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Current cross-correlations and waiting time distributions in Andreev transport through Cooper
pair splitters based on a triple quantum dot system
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(Received 2 October 2019; revised manuscript received 5 March 2020; accepted 18 March 2020;
published 8 April 2020)

We study the spin-resolved subgap transport in a triple quantum-dot system coupled to one superconducting
and two ferromagnetic leads. We examine the Andreev processes in the parallel and antiparallel alignments of
ferromagnets magnetic moments in both the linear and nonlinear response regimes. The emphasis is put on the
analysis of the current cross-correlations between the currents flowing through the left and right arms of the
device and relevant electron waiting time distributions. We show that both quantities can give important insight
into the subgap transport processes and their analysis can help optimizing the system parameters for achieving the
considerable Andreev current and efficient Cooper pair splitting. Strong positive values of cross-correlations are
associated with the presence of tunneling processes enhancing the Cooper pair splitting efficiency, while short
waiting times for electrons tunneling through distinct ferromagnetic contacts indicate fast splitting of emitted
Cooper pairs. In particular, we study two detuning schemes and show that an antisymmetric shift of side quantum
dots energy levels is favorable for efficient Cooper pair splitting. The analysis of spin-resolved waiting time
distributions supports the performance enhancement due to the presence of ferromagnetic contacts, which is in
particular revealed for short times. Finally, we consider the effect of changing the interdot hopping amplitude
and predict that strong interdot correlations lead to a reduction of Andreev transport properties in low-bias limit.
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I. INTRODUCTION

Rapid progress in nanofabrication and experimental tech-
niques in condensed matter brings the possibility to prepare
and study highly tunable hybrid structures in a controllable
and precise manner [1,2]. One prominent class of hybrid
nanoscale devices are quantum dots coupled to superconduct-
ing and normal contacts [3–10]. In this regard, particularly
interesting is a three-terminal setup known as Cooper pair
splitter (CPS) [11–20], which consists of one superconducting
and two normal metallic leads. Such CPS devices provide the
possibility to generate nonlocal pairs of entangled electrons
in a controllable fashion. As far as the transport properties
and splitting efficiency of a CPS are concerned, the most
promising transport regime of the system is when the applied
bias voltage is smaller than the superconducting energy gap
�. In such a subgap transport regime, the current flows
through the device by the processes known as Andreev reflec-
tions [2,21], In the beam splitter geometry, the two dominant
processes are the direct (DAR) and crossed (CAR) Andreev
reflections [22]. The first type of processes concerns transport
of two electrons forming a Cooper pair through the same arm
of the device, whereas the second type describes the transfer
of a Cooper pair, which is split into distinct drain electrodes.
For an optimal operation of a CPS it is therefore crucial to
engineer devices in which Andreev current flows mainly due
to CAR processes. This can be achieved by appropriate choice
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of nanostructure’s size and geometry as well as fine tuning by
gate voltages [13,16].

The transport properties of Cooper pair splitters based
on double quantum dots have already been widely studied,
both theoretically and experimentally [7,16,17,23–33]. High
splitting efficiency in these models is obtained due to a high
difference between inter- and intradot Coulomb interactions
and through optimal tuning of quantum dot energy levels.
It has been also recently predicted that efficient Cooper-pair
splitting systems coupled to resonators may have a potential
use as quantum heat engines [34]. Considering all the above,
there is a strong motivation to search for novel applications of
hybrid nanostructures, involving quantum dots and supercon-
ductors, as well as to look for different mechanisms that could
optimize the Cooper pair splitting properties.

One such mechanism can be associated with quantum
interference effects. Indeed, both the experimental results and
theoretical predictions suggest an important role of quantum
interference, which is generally present in CPS systems [35].
To capture and understand the role of quantum interference,
a three-site model has been put forward, where the central
part is coupled to superconductor, while the left and right
arms of the splitter are modeled by the remaining two sepa-
rate sites [35–37]. The transport properties of such three-site
models are however still rather unexplored. The purpose of
this paper is therefore to advance further the understanding
of the Andreev transport in the CPS based on triple quan-
tum dots. Moreover, motivated by a theoretical proposal, in
which ferromagnetic contacts act as an entanglement witness
in spin transport experiments [38], we consider a device
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with ferromagnetic electrodes. Systems involving magnetic
electrodes have already gained certain attention and some
spin-resolved transport aspects have been studied both the-
oretically and experimentally [39–42]. Here we especially
focus on the analysis of the statistics of Andreev processes.
In particular, we analyze the cross-correlations between the
currents flowing through the left and right ferromagnetic
junctions [32,43,44]. Strong positive cross-correlations are
predicted in the regimes where the currents flowing through
the left and right junctions are mutually supporting each other,
which indicates high splitting efficiency of the Cooper pairs.
On the other hand, negative cross-correlations are a signature
of transport processes in opposite directions, which is an
undesirable feature in the CPS devices. Moreover, we support
our analysis with the investigations of the electron waiting
time distribution (WTD) [45–48]. Waiting time quantifies
the time between subsequent tunneling events. A consequent
distribution can be used to characterize the CPS system, to
indicate fast and slow transport processes and give signatures
of efficient Cooper pair splitting [49]. It is also important to
note that waiting time distributions for electrons are already
accessible in experiments on quantum dot systems [50–52].
All the aforementioned transport characteristics are studied in
two specific gate voltage detuning schemes: in a symmetric
and in an antisymmetric one.

This paper is organized as follows: The description of theo-
retical framework can be found in Sec. II. Section III presents
the results and relevant discussion on the cross-correlations
and waiting time distribution. Finally, the work is concluded
in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Microscopic model

The considered triple quantum dot-based Cooper pair split-
ter is schematically presented in Fig. 1. The middle quantum
dot (QDM) is coupled with left (QDL) and right (QDR) quan-
tum dots by the hopping term t . Furthermore, QDM is attached
to the s-wave superconductor (top) with coupling strength
�S, while QDL (QDR) is coupled to left (right) ferromagnetic
(FM) electrode with spin-dependent coupling strength �σ

j . In
our considerations, the magnetic moments of ferromagnets are
assumed to form either parallel or antiparallel configuration.

