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Autonomous chaos of exciton-polariton condensates
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We study the formation of chaos and strange attractors in the order parameter space of a system of two
coupled, nonresonantly driven exciton-polariton condensates. The typical scenario of bifurcations experienced
by the system with increasing external pumping consists of (i) formation of π -synchronized condensates at low
pumping, (ii) symmetry-breaking pitchfork bifurcation leading to unequal occupations of the condensates with
a nontrivial phase difference between them, (iii) loss of the stability of all fixed points in the system resulting in
chaotic dynamics, (iv) limit cycle dynamics of the order parameter, which ends up in (v) in-phase synchronized
condensates via the Hopf bifurcation from a limit cycle. The chaotic dynamics of the order parameter is
evidenced by calculating the maximum Lyapunov exponent. The presence of a chaotic domain is studied as a
function of polariton-polariton interaction and the Josephson coupling between the condensates. At some values
of the parameters, the bifurcation route is more complex and the strange attractor can coexist with the stable
fixed-point lasing. We also investigate how the chaotic dynamics is reflected in the light emission spectrum from
the microcavity.
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I. INTRODUCTION

Spontaneous formation of well-defined polarization has
been one of the important features of exciton-polariton (po-
lariton) condensation and lasing in semiconductor microcav-
ities since their discovery more than a decade ago [1–4].
Typically, well above the condensation threshold, the con-
densate is obtained with linear polarization, which is usually
interpreted as a result of the minimization of the condensate
energy [5,6]. Moreover, the linear polarization is observed
to be pinned to a crystallographic X axis, which again can
be related to the presence of energy splitting between X and
Y linearly polarized cavity modes [1,7]. It is not surprising
that for a driven-dissipative system such as the polariton
condensate, these simplistic, energy-related arguments turned
out to be rather limited. The polarization behavior observed
experimentally is in general more complex, especially in the
vicinity of the condensation threshold, and it depends on
the way the system is excited and on the fast polarization
(spin) dynamics of cavity polaritons [8–12]. The formation
of out-of-equilibrium polariton condensate, or polariton laser,
is not governed solely by the energy relaxation but rather
by the whole balance of harvest and decay rates of different
single-polariton states together with the polariton-polariton
interactions.

The nontrivial polarization properties of polariton conden-
sation were made especially evident for the condensates spa-
tially detached from the reservoirs of incoherent polaritons,
as, e.g., the polariton condensates trapped inside the poten-
tial barriers created by the reservoirs [13,14]. It was shown
[15] that the trapped condensate suffers a bifurcation into a
nearly circularly polarized state, stable in a wide pumping
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range. The formation of circular polarization is even more
spectacular than the linear one: The parity symmetry is broken
spontaneously, contrary to the explicit XY linear polarization
asymmetry of the system. For linearly polarized pumping, the
handedness of the condensate state is chosen randomly and
it can be manipulated by extremely weak electric fields [16].
The polarization state is even more complex for elliptically
polarized pumping, with the domains of polarization inversion
and hysteresis of the condensate state as a function of pump
intensity [17,18].

The properties of single polariton condensate with the
polarization degree of freedom are similar to the properties
of the pair of condensates separated by a barrier, but with
fixed polarization of both (polariton dimer or dyad). The
bonding and antibonding single-particle states of dimer are
equivalent to the X and Y linearly polarized states, respec-
tively, while the Josephson splitting between them is equiv-
alent to the XY polarization splitting. For strong enough
Josephson coupling, one expects the synchronization of the
pair [19–23] either in the bonding (0 phase difference) or
in the antibonding (π phase difference) states. On the other
hand, even for a pair without dissipation, or the Bose-Hubbard
dimer, symmetry-breaking, self-trapped states are possible
[24–26]. In these self-trapped solutions, the occupations of
two condensates differ strongly and they are analogous to
the strong circular polarization degree in the polarization
of a single condensate. Interestingly, when the dissipative
(or radiative) coupling between the pair is present along
with the usual Josephson coupling, two symmetry-breaking
fixed points can be stable, while two symmetry-conserving
ones are not, manifesting the weak lasing regime [27].
In this regime, the phase difference between the conden-
sates is nontrivial, neither 0 nor π . When all four fixed
points of the polariton condensate dimer become unstable,
the system can exhibit stable limit cycle (LC) dynamics,
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which results in the frequency comb emission from the
microcavity [28,29]. The periodic in time dynamics (or
time crystal) can appear in coherently driven dimer as well
[30–32].

