω + i

2
∂T −

[
1 + 1

2i
∂G
ω ∂h

T

]
h

)
G̃R/A

= I + �̃R/AG̃R/A + 1

2i

(
∂�

T ∂G
ω − ∂�

ω ∂G
T

)
�̃R/AG̃R/A, (17)

and (
ω + i

2
∂T −

[
1 + 1

2i
∂G
ω ∂h

T

]
h

)
G̃<

= �̃RG̃< + �̃<G̃A + 1

2i

(
∂�

T ∂G
ω − ∂�

ω ∂G
T

)
× (�̃RG̃< + �̃<G̃A). (18)

Here the function notation of the self-energies and Green’s
functions have been suppressed for brevity. We now solve
each of the equations above separately: first considering
the retarded/advanced equation of motion followed by the
lesser equation. Finding solutions with the derivatives up to
the first order requires perturbative expansions of both the
Green’s functions and self-energies. In doing so, we expand
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all Green’s function and self-energy components into a power
series in terms of the small parameter:

G̃ = G̃(0) + G̃(1) + O

(
�

�

)2

, (19)

and

�̃ = �̃(0) + �̃(1) + O

(
�

�

)2

. (20)

Here the terms G̃(0) and �̃(0) depend on the instantaneous
nuclear geometry x(t ) only, while G̃(1) and �̃(1) depend on the
nuclear geometry and are linear in velocities ẋ(t ).

Substituting (19) and (20) into (17) and splitting the equa-
tion based on order results in the equations

(ω − h)G̃R/A
(0) = I + �̃

R/A
(0) G̃

R/A
(0) , (21)

and

(ω − h)G̃R/A
(1) − 1

2i
∂T G̃R/A

(0) − 1

2i
∂T h∂ωG̃R/A

(0)

= �̃
R/A
(0) G̃

R/A
(1) + �̃

R/A
(1) G̃

R/A
(0)

+ 1

2i

(
∂�

T ∂G
ω − ∂�

ω ∂G
T

)
�̃

R/A
(0) G̃

R/A
(0) . (22)

The equation for the zeroth order is easily solved to give

G̃R/A
(0) = (

ω − h − �̃
R/A
(0)

)−1 = GR/A, (23)

which is the standard, adiabatic retarded/advanced Green’s
function GR/A. Considering now the first order equation of
motion (22), we rearrange in terms of G̃R/A

(1) to obtain

G̃R/A
(1) = GR/A�̃

R/A
(1) GR/A

+ 1

2i
GR/A(AR/A∂T + BR/A∂ω )GR/A. (24)

Here we have defined the quantities AR/A = I − ∂ω�̃
R/A
(0) and

BR/A = ∂T h + ∂T �̃
R/A
(0) in the interest of brevity, a convention

that will be used for the remainder of this derivation.
The first order Green’s function derivatives are found to be

∂ωGR/A = −GR/AAR/AGR/A, (25)

and

∂T GR/A = GR/ABR/AGR/A. (26)

This enables us to simplify (24) to

G̃R/A
(1) = GR/A�̃

R/A
(1) GR/A

+ 1

2i
GR/A[AR/AGR/A,BR/AGR/A]−. (27)

Notice that the Green’s functions, self-energies, and their
derivatives will become scalars for transport in the single
molecular energy level case and therefore the commutator
term will vanish.

We now consider the equation of motion for the lesser
Green’s function which is given by (18). The expansions (19)
and (20) are substituted into (18) and, as before, split based on
order to give

(ω − h)G̃<
(0) = �̃R

(0)G̃<
(0) + �̃<

(0)G
A, (28)

and

(ω − h)G̃<
(1) + i

2
∂T G̃<

(0) + i

2
∂T h∂ωG<

= �̃R
(0)G̃<

(1) + �̃<
(0)G̃A

(1) + �̃R
(1)G̃<

(0) + �̃<
(1)G

A

+ 1

2i

(
∂�

T ∂G
ω − ∂�

ω ∂G
T

)(
�̃R

(0)G̃<
(0) + �̃<

(0)G̃A
(0)

)
. (29)

The zeroth order equation is easily solved to give

G̃<
(0) = GR�̃<

(0)G
A = G<, (30)

which is again the standard expression for the adiabatically
computed lesser Green’s function G<. Considering now the
first order equation, we first compute explicit expressions for
the lesser Green’s function derivatives:

∂ωG< = −GRARG< − G<AAGA + GR∂ω�̃<
(0)G

A, (31)

and

∂T G< = GRBRG< + G<BAGA + GR∂T �̃<
(0)G

A. (32)

By substituting these expressions into (29) and rearranging
the equation in terms of G̃<

(1), we find

G̃<
(1) = GR�̃<

(0)G̃A
(1) + GR�̃<

(1)G
A + GR�̃R

(1)G
<

+ 1

2i
[GRAR, GRBR]−G< + 1

2i
GR

(
ARG<BA

+ARGR∂T �̃<
(0) + BRGR∂ω�̃<

(0) + H.c.
)
GA. (33)

It remains to calculate the expressions for our self-energies.
Beginning with our general definition for the self-energy in
real time, we then apply the Wigner transform which allows
us to extract an adiabatic case along with our first nonadiabatic
correction. The exact self-energy computed in real time is [75]

�(ct, c′t ′) =
∑
kα

vckα (t )G0,kα (t, t ′)vkαc′ (t ′), (34)

where G0,kα (t, t ′) is the noninteracting Green’s functions for
the separated leads. Application of the Wigner transform to
(34) yields

�̃(c, c′) =
∑
kα

e
1
2i (∂v

T −∂v′
T )∂G

ω vckα (T )G̃0,kα (T, ω)vkαc′ (T ),

(35)

where we have used ∂v
T and ∂v′

T to denote the central-time
derivative with respect to vkαc and vkαc′ , respectively. Ex-
pansion of the above exponential enables us to partition the
equation into orders of magnitude of ∂T such that we find our
adiabatic self-energy and corrections as

