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Synchronization in optically trapped polariton Stuart-Landau networks
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We demonstrate tunable dissipative interactions between optically trapped exciton-polariton condensates.
We apply annular shaped nonresonant optical beams to both generate and confine each condensate to their
respective traps, pinning their natural frequencies. Coupling between condensates is realized through the finite
escape rate of coherent polaritons from the traps leading to robust phase locking with neighboring condensates.
The coupling is controlled by adjusting the polariton propagation distance between neighbors. This permits us to
map out regimes of both strong and weak dissipative coupling, with the former characterized by clear in-phase
and antiphase synchronization of the condensates. With robust single-energy occupation governed by dissipative
coupling of optically trapped polariton condensates, we present a system that offers a potential optical platform
for the optimization of randomly connected XY Hamiltonians.
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I. INTRODUCTION

Studies on instabilities, synchronization, and pattern for-
mation in systems of limit-cycle oscillators appear in many
scientific disciplines, such as hydrodynamics, biological en-
sembles, neuronal networks, nonlinear optics, Josephson junc-
tions, and coupled Bose-Einstein condensates [1–3]. In the
regime of strong light-matter coupling, condensates of mi-
crocavity exciton-polaritons (herein polaritons) are found to
follow similar oscillatory dynamics due to their nonlinear
and dissipative physics [4]. The condensation of polari-
tons [5], attributed to their bosonic nature and very light
effective mass, has given rise to a powerful experimen-
tal platform to investigate nonlinear and out-of-equilibrium
physics at the macroscopic quantum level and even at room
temperature [6].

The dynamics between multiple coupled polariton conden-
sates, denoted by a complex number cn, can be described
using a discretized version of the driven-dissipative Gross-
Pitaevskii equation (dGPE) [7–10],

i
dcn

dt
= [�n + α|cn|2]cn +

∑
〈nm〉

Jnmcm, (1)

where �n = ωn + i(pn − γn), α = g − iR, and Jnm =
|Jnm|eiβnm denote the complex self-energy of each condensate,
its nonlinearity, and coupling to nearest neighbors,
respectively. Physically, γn, pn > 0 denote the condensate
linear losses and gain, respectively. For a single condensate,
the evolution of its density |c|2 coincides with that of the
Landau equation, describing the dynamics of disturbances
in the laminar flow of fluids, ∂t |c|2 = k1|c|2 + k2|c|4, where
k1,2 are real constants [11,12]. When connections are present,
Jnm �= 0, Eq. (1) can be regarded as a discretized form of the
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complex Ginzburg-Landau equation [13] describing a system
of coupled limit-cycle oscillators labeled as Stuart-Landau
networks. We note that the complex Ginzburg-Landau
equation differs from the driven-dissipative Gross-Pitaevskii
equation in its historical origin and intent [14].

Interestingly, recent studies on optical networks of limit-
cycle oscillators have found that there exists a regime with a
strong attractor in phase space, where the relative difference
between the arguments of the oscillators, θnm = arg (c∗

ncm),
correlates with the ground state of the XY Hamiltonian
[15–17] and the Ising-Hamiltonian [18,19]. However, in order
for an optical system to work in this “minimal spin energy”
regime, the natural frequencies of the oscillators ωn need to be
resonant with each other, and Jnm should be imaginary valued
to ensure that dissipative coupling between oscillators fixes a
definite phase relationship [20]. From a practical viewpoint,
the relative phases in a desynchronized network of limit-cycle
oscillators become meaningless. For experiments relying on
time-average measurements it becomes paramount, in order
to extract θnm, that one possesses enough control over the
network parameters for it to remain synchronized such that
relative phase readout is possible.

In this paper, we experimentally demonstrate and ana-
lyze an optical system of limit-cycle oscillators with tunable
couplings Jnm and fixed global natural frequencies ωn = ω

using optically confined exciton-polariton condensates. We
demonstrate clear regimes of synchronization between two
condensates, and we map these regimes to the weights of the
XY Hamiltonian. We corroborate our findings by numerically
solving both the continuous and discretized version of the
driven-dissipative Gross-Pitaevskii equation, and we bench-
mark the dGPE’s performance in finding the XY ground state
against system uncertainties.