The polariton dimer under nonresonant excitation can, in
principle, exhibit chaotic dynamics, since it is described by
an autonomous system of three nonlinear equations, which
is the minimum number of nonlinear equations required for
the appearance of chaos, the same as for the classical Lorenz
[33] and Rössler [34] systems. The Feigenbaum route to
chaos through the period doubling of LC orbits has been
predicted for actively coupled optical waveguides [35]. This
case can be considered as a simplistic model for the polariton
condensate dimer. Applied to the polariton condensates, this
chaotic behavior is expected with decrease of the pump-
ing, so it takes place at low condensate occupations, well
below the threshold. Since this effect precedes the conden-
sate formation, it can hardly be relevant experimentally. It
was also shown that the nonautonomous chaos of resonantly
excited condensates can happen at large condensate occu-
pations [36,37]. However, the resonantly excited polariton
condensates are not sufficiently stable because of backscat-
tering destabilization and the necessity of fine tuning of the
excitation laser. In this paper, we show that the realistic
model of polariton dimer with two condensates being non-
resonantly fed by two independent reservoirs indeed pos-
sesses chaotic attractors. It appears at intermediate occupation
numbers and can extend to high pumping regimes as well,
where it can coexist with the synchronized lasing state of the
pair.

Understanding the full scenario of bifurcations in the po-
lariton dimer is important, since the dimer is a key element
of polariton-condensate networks, which have been actively
discussed recently for polariton computation and simulation
purposes [38–41]. The presence of chaotic dynamics of po-
lariton dimer makes this system very promising for chaos-
based applications, including chaos synchronization [42]. As
compared to the other optical systems exhibiting deterministic
chaos, in particular, to the polarization chaos in vertical-
cavity surface-emitting lasers [43–46], the polariton conden-
sate dimer has several benefits, since the important system
parameters that control the chaotic dynamics, the Josephson
coupling constant and nonlinearities, are easily controlled
experimentally.

The paper is organized as follows. In Sec. II, we describe
the theoretical model of the polariton-condensate dimer. Sec-
tion III analyzes the stable-lasing solutions and the domains of
their existence and stability. In Sec. IV, we present the results
of calculations of the maximum Lyapunov exponent (MLE),
which permits us to identify the presence of chaotic dynamics.
Section V studies the coexistence of different lasing states
and their probabilities. In Sec. VI, we study the emission
spectrum from the microcavity in the chaotic regime. Finally,
we conclude in Sec. VII.

II. THE MODEL OF A POLARITON DIMER

We consider two polariton condensates, described by the
order parameters �+1 and �−1, which obey the driven-

dissipative Gross-Pitaevskii equations

d�±1

dt
= 1

2
(rN±1 − �)�±1 − 1

2
(γ − iε)�∓1

− i

2
[g1|�±1|2 + g2|�∓1|2]�±1, (1)

coupled to the equations for the densities N±1 of two nonres-
onantly excited reservoirs,

dN±1

dt
= P − [�R + r|�±1|2]N±1. (2)

In these expressions, � and �R are the polariton and reservoir
dissipation rates, respectively, r defines the harvest rate of
the polaritons into the condensates, and P is the external
nonresonant pumping rate. The latter is assumed to be the
same for both reservoirs, so the system of Eqs. (1) and (2)
is parity symmetric.

There is the coherent (Josephson) coupling of two conden-
sates, defined by the parameter ε and the dissipative coupling
between them, given by the parameter γ . While the former
defines the energy splitting of bonding and antibonding states,
the presence of the latter implies different lifetimes of these
states. Below we consider the typical exciton-polariton con-
densation case when the antibonding states lives longer due
to the destructive interference of the light waves emitted from
two centers away from the microcavity [27]. This difference
of lifetimes in grated microcavities can be quite substantial
[47].

The parameters g1 and g2 define the interaction of polari-
tons in the same and in the opposite centers, respectively.
In our model, we neglect the interaction of polaritons with
the reservoir particles. Apart from avoiding the overload of
the model with additional parameters, we intend to consider
the case of trapped condensates, which are detached spatially
from the reservoirs. This case allows for studying unmasked
condensate dynamics, which does not suffer from the reser-
voir noise (see, e.g., Ref. [48] for an example of an excitation
scheme of such a pair of condensates).