�̃(0)(c, c′) =
∑
kα

vckα (T )G̃0,kα (T, ω)vkαc′ (T ), (36)

and

�̃(1)(c, c′) = ẋ

2i
∂ω(
̃(0)(T, ω) − �̃(0)(T, ω)). (37)

Here we have introduced the self-energy-like quantities:


cc′ (t, t ′) =
∑
kα

�ckα (t )G0,kα (t, t ′)vkαc′ (t ′), (38)
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and

�cc′ (t, t ′) =
∑
kα

vckα (t )G0,kα (t, t ′)�kαc′ (t ′), (39)

where 
̃ and �̃ are their respective Wigner transformations.
The derivative of the tunneling amplitude with respect to our
classical coordinate is defined as

�kαc = ∂vkαc

∂x
. (40)

By enacting an equivalent derivation as for the self-energy,
we can decompose these new quantities into an adiabatic term
and a first-order correction as given by:


̃(0)(c, c′) =
∑
kα

�ckα (T )G̃0,kα (T, ω)vkαc′ (T ), (41)

�̃(0)(c, c′) =
∑
kα

vckα (T )G̃0,kα (T, ω)�kαc′ (T ), (42)


̃(1)(c, c′) = ẋ

2i

(
∂2

xω
̃(0)(c, c′) − 2∂ω�̃(0)(c, c′)
)
, (43)

and

�̃(1)(c, c′) = − ẋ

2i

(
∂2

xω�̃(0)(c, c′) − 2∂ω�̃(0)(c, c′)
)
, (44)

where

�̃(0)(c, c′) =
∑
kα

�ckα (T )G̃kα (T, ω)�kαc′ (T ). (45)

C. Dynamical corrections to time-dependent electric current

In Sec. II B, we obtained first-order dynamical corrections
to the retarded, advanced, and lesser central region Green’s
functions. Let us now obtain an expression for the current that
includes first order dynamical corrections due to the motion
of interfacial atoms. We begin with the general expression for
the electric current flowing into the molecule from the α lead
at time t [75]:

Iα (t ) =
∫

dt1Tr
{
G<(t, t1)�A

α (t1, t ) + GR(t, t1)�<
α (t1, t )

−�A
α (t, t1)G<(t1, t ) − �<

α (t, t1)GR(t1, t )
}
. (46)

To facilitate a transformation to the Wigner space, we
introduce the two-time function Iα (t, t ′)

Iα (t, t ′) =
∫

dt1Tr
{
G<(t, t1)�A

α (t1, t ′) + GR(t, t1)�<
α (t1, t ′)

−�A
α (t, t1)G<(t1, t ′) − �<

α (t, t1)GR(t1, t ′)
}
, (47)

which becomes the electric current if t = t ′

Iα (t, t ) = Iα (t ). (48)

A transformation into the Wigner space yields

Ĩα = Tr
{
e

1
2i (∂G

T ∂�
ω −∂G

ω ∂�
T )(G̃<�̃A

α + G̃R�̃<
α

)
− e

1
2i (∂�

T ∂G
ω −∂�

ω ∂G
T ) (�̃<

α G̃A + �̃R
α G̃<

)}
. (49)

Following the ideas of the previous section, we now expand
the exponential operators up to the first order, along with
including our nonadiabatic corrections to the Green’s func-
tions and self-energies. We then perform an inverse Wigner

transform back to real time, in which we set t = t ′. This
yields the equation for our current in real time in terms of an
adiabatic component and a first order correction. The adiabatic
component is found to be

I (0)
α = 1

2π

∫
dω Tr

{
G<�̃A

α(0) + GR�̃<
α(0)

− �̃<
α(0)G

A − �̃R
α(0)G

<
}
, (50)

while the first order correction is given by

I (1)
α = 1

2π

∫
dω Tr

{
G̃<

(1)�̃
A
α(0) + G̃R

(1)�̃
<
α(0)

− �̃<
α(0)G̃A

(1) − �̃R
α(0)G̃<

(1) + G̃<
(0)�̃

A
α(1)

+ G̃R
(0)�̃

<
α(1) − �̃<

α(1)G̃A
(0) − �̃R

α(1)G̃<
(0)

+ 1

2i

(
∂T G<∂ω�̃A

α(0) − ∂ωG<∂T �̃A
α(0) + ∂T GR∂ω�̃<

α(0)

− ∂ωGR∂T �̃<
α(0) + ∂T �̃<

α(0)∂ωGA − ∂ω�̃<
α(0)∂T GA

+ ∂T �̃R
α(0)∂ωG< − ∂ω�̃R

α(0)∂T G<
)}

. (51)

We can simplify (50) and (51) by utilizing the following
identities: (

G̃R
(0,1)

)† = G̃A
(0,1), (G<)† = −G<, (52)

and (
�̃R

(0,1)

)† = �̃A
(0,1),

(
�̃<

(0,1)

)† = −�̃<
(0,1). (53)

Our final general expressions for the current are then given by

I (0)
α = 1

π

∫
dω ReTr

{
G<�̃A

α(0) + GR�̃<
α(0)

}
, (54)

and

I (1)
α = 1

2π

∫
dω Tr

{
G̃<

(1)�̃
A
α(0) − �̃R

α(0)G̃<
(1)

}
+ 1

π

∫
dω ReTr

{
G̃R

(1)�̃
<
α(0) + G̃<

(0)�̃
A
α(1) + G̃R

(0)�̃
<
α(1)

+ 1

2i

(
∂T G<∂ω�̃A

α(0) − ∂ωG<∂T �̃A
α(0) + ∂T GR∂ω�̃<

α(0)

− ∂ωGR∂T �̃<
α(0)

)}
. (55)

D. Current-induced forces: Adiabatic, viscous,
and random component

We have obtained analytical solutions to the Kadanoff-
Baym equations for Green’s functions as functions of in-
stantaneous positions and velocities. Therefore, for any given
trajectory we know how to compute all system observables.
Our aim here is to derive a Langevin-like equation to obtain
the stochastic trajectory for the molecular junction geometry
x = x(t ). Our derivation follows the ideas introduced by von
Oppen et al. [35], then later expanded upon by Subotnik and
Dou [56,65].