Recent studies on unconfined, ballistically expanding,
polariton condensates revealed a strong renormalization of
their energies when coupled together, with often two en-
ergy branches populated by the condensate at the same time
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[21]. Such strong multimodal behavior can be quenched
by confining the condensates and limiting their state space,
favoring synchronization. The optically trapped condensates
are then formed by exciting a semiconductor microcavity with
a nonresonant laser pump profile shaped into rings [22,23].
The ring-shaped pumps start building up trapped polaritons
that at a critical power form a condensate in the minimum
of the pump potential. Because of their nonequilibrium na-
ture, polaritons can diffuse away from their pumping spots,
transforming their potential energy into kinetic energy. Such a
flow of coherent polaritons [21,24,25], with tunable cavity in-
plane momentum, then leads to interference and robust phase
locking between spatially separated condensates [26–30].

The resulting phase locking can be detected by ob-
servation of interference fringes in the cavity real-space
and/or reciprocal-space photoluminescence, which has been
achieved today over more than 100 μm [21,31]. More im-
portantly, optically trapped polariton condensates show a
coherence time that exceeds the cavity lifetime by three
orders of magnitude [32], increasing the scalability of the
system to phase lock far beyond that of the optically pumped
regime. Moreover, by scaling to a condensate network in-
terspersed with optically imprinted variable-height potential
barriers [33], we propose a robust platform on which to im-
print nearly arbitrary weights belonging to an XY Hamiltonian
into the polariton system for heuristic optical ground state
searching through nonlinear transients.

II. EXPERIMENT

We experimentally realize the trapped polariton conden-
sates using a strain-compensated 2λ GaAs planar microcav-
ity sample containing three pairs of InGaAs quantum wells
sandwiched between another InGaAs quantum-well pair, as
described in [34]. The sample is held in a cold finger cryostat
at ∼4 K and is nonresonantly pumped at a cavity detuning
of around −5 meV by right-circularly-polarized light from
a continuous-wave (CW) Ti:sapphire laser, blue-detuned in
energy to a minimum above the reflectivity stopband (λ =
780 nm). To avoid heating the sample, we form a quasi-CW
beam with the use of an acousto-optic modulator, at a 10 KHz
repetition rate and 5% duty cycle, to modulate the amplitude
of the beam periodically. The annular shape of the beam is
achieved using a spatial light modulator (SLM) displaying a
phase-modulating hologram (see Appendix B for the method
of hologram generation). The beam is focused on the surface
of the sample using two lenses and a high numerical aperture
objective (NA = 0.4). The photoluminescence emission is
collected through the same objective, and an 808-nm-long
pass filter is used to cut out the excitation beam. The beam
is also spectrally resolved with an 1800 grooves/mm grating
in a 750 mm spectrometer, centered at 857 nm.

III. RESULTS AND DISCUSSION

Above threshold power, polaritons condense into a
phase-coherent trap ground state at the pump center. In
Figs. 1(a) and 1(b) we show the real-space and reciprocal-
space condensate photoluminescence, respectively, for two
phase-locked condensates as evidenced by the clear forma-

FIG. 1. (a) Real- and (b) reciprocal-space condensate photolumi-
nescence for two annular traps at d = 50 μm separation. Integrated
horizontal line profiles are shown by white lines. (c) Energies of the
condensates for varying separation. Red triangles and blue penta-
grams correspond to uncoupled left and right condensates, respec-
tively. Black circles correspond to coupled condensates. Error bars
show the FWHM of the energy linewidth. Zero energy corresponds
to 0.796 meV above the bottom of the lower polariton dispersion.
(d) Integrated horizontal line profiles from reciprocal-space photolu-
minescence (i.e., at ky = 0) for varying trap separation. Dashed white
marks kx = 0.

tion of interference fringes. The radial outflow of coherent
polaritons from their pumping spots corresponds to the faint
outer ring seen in reciprocal space whereas the brighter central
region corresponds to polaritons localized in the traps. In
Fig. 1(d) we plot the integrated horizontal line profile in
reciprocal space, taken over separation distances (i.e., the
real-space distance between the ring centers) from 15 to
35 μm for rings dtrap = 9.4 μm in diameter. The interference
fringes indicate that the condensates are phase-locked, where
a bright or dark central fringe shows even (in-phase) and odd
(antiphase) parity, respectively.