The system is described by the total Hamiltonian:

H = HFM + HS + HTQD + HT + HTS. (1)

The term HFM describes noninteracting electrons in left ( j =
L) and right ( j = R) ferromagnetic electrodes,

HFM =
∑

j=L,R

∑
kσ

ε jkσ c†jkσ
c jkσ , (2)

with c†jkσ
(c jkσ ) being the creation (annihilation) operator of

an electron in the jth lead, with momentum k, spin σ , and
energy ε jkσ .

The second term expresses the s-wave superconductor with
the mean-field BCS Hamiltonian

HS =
∑
kσ

εSkσ c†Skσ
cSkσ + �

∑
k

(cSk↓cS−k↑ + H.c.), (3)

εM =0

Γs

ΓσΓσ

UM =0

tt

L R

U, εRU, εL

FIG. 1. Schematic of the considered triple quantum dot-based
Cooper pair splitter. A large, middle quantum dot with on-site energy
εM is coupled directly to the superconductor with coupling strength
�S. The two other quantum dots, described by on-site energies εL

and εR and Coulomb correlations U , respectively, are placed in
the two arms of the splitter. These dots are coupled through the
hopping matrix elements t to the large dot and to the ferromagnetic
contacts with the corresponding coupling strengths �σ

L and �σ
R. The

magnetizations of ferromagnetic contacts are assumed to form either
parallel or antiparallel configuration.

where c†Skσ
(cSkσ ) stands for the creation (annihilation) opera-

tor of an electron in the superconductor, with momentum k,
spin σ , and energy εSkσ , while � is the order parameter of the
superconductor, which is assumed to be real and positive.

The third term of the Hamiltonian H describes the isolated
triple quantum dot (TQD) and is given by

HTQD =
∑

j=L,M,R

ε jn j + U
∑

j=L,R

n j↑n j↓

+ t
∑

j=L,R

∑
σ

(d†
jσ dMσ + d†

Mσ d jσ ). (4)

The occupation number operators are defined as follows:
n j = n j↑ + n j↓ and n jσ = d†

jσ d jσ with d†
jσ (d jσ ) being the

creation (annihilation) operator of an electron in the dot j
with spin σ and energy ε j . The last two terms of the total
Hamiltonian describe the corresponding tunneling processes.
The tunneling between triple quantum dot subsystem and
ferromagnetic electrodes is modeled by

HT =
∑

j=L,R

∑
kσ

(
V j

kσ
c†jkσ

d jσ + H.c.
)
. (5)

Here V j
kσ

are the tunnel matrix elements between the jth
dot and the respective ferromagnetic lead. We assume the
tunnel matrix elements to be spin and momentum indepen-
dent. Then the FM lead-dot couplings can be expressed as
�σ

j = 2π |V j |2ρ jσ , where ρ jσ is the spin-dependent density of
states for spin σ of the ferromagnetic lead j. The FM cou-
pling strengths depend on the spin polarization p j = (ρ j+ −
ρ j−)/(ρ j+ + ρ j−) of the given lead and can be denoted as
�±

j = � j (1 ± p j ) for the spin majority (σ = +) or minority
(σ = −) subband. We assume that � j = (�+

j + �−
j )/2 and
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�L = �R ≡ �. We also assume equal spin polarization of both
ferromagnetic leads pL = pR ≡ p.

Finally, the tunneling between triple quantum dot and the
superconductor is described by

HTS =
∑
kσ

(VSc†Skσ
dMσ + H.c.), (6)

where VS denotes the corresponding tunneling amplitude.
The superconducting lead-dot coupling is given by �S =
2π |VS|2ρS, where ρS is the density of states of superconductor
in the normal state. In further considerations the infinite
superconducting energy gap limit � → ∞ is assumed, which
allows us to use an effective Hamiltonian H eff

TQD = HTQD +
HS + HTS including the induced superconducting pairing term
in the middle dot [53,54]

H eff
TQD = HTQD − �S

2
(d†

M↑d†
M↓ + dM↓dM↑). (7)

We examine the case when the bias voltage between the
superconductor and FM leads is applied in the following way:
The superconducting lead is grounded (μS = 0), while both
left and right ferromagnetic leads amass the same electro-
chemical potential μL = μR = eV . Our considerations are
focused on the subgap transport regime, where the current is
mediated purely by the Andreev reflection processes. There-
fore, we assume that the Coulomb interaction energy on the
left and right dots and the superconducting energy gap are the
highest energies in the problem �,U � |eV |, εL/R. On the
other hand, for the middle quantum dot we assume vanishing
Coulomb interaction UM = 0, due to large size of this dot and
screening effect of the superconductor. A similar model and
parameter regime was successfully applied to model recent
experimental observations on a Cooper pair splitter in external
magnetic field [35].

B. Real-time diagrammatic technique

The main aim of this paper is to study the Andreev trans-
port properties of the considered triple quantum dot-based
Cooper pair splitter. To achieve this goal, we use the real-
time diagrammatic technique, which is based on a systematic
perturbation expansion of the reduced density matrix and
the current operator with respect to the lead-dot coupling
� [55–58]. Here we perform the expansion assuming a weak
coupling � of the triple quantum dot with a corresponding fer-
romagnetic lead, while the coupling to the superconductor �S

is treated exactly. Consequently, in our calculations we take
into account the lowest-order tunneling processes, namely
sequential tunneling through the ferromagnetic junctions.

The self-energies corresponding to the quantities of interest
are calculated by summing up the contributions of the relevant
diagrams determined with the use of respective diagrammatic
rules [55–58]. Furthermore, solving the kinetic equation

Wpst = 0 (8)

allows one to obtain the vector of occupation probabilities
pst

χ of the eigenstates of the effective Hamiltonian H eff
TQD,

H eff
TQD|χ〉 = εχ |χ〉. The matrix elements Wχ ′χ of W are the

self-energies corresponding to the transitions between the

states |χ ′〉 and |χ〉. Details concerning the calculation of
transition rates Wχ ′χ are described in the Appendix.