The derivation starts on a purely quantum-mechanical
footing, by considering quantum position and momentum
operators (x̂ and p̂) which correspond to the classical variable
x. The Heisenberg equation of evolution for the momentum
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operator gives the expression for the quantum force

f̂ (t ) = i[Ĥ (t ), p̂]−, (56)

where Ĥ (t ) is the full Hamiltonian of the system. Note that
in contrast to previous sections, we have been careful to make
explicit the operator notation so that the quantum and classical
quantities are easily distinguishable. In the coordinate repre-
sentation, p̂ = −ih̄∂x; therefore

f̂ (t ) = −∂xĤ (t ), (57)

which when making a substitution for Ĥ (t ) (1) becomes

f̂ (t ) = −U ′ − ∂xĤM (t ) − ∂xĤLM (t ) − ∂xĤRM (t ), (58)

where we have added the classical potential U to the Hamilto-
nian where U ′ = ∂xU . Making a substitution for each Hamil-
tonian results in

f̂ (t ) = −U ′ −
∑

i j

∂xhi j â
†
i â j −

∑
kαi

(�ikα â†
i âkα+�kαiâ

†
kα

âi ),

(59)
where the quantity � is given by (40). First, we compute the
average of the force operator at time t and then we introduce
the stochastic fluctuations around this average. The force
exerted by electrons is

F̂ = f̂ + U ′ (60)

and its average can be conveniently expressed in terms of
Green’s functions

F (t ) = i
∑

i j

∂xhi j (t )G<
ji (t, t ) + i

∑
kαi

(�ikα (t )G<
kαi(t, t )

+�kαi(t )G<
ikα (t, t )). (61)

We now introduce our auxiliary two-time function F (t, t ′) as

F (t, t ′) = i
∑

i j

∂xhi j (t )G<
ji (t, t ′) + i

∑
kαi

(�ikα (t )G<
kαi(t, t ′)

+�kαi(t )G<
ikα (t, t ′)), (62)

which has the property F (t, t ) = F (t ). As previously, we first
utilize the Dyson equation for our Green’s functions spanning
the molecular space and the leads. In doing so, we express
F (t, t ′) in terms of molecular space quantities:

F (t, t ′) = i
∑

i j

∂xhi jG<
ji (t, t ′)

+ i
∑

i j

∫
dt1

(
G<

i j (t, t1)�A
α, ji(t1, t ′)

+GR
i j (t, t1)�<

α, ji(t1, t ′) + 
<
α,i j (t, t1)GA

ji(t1, t ′)

+
R
α,i j (t, t1)G<

ji (t1, t ′)
)
, (63)

where our self-energy-like quantities (39) and (38) have ap-
peared once again in the equation. Taking a trace over the
molecular states and performing a transformation into the
Wigner space yields

F̃ = Tr
{
ie

1
2i ∂

h
T ∂G

ω ∂xhG̃< + ie
1
2i (∂


T ∂G
ω −∂


ω ∂G
T )(
̃<G̃A + 
̃RG̃<)

+ ie
1
2i (∂G

T ∂�
ω −∂G

ω ∂�
T )(G̃<�̃A + GR�̃<)

}
. (64)

Now, by taking the inverse Wigner transform and letting
t = t ′ such that F (t, t ) = F (t ), we decompose our classical
force into an adiabatic component and a velocity-dependent
correction (which will correspond to our viscosity force). The
adiabatic component of the force is given by

F(0)(t ) = Tr

{
1

2π

∫
dωi∂xhG<

− 1

π

∫
dωIm

(

̃<

(0)G
A + 
̃R

(0)G
<
)}

, (65)

while the velocity dependent first order component is given by

F(1)(t ) = Tr

{
1

2π

∫
dω

(
i∂xhG̃<

(1) + v

2
∂2

x h∂ωG<

)

+ i

2π

∫
dω

(

̃<

(1)G
A + 
̃R

(1)G
< + 
̃<

(0)G̃A
(1)

+ 
̃R
(0)G̃<

(1) + G<�̃A
(1) + GR�̃<

(1)

+ G̃<
(1)�̃

A
(0) + G̃R

(1)�̃
<
(0)

)
+ 1

4π

∫
dω

(
∂T 
̃<

(0)∂ωGA + ∂T 
̃R
(0)∂ωG<

− ∂ω
̃<
(0)∂T GA − ∂ω
̃R

(0)∂T G<

+ ∂T G<∂ω�̃A
(0) + ∂T GR∂ω�̃<

(0)

− ∂ωG<∂T �̃A
(0) − ∂ωGR∂T �̃<

(0)

)}
. (66)

We note that the second term reduces to zero as∫ ∞

−∞
dω∂ωG< = 0. (67)

This can be further simplified through the use of (52) along
with the following identity:(

�̃R
(0,1)

)† = 
̃A
(0,1). (68)

Our final expression for the velocity-dependent force is then
given by

F(1)(t ) = Tr

{
1

2π

∫
dωi∂xhG̃<

(1)

+ i

2π

∫
dω

(

̃R

(0)G̃<
(1) + G̃<

(1)�̃
A
(0)

)
− 1

π

∫
dωIm

[

̃<

(1)G
A + 
̃R

(1)G
< + 
̃<

(0)G̃A
(1)

]
+ 1

2π

∫
dωRe

[
∂T 
̃<

(0)∂ωGA + ∂T 
̃R
(0)∂ωG<

− ∂ω
̃<
(0)∂T GA − ∂ω
̃R

(0)∂T G<
]}

. (69)

This expression is linear in velocity ẋ and results in the
viscosity force in the Langevin equation for x(t ).