The observed phase locking means that the coupling be-
tween condensates cannot be negligible and should therefore
result in normal mode splitting, where new energies of the sys-
tem are shifted away from the bare energies of the uncoupled
system. Surprisingly for the trapped condensates studied here,
we observe that the energy of the coupled system stays within
the linewidth of the polaritons [see Fig. 1(c)]. This observation
is made more clear by considering the interacting condensates
in the linear regime as a zero-detuned two-level system with
states |c1〉 and |c2〉 and energy ω1,2 = ω. Coupling between
the states is realized with an operator of the form Ĵ = Jeiβ σ̂1,
where J > 0, and the Hamiltonian becomes

H = ωσ̂0 + Ĵ =
(

ω Jeiβ

Jeiβ ω

)
. (2)

Here, σ̂n are the Pauli matrices. The resulting even- and
odd-parity eigenmodes of Eq. (2) (corresponding to in-phase
and antiphase locking), written � = (1,±1)T /

√
2, will have

eigenfrequencies ωA,B = ω ± 2Jeiβ . It is clear that if β =
±π/2, then both modes are degenerate in real frequency
but are split by  = i2J in imaginary frequency (i.e., their
linewidths are different). During condensation, a state of
definite parity will form corresponding to the eigenstate with
a larger imaginary part in its energy. Physically, it corresponds
to increased scattering from the reservoir of uncondensed
polaritons, and consequently it becomes populated during the
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FIG. 2. Simulations obtained through the full numerical solution
of the 2DGPE in real-space (a),(b) and reciprocal-space (c),(d) den-
sity profiles of two interfering steady-state polariton condensates.
In-phase locking is observed at a separation distance of 23.2 μm
(a),(c), and antiphase locking at 26.6 μm (b),(d). All plots are
shown on the same normalized color scale. Black-contoured surface
in (a),(b) illustrate the trap potentials formed by the incident laser
profiles. White lines in (c),(d) show the horizontal line profiles of the
reciprocal-space density. (e) Horizontal reciprocal-space density line
profiles shown for varying trap separation distances.

transient process of condensation. Therefore, even though the
real energy splitting is within the linewidth of the system
[Fig. 1(c)], the impact of the dissipative splitting is not negli-
gible as evidenced by the clear regions of interference fringes,
indicating condensation into a definite parity [Fig. 1(d)].

As can be seen in Fig. 1(d), regions of clear interference
fringes appear periodically as a function of separation distance
with intermediate transition regions of no clear parity. This
periodic behavior stems from the fact that away from the
pumped rings, the polariton flow is dictated by solutions
of the time-independent cylindrical wave equation (i.e., the
Helmholtz equation), which are given by the Hankel functions
[35]. This results in Jnm spiraling in the complex plane to
smaller values with increasing polariton outflow momen-
tum and distance between traps [15,16]. When the coupling
is dominantly imaginary (β = ±π/2), then fringes appear
clearly due to deterministic condensation into the highest gain
mode. When the coupling is dominantly real (β = 0, π ), then
both parity modes are degenerate in gain and stochastically
condense, whereby phase-locking can occur with either even
or odd parity for each realization of the system, rather than
both at once. With a camera exposure time of ∼1 ms, multiple
realizations are measured with each experimental shot, with
half randomly forming in even-parity states, and the other in
odd. This results in the blurring seen in Fig. 1(d) as both parity
states are realized, smearing out the interference fringes in the
shot-to-shot averaged measurements of the experiment.