The current flowing through the ferromagnetic junction j
can be found from [57]

I j = e

2h̄
Tr{WI j pst}, (9)

where the matrix WI j takes into account the number of trans-
ferred electrons through the junction j. The current flowing
through the superconducting junction IS can be found by
means of the Kirchhoff’s law IS = IL + IR, while the cor-
responding differential conductance is evaluated from GS =
dIS/dV .

Having the Andreev current calculated in the case of par-
allel and antiparallel magnetic configuration of the ferromag-
netic leads, the tunnel magnetoresistance (TMR) can be found
from [14,59]

TMR = IAP
S − IP

S

IP
S

. (10)

The foregoing definition of the TMR is different to the one
known from the Julliere model [60] and the modification is
justified by the fact that in hybrid systems with superconduct-
ing and two ferromagnetic electrodes, the Andreev current in
the antiparallel configuration is usually greater than that in the
parallel alignment [14,28,59].

The calculations of the zero-frequency current-current
cross-correlations require the evaluation of the self-energy
matrices for both the left and right junctions, i.e., WIL and
WIR . The correlation function in the sequential tunneling
approximation has contributions only from the current op-
erators appearing in two distinct irreducible blocks [32,44].
Therefore, the following expression allows for calculating the
cross-correlation function between currents flowing through
the left and right junctions [57]:

SLR = e2

h̄
Tr{(WIL PWIR + WIR PWIL )pst}. (11)

The propagator P can be found from W̃P = psteT − 1, where
the matrix W̃ is similar to W, but with one row substituted by
(�,�, . . . , �), and eT = (1, 1, . . . , 1).

C. Waiting time distribution

We enrich the analysis of the transport properties of the
considered system with the study of electron waiting time
distributions [46,49]. The electron waiting time is a time
elapsed between two subsequent physical events of a fixed
type. In our calculations we consider tunneling jumps of the
electron with spin σ through the j = L, R junction. Having
set a sequence of two consecutive tunneling events that we are
interested in evaluation, the waiting time can be understood in
a following way. When the tunneling of the first type takes
place, the measurement of elapsed time is started. Then the
system evolves until the time measurement is stopped by the
occurrence of the subsequent tunneling event. Experimentally,
the tunneling of electrons can be measured in real time with
charge detectors [51,52].

In order to calculate the relevant waiting times, we assume
negatively biased ferromagnetic leads in the way that relevant
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quantum dots’ levels are deep in the transport window. Then
tunneling has a unidirectional character and the system can be
described with the aid of Markovian quantum master equation
for the reduced density matrix ρ̂ [61–64],

d

dt
ρ̂ = Lρ̂ = −i

[
H eff

TQD, ρ̂
] + Dρ̂. (12)

The Liouvillian L consists of coherent processes described
by H eff

TQD and incoherent electron jumps described by the
Lindblad dissipator [62,63]

Dρ̂ =
∑

j=L,R

∑
σ

� j

[
d jσ ρ̂d†

jσ − 1

2
{d†

jσ d jσ , ρ̂}
]
. (13)

Note that the density matrix contains both diagonal and
off-diagonal matrix elements related to coherences between
states.

The waiting time distribution between transitions of type a
and b can be then expressed as [46]

Wab(τ ) = Tr[Jae(L−Ja )τJbρ̂st ]

Tr[Jbρ̂st ]
, (14)

where ρ̂st is the stationary density matrix and the jump super-
operators are found from Jaρ̂ = �adaρ̂d†

a , where a = jσ and
b = j′σ ′ denote two different tunneling acts through the j and
j′ junctions of electrons with spins σ and σ ′.

III. RESULTS AND DISCUSSION

We focus on the analysis of the subgap transport where the
CAR processes are expected to be dominant. Therefore, we
assume the limit of infinite intradot Coulomb correlations on
the left (QDL) and right (QDR) dots, i.e., U → ∞. As a result,
double occupation on each of the side dots is forbidden. The
Cooper pairs are injected from the superconductor onto the
central dot with vanishing intradot interaction UM = 0 and
orbital energy level εM = 0. Subsequently, the strong intradot
Coulomb correlations present in the side dots are enforcing
electron pair splitting and transport through CAR processes.
The other parameters are set as follows: �S ≡ 1 is used as an
energy unit, interdot hopping is t = 1, and the ferromagnetic
lead spin polarization is p = 0.5. The temperature is equal
to T = 0.02. The electrons in the ferromagnetic leads are
described by the Fermi-Dirac distribution function fL/R(ω) =
1/(e(ω−μL/R )/T + 1), with kB ≡ 1 and μL/R denoting the chem-
ical potential of the left/right lead.

In order to thoroughly analyze the transport properties of
the considered system, we examine two distinct gate detuning
protocols. In the symmetric case, the gate voltages associated
with the left and right quantum dots are varied in a symmetric
way, i.e., ε = εL = εR. On the other hand, for the antisym-
metric case, we detune the levels as follows ε = εL = −εR.
Finally, we recall that the superconducting electrode is always
grounded, while equal potential μL = μR = eV is applied to
both ferromagnetic leads.

A. Andreev current, differential conductance, and TMR

1. Symmetric gate detuning

Figure 2 displays the dependence of the Andreev current,
differential conductance, and the TMR on the applied bias
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FIG. 2. The absolute value of the Andreev current IS [(a) and
(b)] and the Andreev differential conductance GS [(c) and (d)]
as a function of symmetric detuning ε ≡ εL = εR and the applied
bias voltage eV . The left column shows the results for the parallel
magnetic configuration, while the right column corresponds to the
antiparallel one. The tunnel magnetoresistance (TMR) dependence
on the detuning and applied bias voltage is shown in (e). The
parameters are: �S ≡ 1, used as the energy unit, � = 0.1, t = 1,
T = 0.02, p = 0.5, and I0 = e�/h̄.

voltage eV and the symmetric dot-level detuning ε ≡ εL =
εR. The left column [Figs. 2(a) and 2(c)] concerns the parallel
magnetic configuration, while the right column [Figs. 2(b)
and 2(d)] shows the results in the case of the antiparallel
configuration. The resulting TMR is shown in Fig. 2(e).