To complete the Langevin equation, we need to define
the diffusion coefficient as a time correlation of the force
variations

〈δF̂ (t )δF̂ (t ′)〉 = Dδ(t − t ′), (70)
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where

δF̂ (t ) = F̂ (t ) − 〈F̂ (t )〉. (71)

Through a tedious derivation, one can compute an explicit
expression for the diffusion coefficient, a derivation that has
been relegated to Appendix. One can show that

D(x) = 1

2π

∫
dωTr

{
∂xhG>∂xhG< + G>�̃<

(0) + �̃>
(0)G

<

+ 2Re

[(
∂xh + 
̃R

(0) + �̃A
(0)

)(
G<
̃>

(0)G
A+G>
̃<

(0)G
A
)

+
(

∂xh + 
̃R
(0) + 1

2
�̃A

(0)

)
G>
̃R

(0)G
<

+
(

∂xh + 1

2
�̃A

(0)

)
G<
̃R

(0)G
> + 
̃>

(0)G
A
̃<

(0)G
A

]}
.

(72)

The adiabatic force (65), viscous force (69), and diffusion
coefficient (72) are the main results of this section and will
be used for modeling in subsequent sections. Our derivation
of the viscous force (69) and diffusion coefficient (72) implies
the Markovian approximation. That means that the friction
at time t is proportional to the velocity at the same time
and that the noise of the random force (70) is delta-function
correlated.

III. RESULTS

A. Model

The molecular bridge is modeled by a single molecular
orbital with energy ε(x) as

HM = ε(x)d†d, (73)

where x is a classical time-dependent coordinate. In our case x
models a bond length between the molecule and the left lead.
This x dependence of the molecular orbital comes from the
voltage drop across the junction

ε(x) = ε0 + E (x − x0) + V0, (74)

where

E = (μL − μR)/(LL − LR), (75)

is the electric field across the junction and

V0 = μL − LL(μL − μR)/(LL − LR). (76)

is the x-independent energy level shift. Here we use LL and
LR to denote the positions of the left and right leads, while
μL and μR are the left and right lead chemical potentials.
The equilibrium bond length is denoted by x0. The applied
voltage bias V will be applied symmetrically μL = V/2 and
μR = −V/2 in all our calculations.

We assume that the coupling to the right electrode is rigid
and the coupling to the left depends on the bond length:

vkα (x) =
{
vLs(x), if α = L
vR, if α = R

(77)

where the function s(x) is taken in the form of the overlap
between two 1s orbitals separated by distance x as given by

s(x) = e−x(1 + x + x2/3), (78)

and vL and vR are two constants. This choice of coordinate de-
pendence mimics the behavior of a generic isotropic chemical
bond [76].

We assume that the coupling to the left lead is time depen-
dent and the time dependence comes from the variations of
the bond length between the molecule and the left lead. The
choice of the left electrode is completely arbitrary; we can
choose the linkage to the right electrode to be time dependent
as well.

We will use the wide-band approximation for the leads and,
in this limit, the leads self-energy components become

�̃A
(0)L(T ) = i

2
�Ls2(T ), �̃A

(0)R = i

2
�R, (79)

�̃R
(0)L(T ) = − i

2
�Ls2(T ), �̃R

(0)R(T ) = − i

2
�R, (80)

and

�̃<
(0)L(T, ω) = i fL(ω)�Ls2(T ), �̃<

(0)R(T, ω) = i fR(ω)�R.

(81)
Here s(T ) = s(x(T )) and we have introduced the standard
level broadening function

�α = 2π |vα|2ρα, (82)

where ρα is the density of single-particle states in lead α.
Notice that the retarded/advanced self-energies for the left
lead have lost their energy dependence on ω in the wide-band
limit and retarded/advanced self-energies for the right lead
become constants.

In the considered case of electron transport through a single
resonant level, the expressions for the nonadiabatic correc-
tions can be further simplified since the Green’s functions
and self-energies are no longer matrices, in addition to the
wide-band approximation killing some derivatives. The first
order correction to the lesser Green’s function becomes

G̃<
(1) = −iGRRe

[
G<BA + GR∂T �̃<

(0) + BRGR∂ω�̃<
(0)

]
GA.

(83)

It is expressed in terms of standard adiabatic [instantaneously
computed along the nuclear trajectory x(t )] Green’s functions

GA/R = (ω − ε − �̃A/R)−1, G< = GR�̃<GA. (84)

The adiabatic electric current is

I (0)
α (t ) = 1

π

∫
dωRe

[
G<�̃A

α(0) + GR�̃<
α(0)

]
, (85)

while the first order velocity-dependent nonadiabatic correc-
tion to the electric current is

I (1)
α (t ) = 1

π

∫
dω Re

[
G̃<

(1)�̃
A
(0)

]
+ 1

2π

∫
dωIm[∂T GR∂ω�̃<

(0) − ∂ωGR∂T �̃<]. (86)

The adiabatic force is
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FIG. 1. (a) Diffusion coefficient D(x) and (b) viscosity ξ (x) as functions of nuclear position computed for different values of the applied
voltage and with resonant energy level set to zero ε0 = 0; (c) viscosity ξ (x) as a function of bond length computed for different resonant-level
energies ε0 at voltage V = 0.06.

F(0)(t )= iE
2π

∫
dωG<− 1

π

∫
dωIm

[

̃<

(0)G
A + 
̃R

(0)G
<
]
,

(87)

and the dissipative force is given by

F(1)(t ) = iE
2π

∫
dωG̃<

(1) − 1

π

∫
dωIm

[

̃R

(0)G̃<
(1) + 
̃<

(1)G
A
]

+ 1

2π

∫
dωRe

[
∂T 
̃<

(0)∂ωGA − ∂ω
̃<
(0)∂T GA

]
.

(88)

Finally, the diffusion coefficient is

D(x) = 1

2π

∫
dω(E2G>G< + G>�̃< + �̃>G<

+2Re[E (G<
̃>GA + G>
̃<GA + 2G>
̃RG<)

+ 
̃>GA
̃<GA]). (89)

The time evolution of the bond length x is given by the
Langevin equation

mẍ = −U ′ + F(0)(t ) + ζ (x)ẋ + δF (t ). (90)

Here, the adiabatic force F(0)(t ) is given by Eq. (87), the
electronic viscosity ζ (x) is defined from velocity dependent
contribution to the force (88) as

ξ (x) = −F(1)(x)

ẋ
, (91)

and δF (t ) is a white noise random force with diffusion coeffi-
cient (89). The classical potential U (x) is taken to be harmonic

U (x) = 1
2 k(x − x0)2, (92)

where x0 is the equilibrium bond length and k is the spring
constant associated with the bond strength.

