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Generalized input-output method to quantum transport junctions. I. General formulation
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The interaction of electrons with atomic motion critically influences charge transport properties in molecular
conducting junctions and quantum dot systems, and it is responsible for a plethora of transport phenomena.
Nevertheless, theoretical tools are still limited to treat simple model junctions in specific parameter regimes. In
this paper, which forms the first paper of a series, we put forward a generalized input-output method (GIOM)
for studying charge transport in molecular junctions accounting for strong electron-vibration interactions and
including electronic and phononic environments. The method radically expands the scope of the input-output
theory, which was originally put forward to treat quantum optic problems. Based on the GIOM, we derive a
Langevin-type equation of motion for system operators, which possess a great generality and accuracy, and
permits the derivation of a stationary charge current expression involving only two types of transfer rates.
Furthermore, we devise the so-called polaron transport in electronic resonance approximation, which allows us to
feasibly simulate electron dynamics in generic tight-binding models with strong electron-vibration interactions.
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I. INTRODUCTION

Single-molecule devices offer a rich and versatile platform
for exploring the fundamentals of charge and energy trans-
port at the nanoscale and for making progress in electronic,
photovoltaic, and thermoelectric systems [1]. A confounding
aspect of electronic components fabricated from molecular
building blocks is that they operate based on quantum me-
chanical principles, yet the surrounding environments in the
form of electrical contacts, internal nuclear motion, solvent,
and electromagnetic fields fundamentally impact and alter the
charge-transport behavior. These environments do not fully
erase quantum signatures in the device, but in fact allow for
the realization of a plethora of compound many-body quan-
tum transport effects that build upon hybrid quasi-particles,
polarons, polaritons, and plasmons.

Efforts to utilize molecules as active electronic elements
[2] have converged into the field of organic and molecular
electronics [1]. Advanced experimental techniques [3–15]
have led to the discovery of a variety of intriguing many-body
phenomena in molecular junctions (MJs) in a metal-molecule-
metal motif [16–19], including length and temperature-
dependent charge transfer [12,13,20–35], quantum interfer-
ence effects [14,36–40], molecular thermoelectricity [41–44],
giant magnetoresistance [45], Kondo resonance [46,47], chi-
rality induced spin selectivity [48–50], and Franck-Condon
blockade (FCB) directed by vibrational effects [51–55], to
name just a few.

The potential to rationally design molecular electronic
devices hinges on our understanding of the underlying trans-
port phenomena [19,40]. To this end, simplified theoreti-
cal models capable of pinpointing fundamental mechanisms
are an indispensable tool. However, faithful modeling in-
evitably needs to take into account many-body interactions,

specifically the coupling between electrons and the nuclei’s
motion. Moreover, the application of voltage bias on the
contact electrodes necessitates a description of the junction
in the out-of-equilibrium regime.

Numerous approaches have been put forward to address
vibrationally coupled electron transport (VCET) processes in
MJs and, similarly, quantum dot systems. A partial list of
approximate analytic methods includes the inelastic scattering
theory [56–61], which only accounts for coherent scattering
events, mixed quantum-classical approaches [62–65] where
the vibrations are treated in a classical-like fashion, quantum
master equation (QME) techniques [66–77] which are often
limited to weak molecule-lead couplings and become inade-
quate to describe off-resonant tunneling, and the nonequilib-
rium Green’s function method (NEGF) [78–88]. Unambigu-
ously, the NEGF is state of the art among these tools. How-
ever, its complicated structure limits its applicability to simple
systems. Even so, standard formulations of the NEGF method
can not account for strong electron-vibration interactions due
to the cumulant expansion employed [89].

To provide benchmark calculations for analytic and per-
turbative studies, various numerically exact methods have
been developed, among them the hierarchical equation of
motion (HEOM) [90–98], multiconfigurational wave-function
methods [99,100], path integral techniques based on Monte
Carlo sampling [95,101–103], and the influence functional
formalism [104–106]. Complementing model system calcu-
lations, first-principles density-functional theory simulations
were integrated within the NEGF formalism [19,83,107–109]
to include structural details of the junction and provide much
insight into the transport process [19,40].

To make progress in organic and single-molecule elec-
tronics, it is imperative to develop a computationally feasible
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FIG. 1. Scheme of a metal-molecule-metal junction with N re-
peating molecular units. As a minimal model, each monomer (repre-
sented by a hexagon) includes a single electronic level of energy ωe.
The charge on each site is coupled to a local, “primary” vibrational
mode of frequency ωb, that is furthermore equilibrated by a thermal
bath with “secondary” modes, represented by the shaded region sur-
rounding the harmonic oscillator. Between monomers, g quantifies
the charge-transfer transition amplitude. �L,R is the hybridization
energy of the first and last sites to the left and right metal electrodes,
respectively. Setting μL > μR, the main observable of interest is the
steady-state charge current evaluated here at the left metal-molecule
interface, JL .

technique that treats (possibly strong) vibrational effects in
electronic conduction and can handle extended models. In this
first paper of a series, we tackle this challenge, introducing
an alternative route to common QME and NEGF frameworks,
tailored to the investigation of electron transport in molecular
transport junctions. Our approach builds upon the quantum
optical input-output method, which was previously advanced
mainly for optical cavities [110–120]. The framework is
termed the generalized input-output method (GIOM), and it
possesses a simple structure—and a wide domain of applica-
bility.

The GIOM relies on the definitions of generalized input
and output fields for the environments, which circumvent
the state-independent coupling approximation adopted in the
quantum optical input-output theory [110,111,113]. Further-
more, the standard input-output theory is generalized here to
include the coupling of system (molecular) operators to differ-
ent (bosonic, fermionic) environmental degrees of freedom.
Altogether, these extensions result in a so-called Heisenberg-
Langevin equation (HLE) for molecular operators that takes
into account strong couplings of the molecule to the metal
electrodes as well as to vibrational modes, which comprise
primary and secondary vibrations.