Let us first discuss the Andreev current characteristics.
Generally, in the low bias voltage regime, the current is
strongly suppressed. The triple quantum dot is in the singlet
ground state, in which the wave function is distributed over
all three dots. When the system is detuned towards nega-
tive energies ε < 0, the blockade regime becomes relatively
narrow (eV/�S < 0.1). Such detuning enhances the electron
occupation of the side dots QDL and QDR at the cost of the
QDM’s occupation. This configuration results in an excited
state, which is energetically close to the ground state, and
when the small bias voltage is applied, the current start
to flow by continuous transitions between the two-electron
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singlet ground state and one-electron excited doublet. The low
energy position of the side dots also influences the intensity
of the Andreev current, which is higher when the applied bias
is negative and particles flow from the superconductor into
ferromagnetic leads than in the case of the opposite voltage
and current direction. Interestingly, for the opposite values
of detuning, when ε > 0, the blockade is present for wider
range of bias, −1/

√
2 < eV/�S < 1/

√
2, as compared to the

previously discussed case due to the increased stability of sin-
glet state on the central dot. The considered low-bias behavior
is also reflected in the Andreev differential conductance. The
regime of the current blockade is clearly placed between the
two nearly parallel lines of maxima associated with relevant
states entering the transport window. The maximum value is
higher in the antiparallel configuration than in the parallel one,
which also results in higher current IAP

S > IP
S , and eventually

positive TMR.
Furthermore, if we examine a higher bias voltage regime

|eV/�S| > 1, there are two pronounced features visible in
transport characteristics. The first one, when the system is
negatively biased (eV/�S < −1) and Cooper pairs are ex-
tracted from the superconductor, is the regime of maximal
Andreev current. The side dots need to be tuned near the Fermi
level of the superconductor ε = 0. Inconveniently, the plateau
is in relatively narrow range of detuning parameter, with
half of its maximum value when detuned to approximately
|ε|/�S ≈ 0.5.

When the system is biased in the opposite direction, a
strong negative differential conductance (NDC) is present,
starting from relatively small voltages (eV/�S ≈ 0.7) for deep
energy levels of the side dots (ε/�S < −2) and spanning to
higher bias while detuning toward positive values. Further
increase of the bias voltage to overcome the NDC leads to
the regime of Andreev current suppression due to a triplet
blockade present in both magnetic alignments. This effect is
well known from the analysis of transport through the double
quantum-dot splitters [23,28]. Here we want to note that if
the double occupation of side dots is allowed by setting finite
intradot Coulomb interactions, the triplet blockade can be
lifted by applying high enough bias voltage. This regime is
however difficult to explore experimentally, as most often the
charging energy is higher than the energy gap � of many
currently known superconductors [1,9]. Moreover, the differ-
ential conductance plots are exposing numerous additional lo-
cal extrema, which are resulting from the complex electronic
structure of the triple quantum-dot system, however, they do
not lead to qualitatively new effects.

Due to the general property of the system that the Andreev
current is higher in antiparallel configuration than in the
parallel one, i.e., IAP

S > IP
S , the resulting TMR is positive

in wide range of transport parameters. The extensive region
for positive bias marked by white color is associated with
the presence of the triplet blockade, where Andreev currents
in both magnetic configurations are strongly suppressed. In
consequence, the TMR becomes indeterminate. Other than
that, the tunnel magnetoresistance has a positive and mod-
erate values for wide range of parameters, with a consider-
able raise for the earlier discussed regime of maximal An-
dreev current (ε = 0 and eV/�S < 0), where TMR = p2/(1 −
p2) = 1/3 (for assumed p = 0.5) and for low positive bias

(0 < eV/�S < 0.5) and negative detuning, where TMR be-
comes enhanced and reaches TMR ≈ 0.88.

2. Antisymmetric gate detuning

Let us now consider a different scheme of detuning the
energy levels of the system—the antisymmetric one, where
ε ≡ εL = −εR. Such detuning results in symmetric transport
dependencies with respect to the change of sign of detun-
ing f (ε) = f (−ε), where f = IS, GS, TMR, and SLR. This
detuning protocol is expected to be favorable for high CPS
conductance [11,36]. The energy conservation holds when the
Cooper pair is transferred from the middle dot QDM with
energy εM = 0, through the side dots, where due to detuning
scheme εL = −εR, the total energy can be approximated by
εL + εR = 0, which implies high Andreev current. However,
it is important to note that the eigenenergies are also influ-
enced by other parameters of the system, for instance by
the hopping t , therefore the above discussion provides rather
qualitative picture, but the quantitative numerical results
support it.

Figure 3 displays the Andreev current, differential conduc-
tance, and TMR as a function of the applied bias eV and the
antisymmetric detuning ε. The low bias voltage regime again
exposes the current blockade for |ε/�S| < 2 and |eV/�S| < 1.
With further increase of the bias voltage, excited states enter
the transport window and the Andreev current starts to flow.
For the positive bias eV/�S > 2, the triplet blockade is present
as well, however, the shape of the region with suppressed
Andreev current is different than in the case of symmetric
detuning and the associated minimum in Andreev differential
conductance is now sharper. For the system strongly biased
in the opposite direction, with electrons flowing into the
ferromagnetic leads, there is a significantly wider range of
the regime with high Andreev current, where |IS|/I0 � 0.4.
This characteristic clearly shows that antisymmetric detuning
is advantageous for the flow of high Andreev current.

On the other hand, the behavior of the TMR is rather
similar to the symmetric detuning case. For the whole pa-
rameter space the TMR is positive. The undetermined range
for positive bias due to the triplet blockade (white region) is
present likewise. Moreover, there is a low-bias regime for a
relatively wide range of detuning (|ε/�S| > 1.5) where the
TMR = 2p2/(1 − p2) = 2/3.

It is important to note that in the antisymmetric case
all the interesting regimes with different transport properties
are more distinguishable and easier to adjust than in the
symmetric case.

Finally, we would like to remark that a finite Coulomb
interaction on the central dot UM > 0 has only a moderate
influence on the presented results as long as it is smaller than
the applied bias voltage. For both considered gate detuning
protocols the maximal values of the Andreev current become
slightly reduced for finite UM. Moreover, in the case of sym-
metric detuning, the regime of maximal Andreev current is
shifted towards negative detuning, while for antisymmetric
one, the low-bias blockade region becomes enlarged.