We introduce the scaled order parameters ψ±1 =
(r/�R)�±1, the reservoir occupations Ñ±1 = rN±1, the inter-
action constants α1,2 = (�R/r)g1,2, and the external pumping
p = rP/�R. Equation (2) is then written as

�−1
R

dÑ±1

dt
= p − (1 + n±1)Ñ±1, (3)

where n±1 = |ψ±1|2 are the scaled occupations of the conden-
sates.

In what follows, we work in the adiabatic reservoir approx-
imation, commonly used for polariton condensate systems
[49,50], which can be applied in the limit of fast reservoir
dissipation, �R � �. In this case, the right-hand side of
Eq. (3) is set to zero, and the reservoir occupations are Ñ±1 =
p/(1 + n±1). The order parameters then evolve according to
the equations

dψ±1

dt
= 1

2

[
p

(1 + n±1)
− �

]
ψ±1 − 1

2
(γ − iε)ψ∓1

− i

2
[α1|ψ±1|2 + α2|ψ∓1|2]ψ±1. (4)
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It is convenient to write ψ±1 = √
n±1 ei(	∓φ), because

the equation for the total phase 	 is separated from the
equations for n±1 and for the relative phase 2φ. The latter
variables define the spin vector S with the components and
length

Sx = √
n+1n−1 cos(2φ), Sy = √

n+1n−1 sin(2φ), (5a)

Sz = 1
2 (n+1 − n−1), S = 1

2 (n+1 + n−1). (5b)

From Eqs. (4) and (5) one can find that the spin components
satisfy the equations

Ṡx = Vx(S) = [u(S) − �]Sx − γ S − αSzSy, (6a)

Ṡy = Vy(S) = [u(S) − �]Sy + εSz + αSzSx, (6b)

Ṡz = Vz(S) = [u(S) − �]Sz + v(S)S − εSy, (6c)

where α = α1 − α2 and

u(S) = (1 + S)p

(1 + S)2 − S2
z

, v(S) = − Sz p

(1 + S)2 − S2
z

. (7)

Equations (6) are the main equations studied in this paper.
It follows from these equations that the absolute value of
the spin evolves as Ṡ = [u(S) − �]S + v(S)Sz − γ Sx. We note
that once the evolution of S(t ) is established, one can find the
total phase of the condensate by integration of equation

	̇ = −�(S) = −1

2

[
(α1 + α2)S − (εSSx + γ SzSy)(

S2
x + S2

y

)
]
. (8)

In the following sections, we choose the units of time by
setting � = 1, thus measuring all the parameters γ , ε, and α1,2

in the units of �, and time in the units of �−1.

III. FIXED LASING STATES AND THEIR STABILITY

In general, Eqs. (6) possess four fixed points, which are
given by the four nontrivial roots of the algebraic system of
equations V(S) = 0. We note that the corresponding order
parameters ψ±1 are not fixed in time, but evolve proportion-
ally to exp{−i�(S)t}, so these solutions describe the usual
single-mode lasing from the system with the fixed frequency
�(S). In our model, this frequency is counted from the single
polariton frequency at the condensation centers. There are two
symmetry-conserving fixed points, Fs and Fa, that give equal
occupations of the two centers and correspond to symmetric
and antisymmetric order parameters, respectively. There are
also two symmetry-breaking fixed points, F+ and F−, with
unequal occupations of the condensation centers, and with
Sz > 0 and Sz < 0, respectively. These fixed-point solutions
are described in this section in the order of their appearances
with increasing pumping p.

A. Antisymmetric fixed point

The Fa solution appears at the threshold pumping p0 =
� − γ from the S = 0 trivial solution, which becomes unsta-
ble for p > p0. The antisymmetric state has Sy = Sz = 0, Sx =
−S, and the occupation of the condensates grows linearly with
the pumping: S = (p/p0) − 1. For pumping slightly above p0,

the Fa point is the only stable attractor of the system. However,
it loses stability with respect to fluctuations of the spin vector
in the yz plane at the critical spin S1 and the critical pumping
p1 = (1 + S1)p0. Standard linear stability analysis shows that
the value of S1 can be found as the positive root of equation