The appealing features of the GIOM are apparent in
a generic tight-binding model describing VCET across
molecules, quantum dots, and atoms, schematically repre-
sented in Fig. 1. In this case, HLEs for the electronic degrees
of freedom permit a formally exact steady-state solution for
the Hamiltonian we consider, which is amenable to approx-
imations and simulations. Remarkably, the mathematically
formal solution reveals that stationary charge current involves
only two types of generalized transfer rates. To achieve a
closed-form expression for the stationary charge current, we
devise the polaron transport in electronic resonance (PoTER)
approximation. The resulting charge current can be readily
evaluated and becomes exact in the coherent limit, regardless
of molecular complexities. Given this simplicity, the GIOM-

PoTER framework can be readily implemented in large sys-
tems, thereby holding promise to bridge microscopic-oriented
modelings and effective phenomenological descriptions. In
the companion paper [121], we demonstrate the utility of the
GIOM-PoTER scheme by investigating several prototypical
MJ models.

The paper is organized as follows. We present the GIOM
for generic VCET models in Sec. II. In Sec. III, we focus on
a generic tight-binding model. We devise the PoTER approx-
imation scheme, and derive a computationally feasible charge
current expression in the steady-state limit. We summarize our
work in Sec. IV.

II. GENERALIZED INPUT-OUTPUT METHOD

A. Quantum transport model

We start by defining a general model for describing VCET
in MJs. The total Hamiltonian contains three different parts:

H = HM + HE + HI . (1)

First, the molecular Hamiltonian HM accounts for a collection
of electronic states with on-site energies {ωe,n} and fermionic
annihilation operators {dn}, local molecular vibrations with
frequencies {ωb,n} and bosonic annihilation operators {bn},
and electron-vibration couplings as measured by dimension-
less coupling strengths {λn} (setting h̄ = 1, e = 1, kB = 1 and
the Fermi energy εF = 0 hereafter):

HM = He({ωe,n, dn}) +
∑

n

ωb,nb†nbn

+
∑

n

λnωb,n(b†n + bn)d†
n dn. (2)

Here, we consider the coupling of each electronic site to a
single local vibrational mode. However, generalizations to
include additional vibrational modes per site, even yet creat-
ing a “bath” of primary modes, is straightforward within our
scheme. Noting that the electronic part He may also depend
on additional internal parameters, for the moment, however,
its detailed form is not relevant and we do not specify it.

The environmental part HE contains two metallic leads
(L and R) and thermalized phonon baths that are associated
with the local nuclear motions of molecules. These secondary
modes allow vibrational relaxation of the primary modes:

HE =
∑

k,v=L,R

εkvc†kv
ckv +

∑
n, j

ωn, j r
†
n, j rn, j . (3)

Here ckv annihilates an electron in lead v with momentum
k. The thermal phonon baths are represented by collections
of harmonic oscillators with annihilation operators rn, j and
frequencies ωn, j . The third part, HI , stands for the interaction
between the molecule and its electronic and vibrational envi-
ronments,

HI =
∑

k,v=L,R

tkv (c†kv
dσ + d†

σ ckv ) +
∑
n, j

γn, j (r
†
n, jbn + b†nrn, j ),

(4)

here, σ = 1(N ) for v = L(R). We refer to dσ as boundary
operators since they are associated with terminal electronic
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sites of the molecule. We assume that the interaction between
the primary vibrational modes and the secondary-thermalized
modes is rather weak such that the rotating wave approxima-
tion is justified. The influence of each thermal bath, acting
on subunit n, is characterized by the spectral density νn(ω) =
π

∑
j γ

2
n, jδ(ω − ωn, j ). Similarly, we introduce spectral densi-

ties for the metal leads as �v (ε) = π
∑

k t2
kvδ(ε − εkv ).

To handle potentially strong electron-vibration couplings,
we perform the small polaron transformation with the unitary
operator G ≡ ∏

n(Dn,b)d†
n dn and displacement operators:

Dn,b ≡ exp[λn(b†n − bn)]. (5)

We neglect the effect of this transformation on the coupling
of primary modes to the thermal bath [80]. In more detail: In
the polaron-transformed Hamiltonian, we ignore the effective
weak interaction that forms between charge carriers and sec-
ondary phonons,

∑
n, j γn, jλnd†

n dn(r†n, j + rn, j ). This omission
is justified in the present paper since the energy γn, jλn is much
smaller than electronic energies ωe,n and the cutoff frequen-
cies of the secondary bath, by noting that (in the Markov limit
used) γn, j ∼ √

νn and ν ∼ 10−3 eV in our calculations. The
transformed Hamiltonian then reads

H̃ = GHG† = H̃M + HE + H̃I , (6)

with

H̃M = H̃e({ω̃e,n, d̃n}) +
∑

n

ωb,nb†nbn,

H̃I =
∑

kv

tkv (c†kv
d̃σ + d̃†

σ ckv ) +
∑
n, j

γn, j (r
†
n, jbn + b†nrn, j ). (7)

As can be seen, the transformation amounts to the renor-
malization of on-site energies, ωe,n → ω̃e,n = ωe,n − λ2

nωb,n,
and the dressing of the tunneling transition amplitudes; in the
above expressions, we introduce the polaron operator as

d̃n ≡ D†
n,bdn. (8)

Before presenting the GIOM, we point out that while we
discuss the model, the theoretical framework and our results in
the context of molecular transport junctions, this work can be
immediately applied to investigate related problems such as
(i) Charge transport in quantum dot setups defined e.g., within
nanotubes, with electrons coupled to different phonon modes
of the nanotube [53,122] and (ii) quantum optics scenarios
with quantum dots defined within heterostructures coupled to
cavity modes and phonons of the substrate [123].

B. Input-output equations of motion

To develop an input-output theory for the system, we first
write down Heisenberg equations of motion (EOMs) for the
annihilation operators of the environments (electronic and
secondary phonon modes) in the polaron frame,

ṙn, j = −iωn, j rn, j − iγn, jbn, (9a)

ċkv = −iεkvckv − itkv d̃σ , (9b)

where we have introduced the notation Ȧ ≡ dA/dt . From the
above EOMs, we get the following formal solutions:

rn, j (t ) = e−iωn, j (t−t0 )rn, j (t0) − iγn, j

∫ t

t0

e−iωn, j (t−τ )bn(τ )dτ,

(10a)

ckv (t ) = e−iεkv (t−t0 )ckv (t0) − itkv

∫ t

t0

e−iεkv (t−τ )d̃σ (τ )dτ.