The above findings are corroborated by numerical simu-
lations using the two-dimensional driven-dissipative Gross-
Pitaevskii equation (2DGPE) (see Appendix A). In agreement
with experiment, the energy of the simulated condensate wave
function maintains, on average, a value around ∼0.782 meV
above the bottom of the lower polariton branch, and parity
switching is seen in both real-space and reciprocal-space
condensate profiles as the separation distance varies [see
Figs. 2(a)–2(d) for two different steady-state examples]. In
Fig. 2(e), the horizontal line profile in reciprocal space is plot-

FIG. 3. (a) Experimental reciprocal-space photoluminescence as
shown in Fig. 1(d), with a dashed white line to show k = 0 μm−1.
(b) The colormap shows the spectral intensity (real energy) from
simulation of two condensates as a function of distance d using
Eq. (1) and with coupling as defined by Eq. (3). Blue circles show
the steady-state relative phase θ12 from the same simulation. Solid
and dashed white lines correspond to the real and imaginary parts of
Eq. (3), respectively. Parameters: kc = 1.04 μm−1, dtrap = 9.4 μm,
m∗ = 0.28 meV ps2 μm−2, ωn = 0, γ −1

n = 5.5 ps, pn/γn = 1.65,
R = 0.005 ps−1, and g/R = 0.02.

ted for two ring traps of dtrap = 7 μm diameter with separation
distances going from 10 to 40 μm. This figure is built up
by averaging the line profile over 20 simulation realizations,
each starting from a different random background noise. In
agreement with experiment, we see smeared-out interference
fringes in the transition regions when the dissipative coupling
is weak (i.e., coupling becomes β ≈ 0, π ). We note that we
do not apply a time-dependent stochastic treatment of the
2DGPE. Consequently, the simulation [Fig. 2(e)] shows a
much sharper transition from one parity to the next as opposed
to the extended blurred regions seen in experiment.

We now describe the observations using Eq. (1) which
can be derived by adiabatically eliminating the dynamics
of the exciton reservoirs feeding the condensates [36] and
applying a tight-binding method for the localized dissipative
condensates [8,10]. The coupling is taken proportional to the
Hankel function (see Appendix C),

Jnm = |Jnm|eiβnm = J0eiφH (1)
0 [k(dnm − dtrap)]. (3)

Here J0 is the magnitude of the coupling strength, φ is a
phase adjustment parameter to match experiment, k = kc +
iμγn/2h̄kc, where kc is the outflow polariton momentum
[35], m∗ is the polariton mass, dnm is the separation distance
between condensate n and m, and dtrap is the trap diameter.

The condensation of two interacting polariton condensates
is then simulated using Eq. (1), and the resulting spectral
intensity (real energy) for pn > γn is plotted in Fig. 3(b)
as a function of separation distances varying from 15 to
32 μm. The blue circles denote the relative phase between
condensates θ12 = arg (c∗

1c2) showing step-function regions
of in-phase and antiphase locking. In Fig. 3(a) we show a
section from Fig. 1(d) for comparison. The spectrum shows
discontinuous jumps where the imaginary (dissipative) part of
the coupling Jnm (dashed white curve) changes sign. This cor-
responds to the lowest threshold condensate mode switching
parities. The solid white curve denotes the real part of Jnm.
The results show that the system of two coupled condensates
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FIG. 4. (a)–(c) Average ratio of minimized XY Hamiltonian
energy between the dGPE and BH method, η = EGPE/EBH, for 20
random realizations of couplings Jnm. Performance is shown for
different network sizes N , values of g/R, and σ . Part (d) shows a
schematic of the randomly connected continuous-chain lattice tested
with dGPE and BH. (e) Elapsed computation time taken, τ , to find a
local minimum energy phase configuration using the dGPE and BH
methods.

follows robustly the highest gain mode dictated by the imagi-
nary part of Jnm.