γ 2 + ε2 + γ (� − γ )S1

1 + S1
= αεS1. (9)

B. Symmetry-breaking fixed points

There is a supercritical pitchfork bifurcation at p = p1:
The Fa point becomes unstable and two stable fixed points
F± are split from it for p > p1. The symmetry between the
centers is broken for the new points, and F− can be obtained
from F+ by applying the operations Sx→Sx, Sy→ − Sy, and
Sz→ − Sz, which leave Eqs. (6) unchanged. Note that the total
occupation of two centers is defined by S, while Sz defines the
occupation imbalance, see Eq. (5b). The degree of imbalance
|Sz|/S grows monotonically with the pumping strength. In the
close vicinity of the bifurcation point, |Sz|/S ∝ √

p − p1. The
F± solutions are stable up to some critical pumping p2. Al-
though the analytical expression for p2 is rather cumbersome,
its value can be found from the analysis of the Lyapunov
exponents, which, in this case, coincide with the eigenvalues
of the Jacobian matrix ∂Vi/∂S j with i, j = x, y, z, calculated at
F±. There are three Lyapunov exponents, one real and always
negative, and the other two complex conjugates to each other.
It is the real part of this pair of complex conjugate Lyapunov
exponents that crosses zero at p2, indicating oscillatory be-
havior of the emerging new attractor.

C. Symmetric fixed point

The Fs fixed point splits from the trivial fixed point S = 0
at p = � + γ . Similar to the Fa point, the occupation for
this lasing point grows linearly with the pumping, 1 + S =
p/(� + γ ). The linear stability analysis shows that this so-
lution is stable with respect to fluctuations in x direction,
which are separated from the fluctuations in the yz plane. The
Lyapunov exponent for the x direction of the spin is λs1 =
−(� + γ )S/(1 + S). The other two Lyapunov exponents for
transverse yz fluctuations are

λs2,3 = γ + 1
2λs1 ±

√
1
4λ2

s1 − ε(ε + αS). (10)

One can see that when the Josephson splitting ε and the
interaction constant α are not too small, the square root in the
above expression is imaginary and the Fs point becomes stable
at p3 = (� + γ )2/(� − γ ). For small ε and α, the square root
in Eq. (10) can be real and this shifts the stability point to
higher values of pumping. In what follows, we define the value
of the bifurcation pumping point p3 such that the symmetric
point is stable for p > p3.

The typical sequence of bifurcations that the polariton
condensate undergoes with increasing pumping is illustrated
in Fig. 1. This figure shows the collection of values of Sz

at the return points, i.e., the points where dSz/dt = 0, as
a function of pumping strength p. For any given pump-
ing, the points have been gathered from eight trajectories
obtained from Eqs. (6) with random initial conditions at
the final stage of evolution. For the values of parame-
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FIG. 1. Showing the imbalance of two condensate occupations
Sz at the return points of the spin trajectory (points with dSz/dt = 0,
see text for details). The plot has been obtained by collecting the
return points for eight trajectories with random initial conditions at
the final stage of evolution between t = 400 and t = 500, and for the
parameters γ = 0.5, ε = 2, α = 0.75. All parameters are in the units
of dissipation rate �.

ters indicated in the caption, the Fa becomes unstable at
p1 � 1.98, and for the small values of pumping shown in
the figure, one can see two stable fixed points F±, with
the trajectories randomly ending in one of them. These
symmetry-breaking fixed points become unstable at p2 �
4.00. Close to this value of pumping, one can appreciate
the presence of another attractor with an unclosed trajec-
tory. In the domain of p from 3.8 to 4.2, there is an ap-
parent chaotic behavior, which additionally reappears in a
narrow region around p = 4.3. At higher values of pump-
ing, there is a LC motion of the spin, which coexists with
the symmetric fixed point, stable for p > p3 = 4.5. The di-
agram suggests that the chaotic attractor appears from the
LC dynamics by period-doubling bifurcations with decreas-
ing pumping. To confirm the presence of autonomous chaos
(AC) in the polariton condensate described by the system
Eqs. (6), we study the Lyapunov exponents in the next
section.