(10b)

Here t0 is the initial time at which the dynamical evolution
begins. As the coupling of primary modes to the phonon
thermal bath is weak, we approximate bn(τ ) by bn(t )eiωb,n(t−τ )

in Eq. (10a), yielding∑
j

γn, j rn, j (t ) =
√

2πbn
in(t ) − ibn(t )

∑
j

γ 2
n, j

×
∫ t

t0

e−i(ωn, j−ωb,n )(t−τ )dτ, (11)

where we have defined the input field:

bn
in(t ) ≡ 1√

2π

∑
j

γn, je
−iωn, j (t−t0 )rn, j (t0). (12)

Assuming that νn(ω) is about a constant at the vicinity
of ωb,n, we find that

∑
j γ

2
n, je

−i(ωn, j−ωb,n )t is nonzero only
around t = 0. We then extend the lower limit of integration
on the right-hand side of Eq. (11) to −∞ and proceed
as

∑
j γ

2
n, j

∫ ∞
0 e−i(ωn, j−ωb,n )τ dτ ≈ νn(ωb,n) ≡ νn; we have ne-

glected the Cauchy principal value, which just stands for a
minute frequency renormalization. Overall, we get∑

j

γn, j rn, j (t ) =
√

2πbn
in(t ) − iνnbn(t ). (13)

Here, νn is the damping rate (energy over h̄) on site n of
primary modes of frequency ωb,n to the associated thermal
bath. Contrasting this derivation to steps in the quantum op-
tical input-output theory [110,111,113], we note that here we
define the input field from the summation

∑
j γn, j rn, j , instead

of
∑

j rn, j . By doing so, we circumvent the state-independent
coupling approximation adopted in the quantum optical input-
output theory [110,111,113], which assumes that the coupling
coefficients γn, j = γn are independent of the mode index j.

Proceeding with the metallic leads, we consider the wide-
band limit [124] such that we can exactly turn Eq. (10b) into

∑
k

tkvckv (t ) =
√

2πdv
in(t ) − i�v d̃σ (t ) (14)

without compromising the magnitude of hybridization energy
�v . The input fields from the metal leads are defined as

dv
in(t ) ≡ 1√

2π

∑
k

tkve−iεkv (t−t0 )ckv (t0). (15)

The definitions of input fields in terms of environment op-
erators at the initial time ensure that they can be speci-
fied as initial conditions. Here, we prepare the initial state
of the composite system to be such that, at t = t0, the
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molecule and its environments factorize. Specifically, we
assume that the metal leads and the vibrational thermal
baths are initially in their thermal equilibrium states char-
acterized by the Fermi-Dirac distribution function nv

F (ε) =
{exp[(ε − μv )/T ] + 1}−1 with μv the chemical potentials
and T the temperature, and the Bose-Einstein distribution
function nB(ω) = [exp(ω/T ) − 1]−1, respectively. The re-
sulting anticommutation/commutation relations, correlation
functions for input fields, which define their statistics, as well
as input-output relations that connect input and output fields
can be found in Appendix A.

We now write down the Heisenberg EOM for an arbitrary
molecular operator O:

Ȯ = i[H̃M,O] − i
∑

kv

tkv{[O, c†kv
d̃σ ] + [O, d̃†

σ ckv]}

−i
∑
n, j

γn, j{[O, r†n, jbn] + [O, b†nrn, j]}. (16)

As the molecular system contains both fermionic and bosonic
operators, we should treat them separately. To this end, we re-
define quantum commutator and anticommutator as [A, B]− ≡
[A, B] and [A, B]+ ≡ {A, B}, respectively. The EOM for O can
be expressed as

Ȯ = i[H̃M,O]− − i
∑

kv

tkv{∓c†kv
[O, d̃σ ]± + [O, d̃†

σ ]±ckv}

−i
∑
n, j

γn, j{r†n, j[O, bn]− + [O, b†n]−rn, j}. (17)

Here, the top signs apply if O is a fermionic operator; the
bottom signs apply if O is bosonic. Making use of Eqs. (13)
and (14), we obtain the HLE

Ȯ = i[H̃M,O]− − i
∑

v

Lv
± − i

∑
n

Xn, (18)

where the fermionic and bosonic environments enter through

Lv
± ≡ ∓(

i�v d̃†
σ +

√
2πdv,†

in

)
[O, d̃σ ]±

+[O, d̃†
σ ]±

( − i�v d̃σ +
√

2πdv
in

)
,

Xn ≡ (
iνnb†n +

√
2πbn,†

in

)
[O, bn]−

+[O, b†n]−
( − iνnbn +

√
2πbn

in

)
. (19)

This HLE constitutes the first main result of this study. Before
proceeding to derive it for tight-binding models, there are
several features of Eq. (18) that are worth mentioning. First, it
does not rely on molecular details and thus possesses a great
generality. Second, the electronic part is treated exactly in the
wide band limit. Third, there is no corresponding Lindblad
master equation for Eq. (18) as it can treat possible strong
hybridization energy, in direct contrast to standard quantum
optical input-output theory [111]. Moreover, the equation
conserves the overall charge.

The main observable of interest in the steady-state limit is
the charge current across the system. Introducing the charge
occupation number operator of the left lead (source electrode),
nL ≡ ∑

k c†kLckL, the charge current out of the L metal is

formally given by

JL = − d

dt
〈nL〉 = i

∑
k

tkL〈(c†kLd̃1 − d̃†
1 ckL )〉, (20)

with the average performed over the initial factorized state of
the composite system. In the language of the input field, using
Eq. (14), we get

JL = 2
(√

2π Im
〈
d̃†

1 dL
in

〉 − �L〈d†
1 d1〉

)
. (21)

Here, Im refers to an imaginary part.
In a complete analogy to the input fields, one can define

output fields by solving Eqs. (9a) and (9b) for t1 > t , rather
than from the initial condition t0 (see Appendix A). This
allows the derivation of a Langevin-type equation, which is
parallel to Eq. (18), but given in terms of the output fields.
However, due to the existence of input-output relations as
given in Appendix A, it is sufficient to work with the input
fields.