By additionally modulating the phase of the coupling
(βnm) through the use of optically generated potential barriers
[33], the couplings Jnm between adjacent condensates can be
programed to have nearly arbitrary values of magnitude |Jnm|,
with phases chosen as βnm ≈ ±π/2. This then allows the de-
sign of a synchronized random network of dissipative coupled
limit-cycle oscillators for simulation of the XY Hamiltonian
[15–17]. Applying Eq. (1), the principal idea is starting with
pn − γn negative enough that cn = 0 is the only stable solu-
tion of the network. Physically, this scenario corresponds to
condensates being pumped below threshold. By adiabatically
increasing pn (slowly raising the pump power), this fixed point
eventually becomes unstable and the system undergoes a non-
linear transient process (Hopf bifurcation) to a “condensed”
steady state |cn| > 0 whose phase configuration correlates
with that of the XY ground state.

In a comparable method to [20,37], we verify the per-
formance of Eq. (1) and test it against a global classical
optimizer, the basin hopping (BH) method [38], for finding the
XY Hamiltonian ground state of a randomly connected closed
chain [see Fig. 4(d)], HXY = −∑

nm Im(Jnm) cos (θnm). Since
no cavity system is ideal, the robustness of the dGPE is
additionally investigated by deviating βnm from the ideal
values of ±π/2. We also investigate the effects of the ratio
of the two nonlinearities g/R, where g is responsible for
shifting the real energy of each condensate [see Eq. (1)].
Results on a fully connected random network of condensates
is given in Fig. 9. An illustrative phase configuration for a

network of 10 randomly connected spins after minimizing
the XY Hamiltonian via the dGPE and BH method is shown
in Fig. 8.

For each set of undirected couplings Jnm, we define the
energy found by the BH method and the dGPE as EBH and
EGPE, respectively. In Figs. 4(a)–4(d) we plot a histogram
of η = EGPE/EBH averaged over 20 different random cou-
pling configurations for different numbers of condensates N
in the network. Figure 4(a) shows the results in an ideal
case where the phases of the couplings are randomly chosen
as either βnm = ±π/2. In Figs. 4(b) and 4(c) we plot the
performance with deviation in the couplings defined as Jnm =
|Jnm|(e±iπ/2 ± σ ), where the plus-minus signs are randomly
chosen separately. The deviation σ > 0 then corresponds to
the dissipative coupling obtaining a small real part that can
desynchronize the network of condensates.

With g/R = 0.0001, the performance does not drop below
η = 0.96 and we see that while g � R, η remains above
0.78 and does not vary significantly as σ changes. Increasing
g beyond this point considerably reduces the accuracy of
the dGPE. The computation time for each method is also
shown in Fig. 4(e) over different sized systems, where each
minimization method is implemented for a single coupling
configuration on a single core of the same Intel(R) Xeon(R)
W3520 @ 2.67 GHz CPU. The computational time taken by
the dGPE increases by just 2.5 s as the system size is scaled
by a factor of 10, while time taken by the classical BH method
scales more than three orders of magnitude.

IV. CONCLUSIONS

We have demonstrated robust synchronization between op-
tically trapped polariton condensates, which is attributed to a
dissipative coupling mechanism arising from the condensates
mutual interference. The coupled condensate system does not
show a measurable normal mode splitting due to the linewidth
of the polaritons, yet at the same time it displays the abil-
ity to synchronize at separation distances where dissipative
coupling is dominant. The single-frequency operation of the
system is critical in order to read out the relative phase
information between interacting condensates in time-average
measurements. It therefore offers a way to implement the re-
cently proposed gain-dissipative Stuart-Landau networks for
ultrafast simulation of randomly connected spin Hamiltonians
in the optical regime [15–17].

Our experimental dataset is available at [39].
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APPENDIX A: NUMERICAL SPATIOTEMPORAL
SIMULATIONS

The dynamics of polariton condensates can be modeled via
the mean-field theory approach where the condensate order
parameter �(r, t ) is described by a 2D semiclassical wave
equation often referred to as the generalized Gross-Pitaevskii
equation coupled with an excitonic reservoir that feeds non-
condensed particles to the condensate [40]. The reservoir is
divided into two parts: an active reservoir nA(r, t ) belonging
to excitons that experience bosonic stimulated scattering into
the condensate, and an inactive reservoir nI(r, t ) that sustains
the active reservoir [7,41],

i
∂�

∂t
=

[
− h̄∇2

2m∗ + G

2
(nA + nI ) + U

2
|�|2 + i

2
(ξnA − γ )