IV. THE LYAPUNOV EXPONENTS

In this section, we study the Lyapunov exponents for the
spin dynamics given by Eqs. (6), following the definitions
and methods of Refs. [51–54]. We implement the fourth-order
Runge-Kutta method in the system of Eqs. (6) with random
initial conditions. After transitory evolution to ensure the
trajectory to reside on an attractor, we obtain a discrete map
for the spin vector,

Sk+1 = M(Sk ) · Sk, M(Sk ) = I + �tJ(Sk ), (11)

where k = 0, 1, 2, . . . , N defines the discretization of the spin
trajectory from 0 to tmax = N�t , with small time step �t and
a large number of steps N , and I and J are the unitary and
the Jacobian matrices, respectively. The latter is defined by
the matrix elements ∂Vi/∂S j with i, j = x, y, z and V(S) from
Eqs. (6). To find the Lyapunov exponents, we then use the

map Eqs. (11) to study the evolution of the small perturbation
vector sk , renormalizing it in each step.

First, we discuss the MLE, which is defined as the max-
imum real part λm of the three Lyapunov exponents. This
quantity gives a measure of the average rate of divergence
or convergence of nearby trajectories in the spin space.
Namely, the value λm < 0 indicates a trajectory ending in
a fixed point, λm = 0 characterizes a LC in our case, while
λm > 0 is the “smoking gun” of deterministic chaos, when
the trajectory resides in the manifold of a strange attractor
[55].

The results for the MLE are shown in Figs. 2(a)–2(d) for
different values of the interaction constant α. These figures
also show the MLE for two relevant fixed-point attractors,
F± and Fs. Note that for a fixed point, λm can also be
calculated as the maximum real part of the eigenvalues of
the Jacobian matrix in this point. One can appreciate from
Figs. 2(a)–2(d) the general scenario of bifurcations in the
system. The symmetry breaking fixed points F± are stable
for low pumping, while the symmetric fixed point Fs is stable
at high pumping p. In the domain of intermediate pumping,
either a strange attractor with λm > 0 or a LC with λm = 0 are
present. Since the initial conditions are random, the system
randomly chooses an attractor in the case when several stable
attractors are present. This results in the dispersion of points
in Figs. 2(a)–2(d). For weakly interacting polaritons, when
both F± and Fs can be stable, the strange attractor can coexist
with both, see Fig. 2(a). The other important feature is the
possibility of the coexistence of the stable symmetric fixed
point and a LC, see Figs. 2(b) and 2(c), where the stable LC
attractor can extend to rather high values of the pumping p.
These figures suggest that when the pumping decreases from
a high value, the Fs fixed point transforms into the LC by a
Hopf bifurcation, that can be continuous (supercritical), as in
Fig. 2(d), or discontinuous (subcritical), as in Figs. 2(a)–2(c).
These latter cases result in the coexistence of stable attractors
and in the possibility of hysteresis with the pump turning on
and off.

The chaotic behavior of the polariton system depends on
both the strength α of the interaction between polaritons and
the value of the Josephson coupling between the condensates
ε. These dependencies are illustrated in Figs. 3(a) and 3(b).
The chaotic domain, characterized by the positive values of
λm, is shifted to higher pumping with increasing ε and to lower
pumping with increasing α.

During the evolution, the small perturbation of the spin
becomes oriented along the direction of the fastest growth.
One can use the Gram-Schmidt orthogonalization procedure
to establish two other orthogonal directions for the interme-
diate and the slowest growth. In this way, it is possible to
calculate the real parts of all three Lyapunov exponents (see
Ref. [51] for details). In Fig. 4, we show the result of these
calculations for the same case as in Fig. 2(d), when there is
no coexistence of several stable attractors. Contrary to the
known case of the Lorenz system [33], where the sum of
three exponent is a constant [56], for our system it is not.
Nevertheless, the sum of the Lyapunov exponents is a slowly
varying function of the parameters, and the appearance of a
chaotic attractor is also manifested in Fig. 4 by the additional
drop in the value of the smallest exponent.
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FIG. 2. The maximum Lyapunov exponent (blue dots) for γ = 0.5, ε = 2, and for (a) α = 0.5, (b) α = 0.75, (c) α = 1, and (d) α = 1.5.
The MLE for the symmetry-breaking fixed points F± is shown by a solid black curve and the MLE for the symmetric fixed point Fs is shown
by a dashed black curve. The time increment in numerical integration is �t = 10−4 and the number of steps is N = 6×106. The power p steps
in 0.01. The insets in the figures show more details of the chaotic domain by decreasing the power step and collecting only the points with
non-negative MLE.