B. Calculations

Each of our calculations utilizes a common set of unchang-
ing parameters: the bandwidth for numerical integration is set
to [−5, 5]; left and right lead temperatures are set to be equal
(TL = TR = 300 K); the reduced mass associated with the
chemical bond is m = 1000; the molecule is always strongly
coupled to the left lead with �L = 4 and �R = 0.03; and the

equilibrium bond length is x0 = 5. All numerical values in the
text and figures are given in atomic units. We note that in a
similar approach to previous work [77], we employ a finite
bandwidth in numerical calculations to avoid the logarithmic
divergence of the adiabatic force (87).

1. Electronic friction, diffusion coefficient, and local
effective temperature

We first study how the parameters of the model control the
three main ingredients of the Langevin equation: the diffusion
coefficient, viscosity, and adiabatic force. Figure 1(a) shows
the diffusion coefficient D(x) as a function of the bond length.
The amplitude of the random force is the square root of the
diffusion coefficient. As seen in Fig. 1(a), the diffusion coeffi-
cient has a strong dependence on the bond length, reaching its
maximum at the equilibrium bond length and then decaying
to zero as the bond stretches or contracts. As physically
expected, the amplitude of the random force increases as the
voltage becomes larger.

The viscosity ξ (x) is shown in Fig. 1(b). At small volt-
ages the viscosity behavior mirrors the diffusion coefficient’s
dependence on the bond length. This is not surprising if one
recalls the fluctuation-dissipation theorem which relates the
ratio of the diffusion coefficient D(x) and viscosity ξ (x) to the
temperature, and temperature should not deviate significantly
from the equilibrium value for small voltages. If the voltage
is increased, we start to observe regions of negative viscosity
which energize the stretching/contraction of the bond rather
than dampening its oscillations as one may expect from
the viscous force. This negative viscosity phenomenon has
been previously observed for similar theoretical systems using
varying modeling techniques [35,78,79].

Figure 1(c) shows viscosity as a function of bond length
computed at V = 0.06 of applied voltage. Once the level
moves away from the resonance position ε0 = 0, the second
peak in the viscosity starts to shift closer to the equilibrium
bond length. The second peak occurs when the energy of the
level intersects the Fermi level of the right lead, such that
electrons are easily able to transition between the lead and the
resonance level, while the left lead is essentially disconnected
due to the exponential coupling decay.
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FIG. 2. Effective temperature Teff(x) computed via (93), and
computationally measured temperature computed from the local
kinetic energy as a function of the bond length, calculated in the
resonance regime. The applied voltage is V = 0.02 and the spring
constant is k = 2.

In analogy to the fluctuation-dissipation theorem [80], it is
instructive to define an effective temperature as

Teff(x) = D(x)

2ξ (x)
. (93)

Figure 2 shows that there is a good agreement between the
effective local temperature defined using (93) and the local
kinetic energy computed directly from the Langevin equation

(90). Therefore, the effective temperature (93) is an intuitively
clear physical quantity which reveals information on the
steady-state spatial distribution of kinetic energy within the
junction and is related to current-induced localized heating or
cooling effects.

It is clear from Fig. 3(a) that in the equilibrium case
(zero applied voltage), the fluctuation-dissipation theorem is
satisfied as Teff is independent of x and equals to 300 K,
exactly the temperature of left and right leads. Once the
voltage is increased, the current carrying electrons produce
significant local heating in the junction leading to the rise
of the effective temperature. The coordinate dependence of
effective temperature has a small dip at equilibrium bond
length and then reaches its maximum value if the bond is
stretched.

In Fig. 3(d), we observe a region of parameters in our
junction in which the effective temperature becomes negative,
such that the nucleus has no defined steady-state local kinetic
energy in this region and as such, the kinetic energy of the
nuclei will continue to increase if constrained to this region.

Next, we compute the adiabatic potential as a function
of bond length. By combining the classical potential and
integrating our adiabatic force F(0)(x) computed by Eq. (87),
we obtain the adiabatic potential [11]

Uadiab(x) = U (x) −
∫ x

a
dx′F(0)(x

′). (94)
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0.005
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0.015

(a)
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0.005
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0.015
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(c) (d)

FIG. 3. (a) Effective temperature Teff(x) as a function of bond length computed in the resonance regime ε0 = 0 at various values of the
applied voltage. (b) Effective temperature Teff(x) as a function of bond length computed at applied voltage V = 0.02 for different values of the
resonant-level energies. (c) Contour plot of effective temperature Teff(x) as a function of voltage and bond length for low voltages. (d) Contour
plot of effective temperature Teff(x) as a function of voltage and bond length for high voltages; the white region represents negative effective
temperatures.
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FIG. 4. Adiabatic potential for (a) varying spring constants
(V = 0) and (b) for varying bias voltages (k = 0.12).

Notice that the lower limit in this integral a is completely
arbitrary and serves as a reference point for the computed
potential energy. We use a = 0 in all our calculations. We
observe in Figs. 4(a) and 4(b) the possibility of different
potential regimes in which we may observe two separate
stable minima.

These regimes are summarized according to the changing
bond spring constant and coupling in Fig. 5. There is a
narrow region of bistability. Once we move away from this
region, one minimum starts to dominate until the other min-
imum disappears completely. As one increases the voltage,
the bistable yellow region becomes wider and shifts towards
smaller values of the spring constant.

2. Current

In this section, we show results for the current computed
along a given trajectory of the bond-length time evolution
obtained from the solution of the Langevin equation. To
compute a trajectory x(t ), we utilize an m-BAOAB algorithm
provided by Sachs et al. [81], which enables a numerical
solution of the Langevin equation with a coordinate dependent
viscosity and diffusion coefficient. The trajectory is used to
compute Green’s functions and current with first order dy-
namical corrections using the equation presented in Sec. III A.
We consider three representative scenarios with very distinct

0.05 0.1 0.15 0.2
0

5

10

(a)

(b) (c) (d)

FIG. 5. (a) Different adiabatic potential regimes for varying k
and �L , computed at V = 0 and color coded according to (b)–(d).
Dashed lines show the boundaries of the bistable yellow region for
V = 0.2.

nuclear dynamics: rigid chemical bonding (k = 0.136), in-
termediate chemical bonding (k = 0.131), and soft chemical
bonding (k = 0.127) (Fig. 5).