]
�,

(A1)

∂nA

∂t
= −(�A + ξ |�|2)nA + W nI, (A2)

∂nI

∂t
= −(�I + W )nI + P(r). (A3)

Here, m∗ is the effective mass of a polariton in the lower
dispersion branch, U is the interaction strength of two po-
laritons in the condensate, G is the polariton-reservoir in-
teraction strength, ξ is the rate of stimulated scattering of
polaritons into the condensate from the active reservoir, γ is
the polariton decay rate, �A,I is the decay rate of active and
inactive reservoir excitons, respectively, W is the conversion
rate between inactive and active reservoir excitons, and P(r)
is the nonresonant CW pump profile.

We perform numerical integration of Eqs. (A1), (A2), and
(A3) in time using a linear multistep method in time and
spectral methods in space. The polariton mass and lifetime are
based on the sample properties: m∗ = 0.28 meV ps2 μm−2

and γ = 1
5.5 ps−1. We choose values of interaction strengths

typical of InGaAs-based systems: h̄U = 7 μeV μm2,
G = 10U . The nonradiative recombination rate of inactive
reservoir excitons is taken to be much smaller than the con-
densate decay rate (�I = 0.01γ ), whereas the active reservoir
is taken to be comparable to the condensate decay rate �A = γ

due to fast thermalization to the exciton background [35]. The
final two parameters are then found by fitting to experimental
results where we use the values h̄ξ = 99 μeV μm2 and W =
0.035 ps−1.

APPENDIX B: ANNULAR PUMP PROFILES

The pump profiles consist of two annular traps, each
written as P(r) = P0e−(r−r0 )2/2σ 2

, where P0 denotes the pump
power, r sweeps radially from the center of each pump, r0

marks the trap radius, and σ corresponds to a 2 μm exper-
imentally diffraction-limited full width at half-maximum of
each annulus.

Experimentally, the annular shape of the beam is achieved
using a spatial light modulator (SLM) displaying a phase-
modulating hologram. The hologram is created using the
mixed-region amplitude-freedom (MRAF) algorithm [42],
and adjusted to balance the condensate intensities [43]. The
laser photoluminescence profile of a pump used to trap a

FIG. 5. Real-space laser photoluminescence of a 12-μm-
diameter pump, including horizontal and vertical line profiles
through the center of the pump profile, shown by solid white lines.

single polariton condensate in its ground state is shown in
Fig. 5.

APPENDIX C: HANKEL FUNCTION
POLARITON OUTFLOW

In Fig. 6 we fit a zeroth-order Hankel function of the
first kind (magenta circles) to a steady-state solution of
Eqs. (A1)–(A3) (solid blue curve) for an annular shaped pump
geometry (black dotted line). The results show that outside
of the pump spot the steady-state condensate assumes the
solution of the Helmholtz equation as expected.

Moreover, we verify the validity of approximating the
coupling with a Hankel function [see Eq. (3) in the main text]
by calculating the overlap integral between two condensates
using the 2DGPE steady-state solution of a single condensate,

J =
∫

ψ∗(r − d)V (r)ψ (r)dr. (C1)

0 10 20 30 40 50 60

Radial coordinate ( m)

-1

-0.5

0

0.5

1

1.5

(a
.u

.)

Pump profile
Numerical Re( )
Hankel fit

FIG. 6. Cross section of the nonresonant pump profile (black
dotted line), real part of the numerically obtained condensate wave
function from 2DGPE simulations, and a fitted zeroth-order Hankel
function of the first kind, �(r) = AeiφH (1)

0 [k(r − r0)], where A and
φ are real-valued fitting parameters. Radial coordinate corresponds
to r. Here k = kc + iκ , where kc = 0.96 μm−1 and κ = m∗γ /2h̄kc.
The parameter r0 = 11 μm is adjusted to the point where particles
have escaped the trap.
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FIG. 7. Real and imaginary part from Eq. (C1) for wave func-
tions separated by a distance d = |d|. As the magnitude of the
distance is decreased, the value of the integral expectedly decreases
as the overlap diminishes. The circle and square markers are a fit to
the data using a Hankel function J = J0eiφH (1)

0 [k(d − dtrap )]. Here
k = kc + iκ , where kc = 0.96 μm−1, κ = m∗γ /2h̄kc, and dtrap =
10 μm is the diameter of the trap used in this simulation.