V. MULTISTABILITY OF POLARITON LASING

The analysis presented in the previous sections shows that
there can be coexistence of several stable attractors in the
typical picture of polariton condensation in the vicinity of
the threshold. Both the symmetry-breaking fixed points and
the strange attractor are present in Fig. 1 just below the critical
pumping p2 � 4.0. Coexistence of several stable attractors,
including fixed points, LCs, and/or chaotic attractors, can be
observed in Figs. 2(a)–2(c). These attractors correspond to
polariton condensates with different properties, and the possi-
bility of switching between them manifests the multistability
of polariton condensation and lasing.

In the multistability conditions, the formation of one or an-
other attractor (condensate) depends on the initial conditions
and the pumping switch. The manifold of initial conditions
leading to a particular attractor defines the basin of attraction
of this final state. When the initial conditions are arbitrary, the
probabilities of realization of different condensates are given
by normalized volumes of corresponding basins of attraction.
They can be calculated by randomly initializing the system in
a big volume of spin space. The results of these calculations
are shown in Fig. 5(a), where the initial conditions reside in
a large cube in spin space. More relevant for experiments,
however, is the case when the condensate grows from a small
initial seed, and these probabilities are shown in Fig. 5(b).

Both Figs. 5(a) and 5(b) demonstrate qualitatively similar
results. The growth of the probability of the symmetric fixed
point Fs is continuous and smooth. The presence of this attrac-
tor is, therefore, not relevant for the following discussion. The
other three stable regimes, namely, two symmetry-breaking
fixed-point lasing F±, LC lasing, and AC clearly compete
between themselves. Figures 5(a) and 5(b) suggest that the F±
fixed point loses stability and converts into AC dynamics by
a subcritical (type I) bifurcation, so stable F± and AC coexist
in the narrow range of pumping powers p, from p′

2 � 5.6 to
p2 � 5.9.

The above scenario is confirmed by studying an adiabatic
change of pumping in this domain that produces characteristic
hysteresis behavior. To study this effect, we add weak white
noise to the right-hand side of Eqs. (6). When pumping
is below p′

2 and the condensate is formed in one of the
symmetry-breaking fixed points, it stays in this state with slow
increase of the pumping until p2, where this point becomes
unstable and chaotic dynamics appears. This transition is
accompanied by a drastic growth of the average occupation of
the system by about 20%. (Note that the occupation fluctuates
substantially in the chaotic regime.) When the pumping de-
creases adiabatically from some p > p2, the AC persists until
p′

2 < p2, where the chaotic dynamic is first transformed into
a LC and then into one of the symmetry-breaking points by
the Hopf bifurcation. The F+ and F− fixed points appear with
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FIG. 3. The maximum Lyapunov exponent as a function of the
Josephson coupling ε for α = 1.5 in (a) and on the interaction
constant α for ε = 2 in (b). The dissipative coupling is γ = 0.5. The
results are obtained with random initial conditions after a transitory
evolution.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

− 0.5

0.0

0.5

Ly
ap

un
ov

ex
po

ne
nt

s

− 1.0

− 1.5

Pumping, p

FIG. 4. The three Lyapunov exponents (thick lines), calculated
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exponents for the fixed points, F± (solid) and Fs (dashed). The
time increment in the Runge-Kutta numerical integration is �t =
10−4. The total integration time after initial transitory evolution is
tmax = 700.

FIG. 5. The probabilities of different attractors as functions of
pumping, calculated for 1000 runs starting from random initial
conditions (a) within the large cube in the spin space −20 � Sx,y,z �
20, and (b) within the small initial seed −0.2 � Sx,y,z � 0.2. The
parameters are γ = 0.5, ε = 2, and α = 0.5 in the units of �.

the same probability in this case, and the bifurcation is also
accompanied by the drop in the average occupation of the
system. This study of hysteresis sheds more light on the nature
of chaos in the polariton dimer. Each symmetry-breaking fixed
point produces a LC by the Hopf bifurcation, with one LC
residing in Sz < 0 spin subspace, and the other residing in the
Sz > 0 subspace. When the LC trajectories grow in size, their
merging gives rise to chaotic dynamics.