Before proceeding, we recall other EOM methods that
have been developed to treat transport problems, such as the
Heisenberg EOM approach [125,126] and methods written
in the form of the Langevin equation [63,127]. However, so
far, the Heisenberg EOM approach has been only applied
to simple noninteracting electronic systems, since it requires
the inverse Laplace transform to calculate the dynamics of
observables, typically a tedious and prohibitive task in molec-
ular systems. Langevin equation techniques discussed in the
literature for quantum transport are formulated for density
matrix elements within the scope of the QME [63,127]. In
contrast, the GIOM formulates the dynamics at the level of
operators, rather than states, and it is nonperturbative.

III. GIOM FOR TIGHT-BINDING MODELS

We now apply the HLE Eq. (18) to a generic tight-binding
model with electron-vibration couplings, culminating with
a closed-form expression for the stationary charge current.
The section includes two powerful results of theoretical and
computational importance:

(i) From the theoretical side, we arrive at a formally exact
EOM, Eq. (24), for molecular electronic operators in an open,
many-body system described by the polaronic Hamiltonian
[cf. Eq. (6) together with Eq. (22)], barring two elements
from our modeling: The effective electron-secondary phonon
bath coupling was omitted from the polaronic Hamiltonian,
and the wide band limit for the reservoirs was enforced.
One can write down a formal solution to Eq. (24), that is,
Eq. (29). However, we point out that Eq. (29) is not closed,
in the sense that it should be supplemented by EOMs for the
local vibrations. Nevertheless, Eq. (29) already leads to an
interesting fundamental observation that the functional form
of the stationary charge current only depends on two kinds of
transfer rates involving one or two electronic resonances.

(ii) To allow feasible calculations, we further devise an
approximate solution to Eq. (24), that is, Eq. (32). This solu-
tion neglects some aspects of electron-vibration interactions
(as we describe in this section), and we refer to it as the
PoTER approximation. As evident from its title, this PoTER
approximation describes the transport of polarons through

155406-4



GENERALIZED INPUT-OUTPUT METHOD TO QUANTUM … PHYSICAL REVIEW B 101, 155406 (2020)

electronic resonances, eigenstates of electronic Hamiltonian
He that are broadened by their hybridization to the metal
reservoirs. Notably, in the context of the GIOM, the electronic
current is given in terms of only two types of rates, and the
PoTER approximation allows for an economical simulation of
these rates, and therefore the charge current for a broad range
of parameters.

A. Formally exact dynamical solution for electrons

We specify the model Hamiltonian of Eqs. (6) and (7)
and apply the GIOM. The model includes a tight-binding
chain with vibrational coupling, see Fig. 1. We assign a single
electronic state to each repeat unit of a molecular wire. For the
electronic part, we therefore have

H̃e =
N∑

n=1

ω̃e,nd†
n dn +

N−1∑
n=1

gn(d̃†
n d̃n+1 + d̃†

n+1d̃n), (22)

with gn as the hopping element between sites n and n + 1;
N is the total number of electronic states. The single-site case,
N = 1, corresponds to the eminent single-impurity Anderson-
Holstein model. Multisite extensions involve two electronic
sites, and beyond.

Inserting the above form into Eq. (18), we obtain the
following coupled EOMs for the bare electronic operators dn,

ḋ1 = −(�L + iω̃e,1)d1 − ig1D1,bD†
2,bd2 − i

√
2πD1,bdL

in,

ḋn �=1,N = −iω̃e,ndn − ign−1Dn,bD†
n−1,bdn−1

−ignDn,bD†
n+1,bdn+1,

ḋN = −(�R + iω̃e,N )dN − igN−1DN,bD†
N−1,bdN−1

−i
√

2πDN,bdR
in. (23)

Notably, EOMs for boundary operators d1,N naturally in-
corporate level broadening due to molecule-lead coupling.
By introducing column vectors d = (d1, d2, · · · , dN )T , d̃ in =
(D1,bdL

in, 0, · · · , 0,DN,bdR
in)T , we recast Eqs. (23) into a ma-

trix form:

ḋ = −M · d − i
√

2π d̃ in. (24)

Note that d̃ in includes the dressing of input fields by dis-
placement operators. The drift matrix M is of a tridiagonal
structure with elements [M]nm = WnmDn,bD†

m,b. Here, Wnn =
�Lδn1 + �RδnN + iω̃e,n and Wn,n+1 = Wn+1,n = ign; δkp is the
Kronecker delta function.

We now formally introduce the matrix R whose rows are
made of the left eigenvectors of the drift matrix M:

R · M = �M · R. (25)

Here �M = diag(�1, · · · ,�N ) is a diagonal matrix with
eigenvalues {�n} representing electronic resonances. The fact
that electronic resonances are characterized by complex c
numbers implies the form for matrix elements in the site basis,
[R]nm = s̃nmDn,bD†

m,b with s̃nm complex c numbers according
to Eq. (25).

We now make an important observation: The determinant
of M − �I is equivalent to that of another tridiagonal matrix,

M0 − �I, having the same eigenvalue matrix � and [M0]nm =
Wnm; the M0 matrix does not include vibrational operators.

This claim can be proved by noting that the determinant of
a tridiagonal matrix can be easily evaluated through the con-
tinuant of its elements. Defining fN = det[MN×N − �IN×N ],
the sequence { fN } is called the continuant and satisfies the
recurrence relation fN = (WNN − �) fN−1 + g2

N−1 fN−2 with
the boundary conditions f1 = �L + iω̃e,1 − �, f0 = 1 and
f−1 = 0. As can be seen, the sequence is fully equivalent to
that of M0 − �I. Therefore, the task of determining R and
�M corresponds to the diagonalization problem of R0 · M0 =
�M · R0 with [R0]nm = s̃nm, thereby avoiding the displace-
ment operators that appear in the original matrices. In fact, this
correspondence also holds for one-dimensional models with
long-range interactions, noting that displacement operators
involved in [M]nm and [M]mn are always complex conjugate.