B. Current cross-correlations

The cross-correlations in Cooper pair splitters between
currents flowing through the left and right junctions indicate
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FIG. 3. The absolute value of the Andreev current [(a) and (b)]
and the Andreev differential conductance [(c) and (d)] as a function
of antisymmetric detuning ε ≡ εL = −εR and applied bias voltage
eV . The left column shows the results for the parallel magnetic con-
figuration, while right column is for the antiparallel configuration.
The TMR dependence on detuning and applied bias voltage is shown
in (e). The parameters are the same as in Fig. 2.

important transport features [32,44]. Primarily, the strong pos-
itive cross-correlations are associated with mutually support-
ing transport processes between the left and right junctions. In
the case of Cooper pair splitters, this feature is also a signature
of high splitting efficiency. On the other hand, the presence
of negative cross-correlations is associated with the transport
processes taking place in opposite directions. The current
cross-correlations for the considered model, in the case of
both symmetric and antisymmetric detuning are shown in
Fig. 4.

The general result is that, analogically to a single and dou-
ble quantum dot-based Cooper pair splitters with ferromag-
netic leads [32,44], in the antiparallel magnetic configuration
the positive cross-correlations have higher values, while the
negative ones are diminished, which is contrary to the case of
the parallel configuration. This is associated with the strong
influence of the spin-dependent tunneling on the Andreev
transport. This effect can be tuned by changing the value of
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FIG. 4. The current-current cross-correlations as a function of
detuning ε and the applied bias voltage eV . The top row corresponds
to the case of symmetric detuning ε ≡ εL = εR, while the bottom
row is calculated for antisymmetric detuning ε ≡ εL = −εR. The left
column shows the results for the parallel magnetic configuration and
the right column is for the antiparallel alignment. The parameters are
the same as in Fig. 2 and S0 = e2�/h̄.

leads spin polarization p, where along with increasing p, pos-
itive cross-correlations become enhanced in the antiparallel
configuration, while the negative values are increased in the
parallel one.

In the case of symmetric detuning of the system, see
Figs. 4(a) and 4(b), the main area of strong positive cross-
correlations coincides with the maximal Andreev current.
However, in the vicinity of ε = 0 for applied negative bias
and when the quantum-dot system is detuned further above
|ε/�S| > 1, the cross-correlations become significantly di-
minished. Another striking feature in the considered case
is the presence of strong antidiagonal minima spanning in
the discussed plots, evolving around the resonances between
detuning and chemical potential of the ferromagnetic leads,
i.e., eV ≈ ε. This is the condition strongly enhancing the
possibility of single-electron tunneling back and forth through
both ferromagnetic junctions simultaneously, resulting in neg-
ative values of current-current cross-correlations. The impor-
tant fact is that in the case of double quantum-dot systems,
the negative cross-correlations are present in the case of
finite hopping between the dots. Here the left and right dots
are not coupled by direct hopping, however, the presence
of the middle dot mediates this mechanism. To sum it up,
the analysis of cross-correlations for the symmetric detuning
concludes with rather unfavorable transport properties, with
weakly correlated transport in a wide range of parameters.
Large values of cross-correlations are present only for small
range of ε and negative bias, see Figs. 4(a) and 4(b). Finally,
the presence of the negative cross-correlations is also an
unwanted feature for optimal operation of the CPS device.

155409-6



CURRENT CROSS-CORRELATIONS AND WAITING TIME … PHYSICAL REVIEW B 101, 155409 (2020)

The current-current cross correlations in the case of an-
tisymmetric detuning, see Figs. 4(c) and 4(d), expose more
attractive features as far as the Andreev transport and Cooper
pair splitting are concerned. Negative cross-correlations are
almost completely washed out in both magnetic configu-
rations. There is a small minimum formed at the edge of
the low-bias current blockade for the positive bias voltage.
However, for the current flowing in the opposite direction,
i.e., when the Cooper pairs are extracted from the supercon-
ductor and electrons are transported into ferromagnetic leads,
there are no negative cross-correlations in the whole range
of detuning parameter ε for eV < 0. In this case, due to the
nature of antisymmetric detuning, the possibility of resonant
transport in both directions between distinct ferromagnetic
leads and coupled side dots is blocked. Moreover, the positive
cross-correlations in this scheme are strongly enhanced, as
compared to the symmetric detuning protocol, for a signif-
icant range of negative bias eV/�S < 1 and wide range of
detuning parameter ε. When transport takes place in this
regime, not only the Andreev current is high and stimulated by
the energy conservation of the transferred particles, but also
high positive cross-correlations indicate efficient splitting and
mutual support of tunneling processes through left and right
junctions. Both important properties of the antisymmetric
detuning scheme are encouraging for using it in Cooper pair
splitting devices, allowing for considerable and unidirectional
Andreev current as well as optimal splitting efficiency of the
emitted Cooper pairs.

C. Influence of interdot hopping amplitude

An important factor influencing the transport properties
of the multiquantum dot-based Cooper pair splitters is the
amplitude of the interdot hopping t . As shown recently for
double quantum-dot systems [32], finite hopping is responsi-
ble for the regimes with negative cross-correlations as well
as attenuation of strong positive correlations. In order to get
a better understanding of the role of hopping in transport
through triple quantum-dot Cooper pair splitters, in Fig. 5
we show the Andreev current and the corresponding cross-
correlations for the system detuned symmetrically (ε ≡ εL =
εR = 1) and antisymmetrically (ε ≡ εL = −εR = 1) for var-
ious hopping amplitudes t . The presented results are shown
for the antiparallel magnetic configuration, in which the
calculated quantities have higher values with respect to the
case of parallel configuration. For positively biased system
(eV > 0), the main effect of varying the hopping amplitude
is a change of the position of triplet blockade, i.e., with
increase of t the triplet blockade emerges at higher voltages.
This effect is similar in both considered detuning schemes,
see the left column of Fig. 5. The dependence of current
cross-correlations is congruent with this observation as the
fluctuations are enhanced for the bias voltage range preceding
the current suppression due to triplet blockade.