VI. EMISSION SPECTRUM

The chaotic dynamics of polariton dimer leads to several
interesting features of the emission spectrum from the micro-
cavity. Here we calculate the power spectrum I (ω) using the
Fourier transform of the order parameter ψ̃±1(ω). Since the
symmetry between the condensation centers is not broken in
the chaotic regime, I (ω) = |ψ̃±1(ω)|2 is independent of the
site index ±1. Two examples of the emission spectrum are
shown in Figs. 6(a) and 6(b).

It turns out that the chaotic dynamic does not lead to
just some broad emission. The spectrum contains a few
pronounced narrow lines that grow on a relatively smooth
pedestal. To resolve the fine structure of the spectrum, the
system of Eqs. (4) has been evolved inside the chaotic attrac-
tor for a long time, tmax = 105, and the trajectory has been
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FIG. 6. The emission spectrum I (ω) in the case of chaotic dy-
namics for α2 = 0, γ = 0.5, and ε = 2.0. The interaction strength
and pumping are (a) α1 = 0.5, p = 6.1, and (b) α1 = 1.0, p = 3.0.
The parameters are in the units of �. See text for more details.

discretized with N = 222 points to apply the discrete Fourier
transform. The spectra shown in Figs. 6(a) and 6(b) have
been additionally averaged over 800 random initial conditions
in the chaotic attractor manifold. Note that to calculate the
spectrum it is more straightforward to use the equations for
the order parameter components Eq. (4), not the equations
for the spin components Eqs. (6) together with the equation
for the total phase Eq. (8). Moreover, it is worth noting that
the frequency � defined by Eq. (8) fluctuates noticeably in
chaotic regime and it also contains randomly placed narrow
spikes, which appear when the denominator in the second
term in Eq. (8) becomes close to zero. To highlight the basic
features of the chaotic spectrum, we have neither added noise
to Eq. (4), nor included some phenomenological decay.

The main characteristic of the spectra in Figs. 6(a) and
6(b) is one central narrow line. The position of this line has
dynamical origin. It is above of the expected blue-shift due to
the polariton-polariton interaction. For example, the average

site occupation in the case of Figs. 6(a) is 〈n±1〉 � 7.22 and
the corresponding interaction blueshift is α〈n±1〉/2 = 1.8�,
while the central line is placed at ω0 = 3.214�. It is also
important to indicate that the frequency of the central line is
substantially blueshifted as compared to the position of the
lasing from the condensate formed in the symmetric fixed
point Fs. The Fs lasing takes place with about twice the smaller
occupation numbers ns = [p/(� + γ )] − 1 � 3.07, and the Fs

lasing line is placed at ωs = (αns − ε)/2 = −0.233�. The
shape of the central line is well fitted by the Lorentzian with
the full width at half maximum 0.0017�. Since the typical
values of dissipation rate are � ∼ 0.1 ps−1, the line is quite
narrow and the emission can be referred to as lasing in the
chaotic regime.

The emission from the pedestal is not negligible. In the
case of Fig. 6(a), the left wing, the central peak, and the
right wing contribute approximately 20%, 72%, and 8% to
the total emission, respectively. Interestingly, the spectrum
partially resembles the deformed LC emission. The nearest
neighbors of the central peak are broad and can be seen
as the superposition of three close-placed peaks, while the
next-nearest neighbors remain narrow but weak.

VII. CONCLUSIONS

The formation of polariton lasing in the system of two
nonresonantly driven condensates exhibits several nontriv-
ial bifurcations in the vicinity of the threshold. When the
condensates forming the polariton dimer are coupled both
coherently and dissipatively, the bifurcation into stable self-
trapped states takes place with increasing pumping. The self-
trapped states are characterized by broken parity symmetry
and different occupations of the condensates. Typically, the
symmetry-broken fixed point lasing also becomes unstable,
leading to the development of AC. The presence of chaos
is confirmed by calculating the Lyapunov exponents for a
realistic model of a polariton dimer. Subsequently, the chaotic
dynamics of the system is converted into a LC motion, and at
a higher pumping the symmetric synchronized condensate is
formed by a Hopf bifurcation from the LC. The bifurcations
can be both supercritical and subcritical, and the polariton
lasing multistability is present in the latter case. The frequency
spectrum of light emitted from the microcavity in the chaotic
regime of polariton condensation is characterized by a few
substantially blueshifted and narrow lines, which grow from
a structured pedestal.
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