For small N , this diagonalization permits an analytical
treatment. For larger N , we resort to a numerical diagonal-
ization of the tridiagonal matrix M0. We reiterate that the
diagonal matrix �M involves the set of electronic resonances
of the system (c numbers). These broadened energy levels de-
scribe the electronic states of a molecule hybridized to metal
electrodes. Equipped with the knowledge that the diagonal
matrix �M does not depend on nuclear coordinates, we rewrite
Eq. (24):

R · ḋ = −�M · R · d − i
√

2πR · d̃ in. (26)

To proceed, we further reorganize Eq. (26):

d

dt
(R · d ) = −(�M − Ṙ · R−1) · R · d − i

√
2πR · d̃ in. (27)

Here, R−1 denotes the inverse matrix of R with the ma-
trix elements [R−1]nm = snmDn,bD†

m,b. Unlike �M , Ṙ · R−1

depends on the nuclear coordinates, and it includes nonzero
off-diagonal matrix elements in the site basis:

[Ṙ · R−1]nm =
∑

k

s̃nkskm(λnṖn − λkṖk )Dn,bD†
m,b

= δnmλnṖn −
∑

k

s̃nkskmλkṖkDn,bD†
m,b. (28)

For simplicity, we introduce the notation Pn ≡ b†n − bn.
In obtaining the second line, we used the fact that∑

k s̃nkskmDn,bD†
m,b = δnm since R · R−1 = I.

The exact dynamical evolution of electronic degrees of
freedom is given by the formal solution of Eq. (27) in the
steady-state limit:

d(t ) = −i
√

2π

∫ t

−∞
dτR−1(t )e−�M (t−τ )

×e
∫ t
τ

Ṙ(τ ′ )R−1(τ ′ )dτ ′
R(τ )d̃ in(τ ). (29)

The term resulting from the initial condition, d(t0), is dropped
as it does not contribute to the ensemble average in the steady-
state limit [for the terms involved in charge current Eq. (21),
this is evident by noting the causality that d(t0) does not
correlate with the input fields in the future].
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From the above formal solution, we can find, for instance,
the evolution of the operator d1,

d1(t ) = −i
√

2π
∑
nm

∫ t

−∞
dτ

[
s1ns̃m1Knm(t, τ )dL

in(τ )

+s1ns̃mN Knm(t, τ )dR
in(τ )

]
, (30)

where we defined

Knm(t, τ ) = e−�n(t−τ )D1,b(t )D†
n,b(t )

×
[

exp

(∫ t

τ

(ṘR−1)τ ′dτ ′
)]

nm

Dm,b(τ ). (31)

This term incorporates all the vibrational effects. Altogether,
beginning with the exact EOM of the GIOM, Eq. (24),
we obtain a formally exact solution Eq. (29) for electronic
operators. Interestingly, by inserting Eq. (30) into Eq. (21),
one immediately reveals that the charge current expression
builds upon only two types of transfer processes involving
one and two electronic resonances, which we will elaborate
on later. Nevertheless, since nuclear coordinates appear in
the combination (ṘR−1)τ ′ , which evolves in time according
to the full Hamiltonian H̃ given by Eq. (6), the problem is
formidable and it requires making approximations to become
practical.

B. PoTER approximation

We now devise an approximation that allows us to reach a
highly efficient computational scheme for solving the GIOM
equations, Eq. (24), and obtain a closed form for stationary
charge current. This so-called PoTER approximation includes
two components. In Sec. III B 1, we elaborate on the first
part of the PoTER approximation: polarons are transmitted
between the metals through purely electronic resonances. In
Sec. III B 2, we perform the second part of the PoTER
approximation: The vibrational degrees of freedom, which
form the polaron, time evolve without the back action of
electrons.

1. First part of PoTER: Simplified dynamical evolution

Under the first part of the PoTER approximation,
we simplify the kernel in Eq. (31) and replace
[ exp (

∫ t
τ

(ṘR−1)τ ′dτ ′)]
nm

with δnm. This approximation
amounts to (i) neglecting nonlocal vibration effects with
n �= m in the dynamical evolution of electronic degrees
of freedom and (ii) neglecting phonon corrections to the
electronic resonances. This reduces Eq. (29) to

d(t ) ≈ −i
√

2π

∫ t

−∞
dτR−1(t )e−�M (t−τ )R(τ )d̃ in(τ ). (32)

Specifically, Eq. (30) becomes

d1(t ) ≈ −i
√

2π
∑

n

∫ t

−∞
dτ

[
s1ns̃n1KPoTER

n (t, τ )dL
in(τ )

+s1ns̃nN KPoTER
n (t, τ )dR

in(τ )
]
, (33)

with the PoTER kernel,

KPoTER
n (t, τ ) = e−�n (t−τ )D1,b(t )D†

n,b(t )Dn,b(τ ). (34)

For simplicity, in what follows we replace the approximate
symbol by an equality, since we consistently work the PoTER
approximation.

Elaborating on this approximation, the term (ṘR−1) in
Eq. (29) involves time derivative of Dn,bD†

m,b. It is propor-
tional to λnṖn − λmṖm, or approximately to λnωb,n(b†n + bn) −
λmωb,m(b†m + bm), once we consider free vibrations, b†n(t ) =
b†n(0)eiωb,nt . Therefore, the first part of the PoTER approxi-
mation amounts to assuming that nuclear displacements are
uniform across the lattice. This assumption is expected to be
reasonably valid for a tight-binding model with identical (or
similar) repeating units and when the dissipation to secondary
modes is weak.

It is worth mentioning that (i) the PoTER solution Eq. (32)
is exact in the coherent limit ({λn} → 0) since then R is
strictly time independent, (ii) in Appendix B, we prove that the
PoTER scheme does not impact the total charge conservation,
and (iii) the solution for d†

1 is just the Hermitian transpose of
Eq. (33); the PoTER approximation does not cripple this rela-
tion. We show that by writing down the EOM for row vectors

d† = (d†
1 , d†

2 , · · · , d†
N ), d̃

†
in = (dL,†

in D†
1,b, 0, · · · , 0, dR,†

in D†
N,b),

ḋ
† = −d† · M† + i

√
2π d̃

†
in. (35)

We diagonalize M† in terms of M† · Q = Q · �
M

with Q = R† and find the PoTER solution d†(t ) =
i
√

2π
∫ t
−∞ dτ d̃

†
in(τ )Q(τ )e−�

M (t−τ )Q−1(t ), which is the

Hermitian transpose of Eq. (32). Hence, we can obtain d†
1

directly from the Hermitian transpose of Eq. (33).
So far, we discussed the first part of the PoTER approx-

imation: Polarons are transmitted through purely electronic
resonances. The second part of the approximation is practiced
in the next subsection and it concerns the time evolution
of the vibrations forming the polaron: We propagate the
displacement operators Dn,b(t ) while ignoring back action
from charge carriers. This approximation allows us to prepare
and evaluate the time correlation function of the polaron, a
component in the expression of the charge current.