The behavior is more interesting for the negative bias
voltage (eV < 0), where the current flows from supercon-
ductor toward ferromagnetic leads. For the symmetric detun-
ing, small hopping amplitudes (t/�S � 0.25) result in weak
Andreev current and weak cross-correlations, see Figs. 5(a)
and 5(b). When the hopping amplitude t is increased, both
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FIG. 5. The absolute value of the Andreev current [(a) and (c)]
and current-current cross-correlations [(b) and (d)] as a function of
the applied bias voltage eV for different values of interdot hopping t
in the antiparallel magnetic configuration. The top row corresponds
to the case of symmetric detuning, ε ≡ εL = εR = 1, while the bot-
tom row is calculated for antisymmetric detuning, ε ≡ εL = −εR =
1. The parameters are the same as in Fig. 2.

considered transport quantities acquire higher values, however
for t/�S > 1 a significantly higher bias voltage has to be
applied in order to achieve maximal Andreev current. This
effect is also visible for negative bias in the antisymmetric de-
tuning case. As the hopping t becomes stronger, the absolute
value of the applied bias needs to be higher for the Andreev
current to flow through the device. Surprisingly, the current
cross-correlations expose opposite dependence on t in the an-
tisymmetric detuning case as compared to the symmetric case.
For low values of interdot hopping amplitude, the positive
cross-correlations are strongly enhanced, while the Andreev
current remains significant, see Figs. 5(c) and 5(d). The form
of the molecular states taking dominant part in transport can
shed some light on the observed behavior. In general, the
asymmetric detuning allows to form states with high ampli-
tudes of electron wave function on the left and right quantum
dots. Such distribution is favorable both for efficient transport
and Andreev current, as these dots are directly coupled to
ferromagnetic leads, as well as for Cooper pair splitting,
which is exposed in strong positive cross-correlations. Now,
if the hopping t is acquiring higher and higher values, the
distribution of the electron density for the TQD eigenstates in
the transport window is shifted toward middle quantum dot.
Moreover, hopping t is responsible for Andreev bound states
splitting. When an Andreev bound state is near the edge of the
bias window, its contribution to transport can be suppressed,
when the amplitude t becomes significant enough to split the
state out of the bias window. This effect results in additional
Coulomb steps appearing in current-voltage curves, while the
interdot hopping amplitude is increased. As a consequence
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of these two effects, the Andreev current is lowered and less
cross-correlated.

The above analysis demonstrates that it is favorable to
tune the device asymmetrically, with possibly small interdot
hopping t , especially when the efficient splitting is expected
within low-bias voltage regime. It is important to note, how-
ever, that the above considerations are valid for t � �, where
the molecular states on TQD system are well developed.
Further enhancement of transport properties should not be
expected for even smaller hopping amplitudes t < �.

D. Electron waiting time distribution

In this section we analyze the distribution of electron
waiting times for the considered three-site Cooper pair split-
ter. We designate waiting times between two specific jumps
into ferromagnetic leads, focusing especially on those related
to splitting of the Cooper pairs [49]. The relevant energies
present in the system fulfill the following relation: �,U �
|eV | � εL, εM, εR, �S, �. We also assume that the tempera-
ture T is low, such that transport is unidirectional and the
effects of thermally activated processes and thermal smear-
ing are negligible. Then, the considered parameter regime
allows us to describe the transport with Markovian master
equation [65,66].

The results are shown for the symmetric setup where all
three dots have the energy levels in resonance, εM = εL =
εR = 0, and for a strong antisymmetric detuning, where the
middle dot remains intact εM = 0, while the side dots’ energy
levels are set as εL = −εR = 10�S. For both detuning cases,
we examine two distinct coupling regimes: in the first one we
assume coupling ratio � = �S/10, where Cooper pairs are
rapidly injected into the triple dot, but the rate of transfer-
ring the electrons into the drains is slow. As a result, there
are coherent oscillations present in the distribution that are
taking place between the TQD and superconductor, as well
as oscillations due to the internal dynamics of the quantum
dot subsystem. In the second case, we set � = 10�S, where
the fast transfer of the emitted electrons is observed and
the splitting is efficient, while the oscillations are strongly
suppressed due to fast electron transfer rate to the ferromag-
netic contacts. We note that similar coupling considerations
have been already successfully studied in a hybrid single
quantum dot system, where the shot-noise revealed regimes
of strong superconducting correlations and suppression of the
proximity effect [67].

1. Absence of gate detuning (εL = εR = 0)

Let us start the discussion with the symmetric case, in
which we assume that all three quantum dots are in resonance
with the Fermi level, i.e., εM = εL = εR = 0. In Fig. 6 we
show the charge-resolved waiting time distributions for two
transition types, WLL where the WTD is estimated between
two subsequent tunneling events through the left junction,
and WRL where WTD is shown for the tunneling through the
left junction followed by the tunneling through the right one.
The WTD is considered in both the parallel (dashed lines)
and antiparallel (solid lines) magnetic configurations of the
ferromagnetic leads.
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FIG. 6. The charge-resolved electron waiting time distribution of
the triple quantum dot-based Cooper pair splitter. The parameters
are �S ≡ 1, t = 1, and εM = εL = εR = 0. (a) The results when
the coupling to ferromagnetic leads is equal to � = �S/10, while
(b) presents the results for � = 10�S. The dashed (solid) lines
correspond to the parallel (antiparallel) magnetic configuration of
the ferromagnetic leads. The corresponding insets present the WTD
plotted on logarithmic scale in an extended time period with approx-
imated decay rates.