These parameters were chosen for the purposes of illustrat-
ing the different switching regimes as clearly as possible. In
the case of a rigid chemical bond, the bond length oscillates
around a single minima; this is reflected in the time depen-
dence of current shown in Figs. 6(a) and 6(b). Both the electric
current with dynamical corrections IL(t ) = I (0)

L (t ) + I (1)
L (t )

and the first order correction I (1)
L (t ) itself oscillate around

single average values. Once the chemical bond becomes softer
(k = 0.131), the length of the chemical bond switches be-
tween two states, spending roughly equal time in each. This
behavior of the bond length results in telegraphic switching
of the current between two values as shown in Figs. 6(c) and
6(d). The first order dynamical correction is more noticeable
in the more conducting state. For a soft molecule-lead chem-
ical bond, k = 0.127, the bond-length experiences switching
but has a preference for a specific value, as does the current.

C. Current noise

The temporal correlations between stochastic fluctuations
of the electric current (current noise) have become a very
important experimental and theoretical tool in studying trans-
port properties of molecular junctions. Noise spectroscopy
enables the study of the special features of a single-molecule
junction, which are not accessible by standard current-voltage
measurements. The experimental noise measurements provide
significantly new information on fundamental mechanisms of

155415-10



CURRENT-INDUCED ATOMIC MOTION, STRUCTURAL … PHYSICAL REVIEW B 101, 155415 (2020)

0 0.4 0.8
0

0.5
1

1.5

(a)

0 0.4 0.8
-0.2

0

0.2

(b)

0 0.4 0.8
0

0.5
1

1.5

(c)

0 0.4 0.8
-0.2

0

0.2

(d)

0 0.4 0.8
0

0.5
1

1.5

(e)

0 0.4 0.8
-0.2

0

0.2

(f)

FIG. 6. Current with dynamical corrections IL (t ) = I (0)
L (t ) + I (1)

L (t ) and first order correction I (1)
L (t ) to the current as functions of time

computed at V = 0.01 a.u for different values of the spring constant (a),(b) k = 0.136 (c),(d) k = 0.131 (e),(f) k = 0.127. The red dashed line
denotes the current mean over the displayed time interval.

electron transport in molecular junctions, such as atomistic
details of the local environment and metal-molecule interfaces
[15,82], coupling between electronic and vibrational degrees
of freedom [4,83–85], identifications of the individual con-
duction transport channel [18,86–88], and mechanical stabil-
ity of the junction [20].

Current noise is formally defined as

Sα (τ ) = lim
T →+∞

1

T

∫ T

0
dt〈[δÎα (t ), δÎα (t + τ )]+〉, (95)

where δÎ (t ) describes the instantaneous deviation of the elec-
tric current at time t from its average value and [. . . , . . .]+
is the anticommutator. Equation (95) involves two averages:
〈· · · 〉 is the quantum expectation value over electronic degrees
of freedom and limT →+∞ 1

T

∫ T
0 dt . . . is the time average

over the classical motion of the nuclei. The time average is
equivalent to the ensemble average over many realizations of
geometries of the molecular junction. The current noise power
spectrum is the Fourier transformation of (95)

Sα (ω) =
∫ +∞

−∞
dτeiωτ Sα (τ ). (96)

The electric current noise provides valuable information about
the system and originates from multiple factors: (a) the
quantum nature of electrons, discreteness of charge, Pauli
exclusion principle, shot noise, and the finite temperature of
electrons; (b) various types of quantum correlations between

current-carrying electrons, which are not present in our model;
(c) and finally, the “mechanical” noise due to current-induced
changes to the molecular junction geometry. Generally the
total noise is not simply the addition of (a), (b), and (c)
contributions; there is a cross interference between different
contributions. However, within our approach the distinctly
different timescales of fast electronic and slow nuclear motion
enables the separation of the mechanical noise contribution
[23]. The characteristic timescale of shot noise decay is 1/�,
whereas the noise due to nuclear motion appears on much
longer times. Hence the noise induced by geometrical fluctu-
ations dominates the noise power spectrum at low frequencies
and can exceed the shot noise contribution by orders of
magnitude [23].

In what follows we focus on the “mechanical” noise as

Sα (τ ) = 2 lim
T →+∞

1

T

∫ T

0
dtδIα (t )δIα (t + τ ), (97)

where the current fluctuation at time t is

δIα (t ) = Iα (t ) − lim
T →+∞

1

T

∫ T

0
dtIα (t ). (98)

The Fano factor is

Fα = Sα (ω = 0)

2Iα
. (99)

The variance and mean of a Poisson process is equal, therefore
the Fano factor can be used to characterize electron transport
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FIG. 7. (a) Fano factors as functions of the spring constant k. (b) Fano factors as functions of voltage V . Here k = 0.13 yields two minima
with approximately equal depth, while k = 0.125 yields a deeper left minimum. (c) Average switch rate between minima in a bistable regime,
varying k. (d) Average waiting times in a bistable regime for V = 0.05. The vertical dashed line denotes the k value for which the two minima
have equal depth. All calculations are performed for ε0 = 0.

as either a sub-Poissonian (F < 1), Poissonian (F = 1), or
super-Poissonian (F > 1) process. Indeed, super-Poissonian
or sub-Poissonian noise is caused by a host of very interesting
and often hidden physical effects.

Figures 7(a) and 7(b) show Fano factors computed as a
function of the applied voltage V and spring constant k. The
presence of telegraphic switching between two minima in a
bistable adiabatic potential results in the gigantic enhance-
ment of the Fano factor, indicating that the electron transport
is a super-Poissonian process. The behavior of the Fano factor
depends on a number of factors relating to the microscopic
details of the Langevin dynamics in a locally heated adiabatic
potential.