2. Second part of PoTER: Charge current expression

In this section, we derive a closed-form expression for the
steady-state charge current. Our starting point is the definition,
Eq. (21), with the average performed with respect to the initial
total density matrix, which is assumed to be in a factorized
form, ρ(t = 0) = ρe ⊗ ρb. Here ρe is the initial state for the
electronic degrees of freedom, factorized to the two baths and
the molecular electronic system, ρe = ρL ⊗ ρR ⊗ ρS . ρb is the
initial state for the bosonic modes. It is factorized between the
N sites, and between the the primary and secondary modes,
the latter are assumed to be in a thermal state.

Using the PoTER solution, Eq. (33), and the commutation
relations of input fields from Appendix A, we get

√
2π Im

〈
d̃†

1 dL
in

〉 =
∑

n

Re
[
�L

nχL
n

]
. (36)
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Here Re refers to the real part. We have denoted by �L
n =

s1ns̃n1 and defined the transfer rate

χv
n = 2�v

∫
dε

2π
nv

F (ε)
∫ ∞

0
dτeiετ e−�nτ Bn(τ ), (37)

with the vibrational correlation function Bn(t − τ ) =
〈D†

n,b(t )Dn,b(τ )〉; the index n recounts the electronic
resonances. We refer to this rate as first order since it involves
a single electronic resonance, �n. Clearly, χv

n describes a
transfer event assisted by a single electronic resonance and
dressed by local vibrational correlations.

The derivation of Eq. (37) is detailed in Appendix C.
It involves the second part of the PoTER approximation:
We ignore the back action of electrons on primary modes
in the polaron frame and separately organize electronic and
vibrational correlation functions. This step corresponds to the
electron-vibration decoupling approximation implemented in
NEGF-based studies [89].

We proceed and calculate the vibrational correlation func-
tion using the decoupled EOMs for the primary modes,
Eq. (18), ḃn ≈ −(νn + iωb,n)bn − i

√
2πbn

in. We get

Bn(τ ) = exp

[
−λ2

n

∫
dω

νn(ω)

π

1

ν2
n + (ω − ωb,n)2

× (coth(βω/2)(1 − cos ωτ ) + i sin ωτ )

]
. (38)

Details can be found in Appendix D.
The second contribution to the charge current involves the

stationary charge occupation on the first site:

〈d†
1 d1〉 = 1

2

∑
nm,v

�v
nm

�v

ηv
nm. (39)

Here, we have denoted the coefficients �L
nm = s

1ns̃
n1s1ms̃m1,

�R
nm = s

1ns̃
nN s1ms̃mN and introduced the transfer rate (see

Appendix C):

ηv
nm = 4�2

v

∫
dε

2π
nv

F (ε)

[∫ ∞

0
dτeiετ e−�nτ Bn(τ )

]

×
[∫ ∞

0
dτeiετ e−�mτ Bm(τ )

]
. (40)

We refer to this rate as second order since it involves two
resonances; diagonal terms are exceptions as they reduce to
first-order rates, ηv

nn = 2�v

Re�n
Re[χv

n ], after performing a time
integration. To evaluate the autocorrelation function of the
polaron, we neglect the back action of electrons on the vi-
brational dynamics.

Inserting Eqs. (36) and (39) into Eq. (21), we build the final
expression for the charge current out of the left lead:

JL = 2
∑

n

Re
[
�L

nχL
n

] − �L

∑
nm,v

�v
nm

�v

ηv
nm. (41)

Similarly, the steady-state charge current out of the right
lead, JR, can be expressed as JR = 2

∑
n Re[�R

n χR
n ] −

�R
∑

nm,v

�̃v
nm

�v
ηv

nm with �R
n = sNns̃nN , �̃R

nm = s
Nns̃

nN sNms̃mN

and �̃L
nm = s

Nns̃
n1sNms̃m1. These two analytic charge current

expressions represent one of main results of this study. As the
method maintains the charge conservation, it should satisfy
JL = −JR in the steady-state limit.

Notably, the charge current involves only two types of rates
as revealed by the GIOM, regardless of molecular complexi-
ties. The PoTER approximation allows their facile evaluation
with computational efforts scaling quadratically with system
size, N2: The rates χn depend on individual eigenvalues �n.
The rates ηnm involve charge transfer jointly through two
resonances.

C. Discussion

When do we expect the GIOM-PoTER treatment to be
accurate? As mentioned above, the PoTER approximation
does not affect the purely electronic problem, i.e., it exactly re-
covers the Landauer form with the correct transmission func-
tion. It is also expected to be accurate in the low-temperature
regime when nuclear motion is largely suppressed. Moreover,
for the single impurity problem with electron-vibration inter-
action, Eq. (32) is exact since M simply involves the electronic
resonance without vibrational corrections, which are fully
delegated to the input fields. In other words, the first part of the
PoTER approximation is redundant for the single-site case.
Lastly, for short wires, we expect corrections to Eq. (32) due
to nonlocal vibrational effects and vibrational self-energies to
be minor. However, these terms could become important in
long wires, particularly once energy dissipation is substantial.

Before concluding, it it worthwhile to compare and con-
trast the PoTER scheme with existing approximations on
electron-vibration coupling in quantum transport problems
such as the Born-Oppenheimer adiabatic decoupling scheme
[80], the polaron tunneling approximation [128], and the
dressed tunneling approximation [129]. These methods, based
on the nonequilibrium Green’s function formulation, were
described for the single-site case, for which the first PoTER
approximation becomes redundant. The second part of PoTER
is similar to approximations performed in NEGF-based stud-
ies. There, the electron-phonon decoupling approximation
corresponds to neglecting parts of the electron-vibration cor-
relations, as we do in the second PoTER approximation.
However, in our paper, we do not invoke a self-consistent
procedure, which can readmit parts of the neglected electron-
phonon correlation. These corrections will be considered in
future work.