Here ψ (r) is the steady-state condensate wave function
for a single pump system numerically obtained by solving
the 2DGPE, V (r) is its corresponding optical trap, and d
is the separation between two such neighboring wave func-
tions. The results of the integration as a function of separation
distance |d| are shown in Fig. 7, where we fit a zeroth-order
Hankel function of the first kind (red circles and blue squares)
to the values obtained from Eq. (C1). The results show that the
precise details of the pump shape are not necessary and that
a qualitative analytical form for the coupling between con-
densates can be obtained by considering their wave-function
shape outside the pumped potential.

APPENDIX D: DENSELY CONNECTED
POLARITON GRAPH

In addition to the closed sparsely connected chain studied
in the main text, we also compare the robustness of the dGPE
to BH for a densely and randomly connected polariton graph
of N condensates [Figs. 9(a)–9(d)]. We plot η = EdGPE/EBH

for a range of realistic and unrealistic polariton-polariton
interaction strengths, and we include a small percentage, ±σ ,
of nondissipative coupling to each value of Jnm, where ± is
chosen randomly for each spin site. The minimization of this
all-to-all connected toy model, though unrealistic, shows that
the dGPE is able to minimize any lattice configurations. An

FIG. 8. Relative phases of 10 randomly and densely connected
spins minimizing the XY Hamiltonian achieved by (top) the dGPE
and (bottom) the classical basin hopping method. In the minimization
shown, g/R = 0.0001 and σ = 0%.

FIG. 9. (a)–(d) Measure of η = EdGPE/EBH for a range of
polariton-polariton interaction strengths g/R, and a fraction of
nondissipative coupling strength σ for a range of N densely and ran-
domly coupled spin. (e)–(h) Average standard deviation  (M = 20)
between the minimized spins using the dGPE and BH methods, again
for a range of g/R and σ for different N . Gray horizontal lines
represent standard deviation in distances corresponding to relative
separation angles in phase space of π

8 , π

4 , and π

2 in increasing order.

example of the minimized phases of the dGPE and BH is
shown in Fig. 8.

The average standard deviation between the dGPE and the
BH is written as

 = 1

M

M∑
m=1

min

√
1

2N
(xdGPE − x(±)

BH )†(xdGPE − x(±)
BH ), (D1)

where xdGPE = {eiθn}N
n=1 and x(±)

BH = {e±iθ ′
n}N

n=1 are the com-
plex state vectors coming from each method with angles
(phases) θn and θ ′

n, respectively. The global gauge is fixed
by rotating the state vectors such that θ1, θ

′
1 = 0 in each

method. The min operation is added since the XY Hamil-
tonian is invariant by an overall sign factor, i.e., HXY =
−∑

nm Im(Jnm) cos [±(θn − θm)]. The integer M denotes the
number of coupling realizations in the ensemble average
(number of different networks tested).

In Figs. 9(e)–9(h), we plot a histogram for M = 20 realiza-
tions of random couplings Jnm for N condensates in the net-
work. Figure 9(e) shows the results in an ideal case in which
the phases of the couplings are randomly chosen as either
βnm = ±π/2. In Figs. 9(f)–9(h) we plot the performance with
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deviation in the couplings defined as Jnm = |Jnm|(e±iπ/2 ± σ ),
where the plus-minus signs are randomly chosen separately.
The deviation σ > 0 then corresponds to the dissipative cou-
pling obtaining a small real part that can desynchronize the

network of condensates. The results show that the difference
between the BH and the dGPE states increases when both g
and σ increase. This then corresponds to the system becoming
desynchronized.
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