Figure 6(a) presents the results in the case when the cou-
pling to ferromagnetic leads is weaker than the coupling to
superconductor � = �S/10. In this setup the Cooper pairs are
injected in a fast manner from superconductor to the triple
dot, while the bottleneck of the transport through the system
is due to the relatively weak coupling of TQD to the FM
contacts. In consequence, the waiting time distribution as
a function of time τ exhibits an oscillatory behavior, indi-
cating the presence of coherent oscillations of Cooper pairs
between superconductor and TQD and those resulting from
the internal dynamics of the triple quantum dot subsystem.
These oscillations are however not as regular as predicted
for single or double quantum dot systems [49,68], which is
due to the complex electronic structure and the interplay of
correlations in the considered model that were not present in
previously studied systems. As can be seen in Fig. 6(a), the
transitions WLL where two electrons tunnel into the left FM
lead are strongly suppressed for short times τ � 1 and have
a maximum near τ ≈ 1.5. This behavior is due to the fact
that the two electrons are not able to instantaneously tunnel
through the same junction. On the other hand, the transitions
to two different leads WRL, through the left and then through
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the right junction, have a high finite value at short times, which
approaches a maximum after passing time τ ≈ 2. This finite
WTD value at short times, compared to the distribution of
WLL, indicates the splitting processes present in the system,
as the tunneling through the left contact is quickly followed by
the tunneling through the right one. For longer times, τ � 2,
both WLL and WRL distributions start to equilibrate and evolve
slowly decaying in an irregular oscillatory manner.

If the ratio of couplings of TQD to FM leads and super-
conductor is inverted, i.e., � = 10�S, the Cooper pairs are
injected at slower rate than the rate of transferring electrons
into the drain leads. The WTD for this case is shown in
Fig. 6(b) for the same two types of transitions as shown in
Fig. 6(a). In consequence, the distribution in all the considered
cases is quantitatively similar. It exhibits a maximum for
times proportional to the inverse of injecting rate τ ≈ 1/�S

and quickly decays according to the coupling strength �.
The coherent oscillations between superconductor and TQD
or those due to internal dynamics of TQD subsystem are
no longer exposed in the WTD. Again, for transition WLL

the distribution is completely suppressed for τ → 0 and then
rapidly evolves to a maximum. On the other hand, the tran-
sition WRL has a significant finite probability at short times
with a maximum developing at earlier times compared to
WLL, see Fig. 6(b). From these dependencies one can expect
to have a high splitting efficiency at very short times τ �
1, and that the splitting concerns a single Cooper pair, as
the consecutive Cooper pair is unlikely to be injected into
the TQD system before transferring both electrons into the
drains. Finally, for both considered coupling ratios, in the case
of antiparallel magnetic configuration the distributions are
enhanced at shorter times compared to the parallel one, which
is more optimal for efficient and fast Cooper pair splitting.

The insets in Fig. 6 present the waiting time distributions
plotted in a logarithmic scale. A rough approximation of the
long-time behavior is performed in order to designate the
dependence on the coupling parameters. The dependencies are
Wab(τ ) ∼ e−Aτ� and Wab(τ ) ∼ e−Bτ�2

S/� for the considered
coupling ratios, � = �S/10 and � = 10�S, respectively, see
Figs. 6(a) and 6(b). The parameters A and B are of the order
of one and include a nontrivial dependence on the system’s
magnetic configuration and the internal parameters of the
TQD. We note that, quantitatively, the above predictions for
the asymptotic behavior of waiting time distributions are
similar to the results obtained recently for the double quantum
dot-based Cooper pair splitters [49].

In order to get a deeper understanding of the splitting
processes, we also determine the spin-resolved waiting time
distributions. Specifically, we analyze the distributions for
transitions WR↓L↑ and WR↑L↑, where the former one corre-
sponds to the scenario in which an electron with spin σ =↑
tunneled through to the left lead and then after time τ the
electron of opposite spin σ ′ =↓ tunneled through the right
junction strongly indicating CAR processes, while the latter
one describes the situation when through the left and right
junctions two electrons of spin σ = σ ′ =↑ were transferred.
A high probability of WR↑L↑ transitions at short times is
an unwanted characteristic, as it directly indicates that both
electrons have to be from two different Cooper pairs. The
corresponding WTDs are presented in Fig. 7.
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FIG. 7. The spin-resolved electron waiting time distribution for
the same parameters as in Fig. 6. (a) The results when the coupling
to ferromagnetic leads is equal to � = �S/10, while (b) is calculated
for � = 10�S. Dashed (solid) lines correspond to the parallel (an-
tiparallel) configuration.

When the coupling to normal contacts is smaller than that
to superconductor, see Fig. 7(a) for � = �S/10, the distribu-
tion shows that the antiparallel configuration is clearly more
favorable for the splitting efficiency, as split electrons are
mainly of the opposite spins, especially for short times where
the maximum is present, up to times τ ≈ 10. For longer times,
all distributions are approaching comparable values. When the
system is in the parallel configuration, the opposite (↓↑) and
the same (↑↑) spin contributions of WRL are getting closer
together, but still clearly at short times WR↓L↑ is dominant.

The characteristics are however less promising when the
coupling to the FM leads exceeds the coupling to supercon-
ductor, see Fig. 7(b) for � = 10�S. For short times, when
τ � 1, the transitions WR↓L↑ are dominating, but generally the
probability is higher in the parallel configuration compared
to the antiparallel one. On the other hand, the distribution
in the antiparallel configuration, due to lower probabilities
at shorter times, is more spread and significant in a wider
time range. WR↑L↑ in this regime is also strongly suppressed
for short times τ � 1, although the distribution quickly raises
to a maximum at τ ≈ 2 in both magnetic configurations.
Nonetheless, the maximum in the parallel configuration is
higher and results from a faster decay as the time elapses. We
recall the fact that the transition WR↑L↑ requires two distinct
Cooper pairs injected into the TQD subsystem. Therefore,
this transition is strongly suppressed for short times, τ � 1,
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for antisymmetric detuning of quantum dot energy levels. The
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as it is very unlikely that two Cooper pairs are provided in
such short time, while fast decay after the maximum is due to
considerable value of the coupling to FM leads.

2. Antisymmetric gate detuning (εL = −εR = 10�S)

The study of the Andreev current and its cross-correlation
dependencies for the antisymmetric detuning scheme has
already shown that this configuration is favorable for the
efficient splitting of Cooper pairs. The analysis of WTDs
presented in the sequel is generally in agreement with earlier
conclusions, especially when compared with the statistics in
the case of symmetric setup discussed in previous section.