This behavior of the Fano factor can be rationalized based
on the following observations. The only negative contribu-
tions to the integral over time in the current noise (97) are
on the boundaries when the current crosses the mean. For
the bistable case, this generally occurs only when the current
switches between stable states. It is an intuitive notion to
then conclude that larger switch rates will have an effect on
decreasing the Fano factor (however having no switches at all
will minimize it).

The size of the positive contribution to the current noise
is dependent on two factors: firstly, the size of the fluctuations
around the mean which correspond to the difference in current
values between two configurations, and secondly, the ratio
of time spent in each minimum. An increase to the applied
voltage results in a larger fluctuation around the mean and as

such, one would expect this to have an effect on increasing
the Fano factor. However, this effect is counteracted by an
increase to the mean current, which stays in the denominator
of the Fano factor (99). Additionally, the noise should be
maximized when the mean current is directly in between
our two current states; this occurs when the nucleus spends
approximately equal time in each minimum. Therefore, the
two key parameters to control the Fano factor are the av-
erage switch rate (a single switch being a transition from
one minimum to the other) shown in Fig. 7(c), as well as
the average waiting time (the average amount of time spent
waiting in a minima before switching out) shown in Fig. 7(d).
To maximize the Fano factor, one wants to keep the switch rate
between conformations as small as possible but at the same the
waiting times in both conformations should be comparable.
For example, let us consider the case of V = 0.05. As the
voltage increases, the difference in effective temperatures
between the left and right minima increases as well, such
that the left is substantially hotter, which will decrease the
time spent waiting in the left minimum. In addition, the large
applied voltage will physically deform the adiabatic potential
in a manner akin to Fig. 4(b), decreasing the depth of the
left minimum relative to the right. These factors each act to
decrease the left minimum waiting time relative to the right
[see Fig. 7(d)]. To compensate for this, the Fano factor peaks
shifts towards smaller values of k, which act to deepen the left
minimum, thus having the opposing effect of increasing the
left minimum waiting time.
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FIG. 8. Fano factor computed as a function of the spring con-
stant; V = 0.05 and ε0 = 0. The background of the figure is color
coded in accordance with the different regimes of adiabatic potential
shown in Figs. 4(b)–4(d).

In Fig. 8, we observe the Fano factor as the adiabatic
potential transitions over the three possible regimes in our
system as the spring constant k is altered. The Fano factor
demonstrates a strong dependency on instabilities within the
system, undergoing a large peak as the bistable regime is
entered, before decreasing back to sub-Poissonian values in
the monostable regimes. The peak is shifted towards lower k
values for the reasons outlined regarding Fig. 7(c). The peak
decreases slowly into the blue monostable regime because the
stable minimum is very close to the left lead, which yields
a small mean current in this region. As such our Fano factor
according to (99) is still large despite the adiabatic potential
only being monostable.

IV. CONCLUSIONS

In this paper, we studied current-induced atomic motion
on molecule-electrode interfaces in molecular electronic junc-
tions. Structural changes on the interfaces are described in
terms of a Langevin equation, which is obtained from the
quantum mechanical first principles in which we extract the
slow nuclear dynamics from Wigner space Green’s functions.
The calculations of Green’s functions and consequently all
molecular junction observables include dynamical velocity-
dependent corrections to include nonadiabatic effects of nu-
clear motion into the calculation of electronic properties. We
illustrate the theory by computing the transport properties
of a model molecular junction: a single position-dependent
resonant energy level which is coupled to the leads via a
flexible (changing in time due to current flow) bond length.
The Langevin equation for the bond length is integrated
numerically and then the Green’s functions, electric current,
and current noise are computed along the stochastic trajec-
tory. We observe that even if the initial classical potential
is harmonic, the effective adiabatic potential may develop
bistability depending upon the parameters of the model. We
mapped the shapes of the adiabatic potential in the parameter
space of the model. The different regimes for bistability
depend critically on the interplay between the softness of
the linking electrode-molecule bond and the coupling to the
corresponding electrode.

We introduce the concept of an effective local tempera-
ture using fluctuation-dissipation theorem ideas, which pro-
vides a useful insight on localized current-induced heating
in molecular electronic junctions. We observe a region of
parameters in our junction where the effective temperature

becomes negative, which means the kinetic energy of nuclei
will continue to increase if constrained to this region. The
structural instabilities and localized heating on molecule-
electrode interfaces are quantified in terms of the current noise
and Fano factor. These demonstrated the influence of the
calculated effective temperatures and adiabatic potentials on
the nuclear dynamics, in which super-Poissonian Fano factors
on the order of ≈400 were observed.

APPENDIX: ELECTRONIC DIFFUSION COEFFICIENT

Computing the random white noise for our system starts
by computing the quantity 〈δ f (t )δ f (t ′)〉. Noting that f̂ (t ) =
f (t ) + δ f (t ) allows us then to generate the expression

〈δ f (t )δ f (t ′)〉 = 〈 f̂ (t ) f̂ (t ′)〉 − f (t ) f (t ′), (A1)

and so computing an expression for 〈δ f (t )δ f (t ′)〉 is reduced
to calculating the quantities 〈 f̂ (t ) f̂ (t ′)〉 and f (t ) f (t ′).