IV. SUMMARY

In this work, we presented an original framework for
studying the electronic current in vibrationally coupled MJs,
an alternative approach to standard (often costly and cum-
bersome) nonequilibrium Green’s function and perturbative
QME methods. Specifically, there are two main contributions
to this paper:

(i) The first achievement lies in the generalization of
the quantum optical input-output method to treat quantum
transport junction problems culminating with a formally exact
electronic equation of motion [cf. Eq. (24)] for the polaronic
Hamiltonian we considered. A central advantage of our GIOM
lies in its transparency: The formal steady-state solution (at
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the level of operators), Eq. (29), clearly displays the effect of
electron-vibration couplings on electron transport: This inter-
action leads to the formation of polarons that are transported
through vibrationally modified electronic resonances.

(ii) We devise an approximation scheme to the GIOM,
that is, the PoTER solution. Equation (32) describes polaron
transport through purely electronic resonances. Expectation
values for electronic operators are calculated by neglecting
nonlocal vibrational correlations as well as back actions
of electrons on vibrations. Using this approach, we avoid
perturbation expansions of parameters, achieve computation-
ally manageable closed-form expressions for the charge cur-
rent, and explore challenging parameter regimes. Notably,
in the GIOM scheme, the charge current expression for
a generic tight-binding model involves only two types of
transfer rates, which are easily computed under the PoTER
approximation.

In the companion paper to this one [121], we focus on
applications of the GIOM-PoTER framework in paradigmatic
MJs of tight-binding forms. This includes single-site and two-
site models, which are frequently employed in experiment-
theory studies, as well as cavity-coupled MJs.
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APPENDIX A: STATISTICS OF INPUT FIELDS AND
INPUT-OUTPUT RELATIONS

From the definitions of the input fields, we easily identify
the following commutation/anticommutation relations:

[
bn

in(t ), bm,†
in (t ′)

] = δnm

∫
dω

νn(ω)

2π2
e−iω(t−t ′ ), (A1a)

{
dv

in(t ), dv′,†
in (t ′)

} = δvv′�v

∫
dε

2π2
e−iε(t−t ′ ), (A1b)

from which we obtain the following correlation functions for
input fields:

〈
bn,†

in (t ′)bm
in(t )

〉 = δnm

∫
dω

νn(ω)

2π2
e−iω(t−t ′ )nB(ω),

〈
bn

in(t )bm,†
in (t ′)

〉 = δnm

∫
dω

νn(ω)

2π2
e−iω(t−t ′ )[1 + nB(ω)

]
,

〈
dv,†

in (t ′)dv′
in (t )

〉 = δvv′�v

∫
dε

2π2
e−iε(t−t ′ )nv

F (ε),

〈
dv

in(t )dv′,†
in (t ′)

〉 = δvv′�v

∫
dε

2π2
e−iε(t−t ′ )[1 − nv

F (ε)
]
. (A2)

Here nB(ω) = {exp[ω/T ] − 1}−1 and nv
F (ε) = {exp[(ε −

μv )/T ] + 1}−1 are the Bose-Einstein distribution and the
Fermi-Dirac distribution, respectively.

To define output fields, we express the formal solution of
Eqs. (9a) and (9b) in terms of the final conditions rn, j (t1) and
ckv (t1) at a later time t1 > t :

rn, j (t ) = e−iωn, j (t−t1 )rn, j (t1) + iγn, j

∫ t1

t
e−iωn, j (t−τ )bn(τ )dτ,

(A3a)

ckv (t ) = e−iεkv (t−t1 )ckv (t1) + itkv

∫ t1

t
e−iεkv (t−τ )d̃σ (τ )dτ.

(A3b)

Introducing output fields

bn
out (t ) ≡ 1√

2π

∑
j

γn, je
−iωn, j (t−t1 )rn, j (t1), (A4a)

dv
out (t ) ≡ 1√

2π

∑
k

tkve−iεkv (t−t1 )ckv (t1), (A4b)

we obtain the input-output relations,

bn
out (t ) − bn

in(t ) = −i

√
2

π
νnbn(t ), (A5a)

dv
out (t ) − dv

in(t ) = −i

√
2

π
�v d̃σ (t ). (A5b)

APPENDIX B: CHARGE CONSERVATION

The total charge should be conserved in the junction, that
is in the molecule + metals. Given the approximate solution,
Eq. (32), its validity in this respect requires a careful exam-
ination. To this end, we focus on the time derivative of the
total number operator in the system,

∑
n d†

n dn, which is just

ḋ
†
d + d†ḋ in a matrix form. From Eq. (32), we find that

ḋ(t ) = −i
√

2πR−1(t )

[
− �M

∫ t

−∞
dτe−�M (t−τ )R(τ )d̃ in(τ )

+R(t )d̃ in(t )

]
= −M(t ) · d(t ) − i

√
2π d̃ in(t ), (B1)

by noting that M(t ) = R−1(t ) · �M · R(t ). Hence, we have

d

dt

∑
n

d†
n dn = −d† · (M + M†) · d − i

√
2πd† · d̃ in

+i
√

2π d̃
†
in · d. (B2)

The right-hand side of the above equation is compensated
by d (

∑
kv c†kv

ckv )/dt = ∑
v (i

√
2π d̃†

σ dv
in − i

√
2πdv,†

in d̃σ +
2�vd†

σ dσ ). Charge conservation therefore implies that

−d† · (M + M†) · d + 2�vd†
σ dσ = 0, (B3)

which is true regardless of the PoTER approximation. We
conclude that the approximate solution Eq. (32) conserves the
total charge.

APPENDIX C: CHARGE CURRENT EXPRESSION IN
THE GIOM

In this Appendix, we derive the charge current expression
under the GIOM and show that it is given by two types of
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rates. Performing the PoTER approximation, we reach simple
integral forms for these rates that allow facile calculations.
In fact, if we only make the second PoTER approximation,
that is we propagate the vibrations without back action of
electrons, we reach a closed form expression for the current,
which allows extensions beyond results presented in this
paper.