In Fig. 8 the charge-resolved WTDs are shown for a strong
antisymmetric detuning εL = −εR = 10�S. When the cou-
pling ratio is in favor of the superconductor � = �S/10, fast
coherent oscillations are again present in the distributions, see
Fig. 8(a). Interestingly, due to the splitting of the Andreev lev-
els by means of antisymmetric detuning, additional oscillation
frequency is present, which results in the beatslike behavior,
see the inset of Fig. 8(a) with a logarithmic y scale. The distri-
bution for splitting transitions WRL is strongly shifted towards
short times, indicating fast emission of Cooper pairs through
CAR processes. Moreover, the transitions at short times are
increased even further in the antiparallel configuration. On the
other hand, the waiting time distribution for DAR processes
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FIG. 9. The same as in Fig. 8 determined for spin-resolved
electron waiting time distributions WR↓L↑ and WR↑L↑.

WLL is characterized by a weakly oscillating flat distribution,
which is much smaller compared to WRL and is similar in both
magnetic configurations.

For the reversed coupling situation, i.e., � = 10�S, all
distributions for the considered transitions are almost iden-
tical, see Fig. 8(b). The significant difference is again at
very short times, τ � 1, where the splitting transitions have a
considerable value, while direct processes are suppressed. The
oscillations induced by the Andreev levels splitting are evident
in the considered case, although additional oscillations are not
present due to fast transfer of the electrons through the device.

The corresponding spin-resolved distributions are dis-
played in Fig. 9. For � = �S/10, see Fig. 9(a), the splitting
transitions of opposite spins WR↓L↑ are strongly enhanced in
the antiparallel configuration for times τ � 4, as compared to
the parallel alignment. The distribution of splitting transitions
of electrons with the same spin WR↑L↑ remains intact and is
flat in the whole time range. Similarly, when the coupling
strengths are tuned such that � = 10�S, the spin-resolved
WTDs expose significant increase of the splitting transitions
when the system is in the antiparallel configuration.

IV. CONCLUSIONS

In this paper we have analyzed the subgap transport prop-
erties of the triple quantum dot-based Cooper pair splitters
with ferromagnetic contacts. The Andreev current, associated
differential conductance, tunnel magnetoresistance, as well as
current cross-correlations were calculated by means of the
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real-time diagrammatic technique. Additionally, the electron
waiting time distributions were found with the aid of Marko-
vian quantum master equation. The main focus was set on
the transport regime where the device works optimally as a
Cooper pair beam splitter, i.e., when the Cooper pairs injected
from the superconductor are transferred into two separate
ferromagnetic leads. In particular, two different schemes of
detuning the energy levels of the dots placed in the arms of
the splitter were considered: the symmetric and antisymmetric
one. The former scheme exposes rather moderate Andreev
transport properties, with one narrow regime where the An-
dreev current and positive cross-correlations are considerable.
On the other hand, when the dots’ levels are detuned antisym-
metrically, the device exhibits much more promising transport
characteristics as far as Cooper pair splitting is concerned,
with a possibility of maximizing the Andreev current and
obtaining high positive cross-correlations in a wide range of
parameters. The influence of interdot tunnel amplitude was
also analyzed with conclusion that considerable values of
this parameter may lead to reduction of the device splitting
efficiency in the low-bias regime. Furthermore, in the an-
tisymmetric detuning scheme, a significantly better waiting
time distributions for the splitting processes are predicted,
especially in antiparallel configuration of the leads. It is
important to emphasize that the efficiency enhancement of the
CPS device due to the use of ferromagnetic contacts revealed
in WTD, is predicted in particular for short times. We also
note that in both detuning scenarios we found the transport
regime where the Andreev current is suppressed due to a
triplet blockade. In addition, positive tunnel magnetoresis-
tance is predicted in a wide range of dot level detunings and
bias voltages.

We believe that the presented theoretical study extends the
understanding of hybrid devices working as quantum dot-
based Cooper pair splitters, and gives a valuable guidance
to tuning and optimizing experimental setups. Moreover, the
underlined importance of various correlations and interfer-
ence effects on transport processes of the analyzed system is
expected to stimulate further research in this area.
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APPENDIX: DETAILS OF FIRST-ORDER
DIAGRAMMATIC CALCULATIONS

Below we describe the details concerning calculations con-
ducted with the aid of the real-time diagrammatic technique

approach. An important step is to build the matrix W with
matrix elements being the transition rates Wχ ′χ . For that, it
is necessary to determine the corresponding self-energies. In
order to find the self-energies �χχ ′ , one needs to evaluate
all irreducible, topologically different diagrams describing
the tunneling processes. The contribution of each diagram is
calculated by applying the diagrammatic rules [55,56]. For the
description of the sequential tunneling transport regime, it is
necessary to calculate the self-energies within the first-order
perturbation expansion with respect to the tunnel coupling
� to ferromagnetic leads. The first-order diagrams contain a
single tunneling line. Here we present an exemplary diagram
contributing to the self-energy �

(1)
χ (N )χ ′(N+1).

where γ jσ (ω) = �σ
j

2π
f j (ω) is a factor associated with tunneling

line, while f j (ω) is the Fermi-Dirac distribution of lead j
and η = 0+. The above diagram accounts for an electron with
spin σ tunneling from the lead j, between states |χ (N )〉 and
|χ ′(N + 1)〉. N is the total occupation number of TQD sub-
system defined as N = ∑

jσ n jσ . All topologically different
diagrams need to be evaluated and their contributions summed
according to the |χ〉 and |χ ′〉 states. Then the self-energy
�χ (N )χ ′(N+1) is given by

�χ (N )χ ′(N+1) = 2π i
∑

jσ

γ jσ (εχ ′ − εχ )|〈χ ′|d†
jσ |χ〉|2.

The other self-energies can be calculated in a similar fash-
ion [55,56]. Then the self-energy is related to the elements of
matrix W through �χχ ′ = iWχ ′χ .

Finally, the matrix elements of WI j , i.e., the self-energy
matrix contributing to the current, are given by

W
Ij

χ (N )χ ′(N+1) = −
∑

σ

[1 − f j (εχ ′ − εχ )]�σ
j |〈χ |d jσ |χ ′〉|2,

(A1)
W

Ij

χ (N )χ ′(N−1) =
∑

σ

f j (εχ − ε′
χ )�σ

j |〈χ |d†
jσ |χ ′〉|2,

with W
Ij
χχ = 0.
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