The first term in (A1) term can be computed by making
an explicit substitution for f (t ) in (59). This yields averages
over strings of creation and annihilation operators which can
be decomposed according to Wick’s theorem. An example of
this is given by

〈a†
AaBa†

CaD〉 = 〈a†
AaB〉〈a†

CaD〉 + 〈a†
AaD〉〈aBa†

C〉, (A2)

where we have retained only the nonzero terms. It can be
shown that the first term in these decompositions (involving
no permutation of the creation/annihilation operators) will
cancel exactly with the terms given in f (t ) f (t ′) [which can
be easily calculated using (58)]. As a result, our random noise
variance is then given by

〈δ f (t )δ f (t ′)〉
=

∑
i jī j̄

∂xhi jG>
jī∂xhī j̄G<

j̄i +
∑

ikαīk̄α

(G>
ik̄α

�k̄αīGīkα�kαi

+�ikαG>
kαī�īk̄αGk̄αi

+G>
iī �īk̄αG<

k̄αkα
�kαi + �ikαG>

kαk̄α
�k̄αīG<

īi )

+
∑
i jīk̄α

(∂xhi jG>
jk̄α

�k̄αīG<
īi + ∂xhi jG>

jī�īk̄αG<
k̄αi )

+
∑
ī j̄ikα

(G>
iī ∂xhī j̄G j̄kα�kαi + �ikαG>

kαī∂xhī j̄G<
j̄i ), (A3)

where we have introduced our Green’s functions. Here we
use indices without a bar (i) to represent an operator acting
at time t , while indices with a bar (ī) act at time t ′. At
this point, we must decompose our Green’s functions into
Green’s functions in the system space and Green’s functions
in the leads. This involves applying our Dyson expansion to
the Green’s functions spanning the leads and system space
(e.g., Gikα), as well as decomposing the Gkαk̄α terms. For the
purposes of this derivation, we will consider only a single term
from (A3) as the derivation can be applied similarly to the
other terms in the equation. Consider∑

ikαīk̄α

G>
ik̄α

�k̄αīGīkα�kαi. (A4)
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Applying our Dyson expansion to both Green’s functions and taking advantage of the commutativity of matrix elements will
yield

=
∑

ikαīk̄α

�k̄αī�kαi

∫
dt1

∑
m

(
G<

īmvmkαGA
kα + GR

īmvmkαG<
kα

) ∫
dt2

∑
n

(
G>

invnk̄αGA
k̄α

+ GR
invnk̄αG>

k̄α

)
. (A5)

By expanding this product and introducing our self-energy like quantities, we find

=
∫

dt1dt2
∑
iīmn

(
G<

īm(t ′, t1)�A
mi(t1, t )G>

in (t, t2)�A
nī(t2, t ′) + G<

īm(t ′, t1)�A
mi(t1, t )GR

in(t, t2)�>
nī(t2, t ′)

)
. (A6)

Applying a similar process for all terms in (A3) yields the following expression:

〈 f (t ) f (t ′)〉 = Tr

{
∂xhG>∂xhG< +

∫
dt1dt2

(
G>�AG<�A + GR�>G<�A + G>�AGR�< + GR�>GR�< + 
>GA
<GA

+
RG>
<GA + 
>GA
RG< + 
RG>
RG< + G>
<GA�A + 
>GA�AG<

+G>
RG<�A + 
RG>�AG< + G>
RGR�< + 
RGR�>G< + G>�< + �>G<
)

+
∫

dt1(∂xh[G>�AG< + GR�>G< + G>
<GA + G>
RG< + G<�AG> + GR�<G>

+G<
>GA + G<
RG>])

}
, (A7)

where we have simplified the sum over central states into a trace and neglected time indices for brevity.
This equation must now be transformed into the Wigner space such that we can retrieve our diffusion coefficient. Beginning

with

〈δ f (t )δ f (t ′)〉 = Dδ(t − t ′), (A8)

we integrate both sides with respect to τ = t − t ′ which enables us to isolate D as per

D =
∫

dτ 〈δ f (t )δ f (t ′)〉. (A9)

In applying the Wigner transform, we once again consider a single example term which we will denote D1.

D1 =
∫

dτ

∫
dt1dt2 G>�AG<�A

=
∫

dτA(t, t ′)B(t ′, t )

=
∫

dτA(T, τ )B(T,−τ ),

where we have simply grouped terms together such that

A(t, t ′) =
∫

dt1G>�A, (A10)

and so on. Next, we transform D1 to the Wigner space through the use of the Wigner gradient expansion and then take the
adiabatic limit, such that we obtain

D1 = 1

2π

∫
dωÃ(T, ω)B̃(T, ω). (A11)

All that then remains is to calculate the Wigner transform of our grouped variables A and B which is a relatively simple
process. Applying this process to each term in (A7), we find

D(x) = 1

2π

∫
dωTr

{
∂xhG>∂xhG< + G>�̃<

(0) + �̃>
(0)G

< + G>�̃A
(0)G

<�̃A
(0) + GR�̃>

(0)G
<�̃A

(0) + G>�̃A
(0)G

R�̃<
(0)

+GR�̃>
(0)G

R�̃<
(0) + 
̃>

(0)G
A
̃<

(0)G
A + 
̃R

(0)G
>
̃<

(0)G
A + 
̃>

(0)G
A
̃R

(0)G
< + 
̃R

(0)G
>
̃R

(0)G
< + G>
̃<

(0)G
A�̃A

(0)

+ G>
̃R
(0)G

R�̃<
(0) + G>
̃R

(0)G
<�̃A

(0) + 
̃R
(0)G

>�̃A
(0)G

< + 
̃>
(0)G

A�̃A
(0)G

< + 
̃R
(0)G

R�̃>
(0)G

<

+ ∂xh
(
G>�̃A

(0)G
< + GR�̃>

(0)G
< + G>
̃<

(0)G
A + G>
̃R

(0)G
< + G<�̃A

(0)G
> + GR�̃<

(0)G
> + G<
̃>

(0)G
A + G<
̃R

(0)G
>
)}

.

(A12)
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We observe that some terms are conjugates of each other, while certain strings of functions appear frequently in different
terms. With significant simplification, we find our final expression for the diffusion coefficient as

D(x) = 1

2π

∫
dωTr

{
∂xhG>∂xhG< + G>�̃<

(0) + �̃>
(0)G

< + 2Re

[(
∂xh + 
̃R

(0) + �̃A
(0)

) (
G<
̃>

(0)G
A + G>
̃<

(0)G
A
)

+
(

∂xh + 
̃R
(0) + 1

2
�̃A

(0)

)
G>
̃R

(0)G
< +

(
∂xh + 1

2
�̃A

(0)

)
G<
̃R

(0)G
> + 
̃>

(0)G
A
̃<

(0)G
A

]}
. (A13)
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