We begin with Eq. (21), an exact form for the charge
current, and focus on

C1(t ) ≡ −
√

2π Im
〈
dL,†

in (t )d̃1(t )
〉

= 2πRe
∑
nm

∫ t

−∞
dτ s1ns̃m1

〈
dL,†

in (t )D†
1(t )Knm(t, τ )dL

in(τ )
〉

+ 2πRe
∑
nm

∫ t

−∞
dτ s1ns̃mN

〈
dL,†

in (t )D†
1(t )Knm(t, τ )dR

in(τ )
〉
,

(C1)

with the kernel defined in Eq. (31) and the operator of the
system given by Eq. (30). To proceed, we make the second
PoTER approximation, which allows us to separate the nu-
clear and electronic correlation functions. Mixed correlation
functions of the left and right lead electrons are zero and we
get

C1 = 2πRe
∑
nm

∫ t

−∞
dτ s1ns̃m1

〈
dL,†

in (t )dL
in(τ )

〉〈D†
1(t )Knm(t, τ )〉.

(C2)

We reorganize the result as

C1 = Re
∑
nm

s1ns̃m1χ
L
nm, (C3)

where

χv
nm = 2�v

∫
dε

2π
nv

F (ε)
∫ ∞

0
dτeiετ e−�nτ Bnm(τ ), (C4)

with

Bnm(t − τ ) =
〈
D†

n,b(t )

[
exp

(∫ t

τ

(ṘR−1)τ ′dτ ′
)]

nm

Dm,b(τ )

〉
.

(C5)

We identify χv
nm as the first-order rate; it depends on a sin-

gle electronic resonance. The correlation function Bnm(t − τ )
only involves vibrational degrees of freedom and one should
be able to simulate it under certain assumptions. Here, we
perform the PoTER and replace [ exp (

∫ t
τ

(ṘR−1)τ ′dτ ′)]
nm

with δnm. This allows us to reach

C1 = Re
∑

n

s1ns̃n1χ
L
n , (C6)

with

χv
n = 2�v

∫
dε

2π
nv

F (ε)
∫ ∞

0
dτeiετ e−�nτ 〈D†

n,b(τ )Dn,b(0)〉.
(C7)

Next, we analyze the second contribution in the charge current
expression:

C2 ≡ 〈d†
1 d1〉. (C8)

We decouple the electronic and vibrational degrees of freedom
and get

C2 = 2π
∑
nm

∑
n′m′

s
1ns̃

m1s1n′ s̃m′1

∫ t

−∞
dτ

∫ t

−∞
dτ ′〈dL,†

in (τ )dL
in(τ ′)

〉〈K†
nm(t, τ )Kn′m′ (t, τ ′)〉

+2π
∑
nm

∑
n′m′

s
1ns̃

mN s1n′ s̃m′N

∫ t

−∞
dτ

∫ t

−∞
dτ ′〈dR,†

in (τ )dR
in(τ ′)

〉〈K†
nm(t, τ )Kn′m′ (t, τ ′)〉. (C9)

Using the PoTER kernel, this simplifies to

C2 = 2π
∑

n

∑
n′

s
1ns̃

n1s1n′ s̃n′1

∫ t

−∞
dτ

∫ t

−∞
dτ ′〈dL,†

in (τ )dL
in(τ ′)

〉
e−�

n(t−τ )e−�n′ (t−τ ′ )〈D†
n,b(τ )Dn,b(t )D†

n′,b(t )Dn′,b(τ ′)〉

+2π
∑

n

∑
n′

s
1ns̃

nN s1n′ s̃n′N

∫ t

−∞
dτ

∫ t

−∞
dτ ′〈dR,†

in (τ )dR
in(τ ′)

〉
e−�

n(t−τ )e−�n′ (t−τ ′ )〈D†
n,b(τ )Dn,b(t )D†

n′,b(t )Dn′,b(τ ′)〉. (C10)

This expression comprises the so-called second-order rate, since two resonances act together to build the transfer rate. Noting
that the correlation functions on different sites are uncorrelated, we recover Eqs. (39) and (40) in the main text.

APPENDIX D: EVALUATION OF VIBRATIONAL
CORRELATION FUNCTIONS

In this Appendix, we calculate the polaron correlation
function:

Bn(t, t ′) = 〈D†
n,b(t )Dn,b(t ′)〉. (D1)

Recall that the primary vibrations are coupled to a secondary
phonon bath, leading to level broadening νn.

We begin with the correlation function of displacement
operators. For the sake of simplicity, we omit the subscript
n. Neglecting the back action of electrons, the GIOM HLE for
the vibrations satisfy

ḃ = −(ν + iωb)b − i
√

2πbin. (D2)
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The formal solution of b, together with Eq. (A1a) lead to the
commutation relation

[b(t ), b†(t ′)] =
∫

dω
ν(ω)

π

e−iω(t−t ′ )

ν2 + (ω − ωb)2
. (D3)

Considering a two-time correlation function B(t, t ′) =
〈D†

b (t )Db(t ′)〉, we have

B(t, t ′) = exp

[
−λ2

∫
dω

ν(ω)

π

1 − e−iω(t−t ′ )

ν2 + (ω − ωb)2

]

×〈e−λb†(t )eλb†(t ′ )eλb(t )e−λb(t ′ )〉︸ ︷︷ ︸
C(t,t ′ )

. (D4)

The ensemble average of C(t, t ′) is performed with respect to
the thermal equilibrium state of the thermal bath.

Adopting the technique of Feynman disentangling of oper-
ators [130] and the formal definition of the input field bin(t ),
we find

C(t, t ′) = exp

⎡
⎣−

∑
j

|μ j (t, t ′)|2
eβω j − 1

⎤
⎦ (D5)

with μ j (t, t ′) = −iλγ j
eiω j (t−t0 )−eiω j (t ′−t0 )

ν−iωb+iω j
. Inserting C(t, t ′) into

B(t, t ′), we recover Eq. (38) in the main text.
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