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Anomalous relaxation and multiple timescales in the quantum XY model with boundary dissipation
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The relaxation of a many-body system is still a challenging problem that has not been well understood. In
this work we exactly calculate the dynamics of the quantum XY model with boundary dissipation, in which the
density matrix in terms of Majorana operators can be decoupled into independent subspaces Ki represented by
different number of Majorana fermions. The relaxation is characterized by multiple timescales, and in the long-
time limit it is determined by the single-particle relaxation process in a typical timescale T ∗. For the bulk bands,
we find T ∗ ∝ N3/γ n2 in the weak dissipation limit and T ∗ ∝ γ N3/n2 in the strong dissipation limit, where N is
the chain length, γ is the dissipation rate, and n is the band index. For the edge modes, T ∗ ∝ 1/γ indicates the
most vulnerable to dissipation in the long-chain limit. These results are counterintuitive because it means any
weak dissipation can induce strong relaxation, while strong dissipation can induce weak relaxation. We find that
these two limits correspond to two different physics, which are explained based on the first- and second-order
perturbation theory in an equivalent non-Hermitian model. Finally, we show that even in the long-chain limit
with weak dissipation, the relaxation may exhibit strong odd-even effect, which can be washed out by the strong
dissipation. These results shed new insight into the dynamics of topological qubits in the environment, and the
mechanism for many-body dissipation may also have universal significance in understanding the many-body
dissipation in the other models.
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I. INTRODUCTION

The isolated quantum system can be well described by
the time-dependent Schrödinger equation. However, the quan-
tum systems are inevitable to interact with the environment,
which can lead to various dissipation behaviors. While the
dynamics of qubits in the environment have been well studied
[1,2], the same issue in the many-body systems is still one
major challenge in theory [3–15] due to the more expensive
computation cost [16] and the more complicated dissipation
channels involved. However, this is an important question at
least from two diverse aspects. First, the many-body systems
may possess some features that are totally different from the
single-particle systems, such as ergodicity and thermalization
[17,18], which are fundamental concepts in statistical physics.
In the trapped ions, it may exhibit different dynamics de-
pending strongly on the initial states, which are explained
based on quantum many-body scar [19–21]. Second, it is
also an important issue in topological quantum computation
[22–24], in which the two ground states are separated from
the excited bands by a finite energy gap [25–33]. Thus, if the
temperature is much lower than the excitation gap, then the
occupation of the excited states is exponentially small and
thus is negligible. This picture is not necessarily true in the
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presence of dissipation, which can induce direct coupling be-
tween ground states and excited states. A possible mechanism
to go beyond the stability of topological protected modes in
terms of quasiparticle poisoning has been discussed [34,35].

Here we explore the roles of edge modes and bulk bands
in the dynamics of the quantum XY model with boundary
dissipation. We consider this model for several basic reasons.
First, when the system is interacting with the other controlled
systems, the dissipation is more likely to be introduced to
the system from the two contacted regimes. Second, this
model can be solved analytically in several limits, thus the
dissipation of the many-body states in terms of many-body
and single-particle dissipation can be seen easily. Third, this
model, after a proper transformation, can be mapped to the
p-wave superconducting model [36], which can be used for
the realization of Majorana zero modes at the two open ends
for topological quantum computation. The major findings in
this work can be summarized as follows:

(i) In terms of Majorana operators, the density matrix
is decoupled into different subspaces represented by differ-
ent number of Majorana fermions. In time evolution, the
density matrix exhibits multiple relaxation scales, in which
the slowest decay is given by the single-particle relaxation
with longest relaxation process. This timescale T ∗ is used to
determine the relaxation time of the many-body ground state
with dissipation.
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(ii) In the weak dissipation limit, T ∗ ∝ N3/γ , where N
is the total chain length and γ is the boundary dissipation
rate. However, in the strong dissipation limit, T ∗ ∝ γ N3. The
edge modes are shown to be most vulnerable to dissipation
due to T ∗ ∝ 1/γ . These results are counterintuitive because it
means that weak dissipation can induce fast relaxation, while
strong dissipation can induce weak relaxation. We understand
these results by mapping the single-particle dynamics to a
non-Hermitian model and derive the analytical results using
perturbation theory with a proper decomposition of the non-
Hermitian Hamiltonian.

(iii) These dynamics exhibits strong odd-even effect in
the weak dissipation limit. However, in the strong dissipation
limit, which greatly influences the single-particle behavior,
the odd-even effect is washed out. These results shed new
insight into the dissipation and relaxation of the topological
qubits in the environment.

These results yield a new picture for the understanding
of the many-body dissipation in terms of single-particle and
many-body dissipation. In the short-time regime, the many-
body dissipation is dominated; however, in the long-time
limit, which is used to characterize the relaxation time T ∗, it is
determined by the single-particle dissipation. This manuscript
will be organized as follows. In Sec. II, we will discuss the
quantum XY model subjected to boundary dissipation and the
related representation of the density matrix using Majorana
fermions. In Sec. III, we will discuss the evolution of the
density matrix and its multiple timescales. In Sec. IV, the
approximated solutions of the eigenvalues in the weak dis-
sipation limit and strong dissipation limit are discussed. The
mechanisms for these results based on perturbation theory, in
which the above two limits will have totally different physics,
will be presented in Sec. V. Finally, we conclude in Sec. VI.
More details about the derivation of these results will be
presented in Appendices A–D.

II. MODEL AND MASTER EQUATION

We consider a quantum XY model with boundary dissipa-
tion, whose Lindblad equation in terms of the density matrix
ρ reads as

ρ̇ = L(ρ) = −i[HXY , ρ] + D(ρ). (1)

Here the Hamiltonian of the XY model [37–41] and its
boundary dissipation by the Lindblad operator [42,43] can be
written as

HXY = −
N−1∑
i=1

(
g1σ

x
i σ x

i+1 + g2σ
y
i σ

y
i+1

)
, (2)

D(ρ) = γ

2

∑
j=1,N

(2σ z
j ρσ z

j − 2ρ), (3)

where γ is termed as the dissipation rate and N is the total
chain length. Here we assume g1 > g2 > 0, while the other
conditions can be connected to this case through some uni-
tary transformations (see the symmetry transformations for
the quantum XY model in Appendix A). This model can
be fermionized to a p-wave superconducting model using
Majorana operators via the Jordan-Wigner transformation as

follows:

α2 j−1 =
( j−1∏

k

σ z
k

)
σ x

j , α2 j =
( j−1∏

k

σ z
k

)
σ

y
j , (4)

where αi are Majorana fermions satisfying {αi, α j} = 2δi j .
With this, we have [36,44,45]

HXY = ig1

N−1∑
j=1

α2 jα2 j+1 − ig2

N−1∑
j=1

α2 j−1α2 j+2. (5)

Notice that throughout this work, the subscript in the XY
model has been removed when the model is transferred to the
fermion representation. In this case, the Lindblad operator is
still made by local dissipation as follows:

D(ρ) = −γ
∑

j=1,N

(α2 j−1α2 jρα2 j−1α2 j + ρ). (6)

This operator can also be rewritten in terms of canonical
fermions as

D(ρ) = γ
∑

j=1,N

(4c†j c jρc†j c j − 2c†j c jρ − 2ρc†j c j, (7)

where c1 = (α1 + iα2)/2 and cN = (α2N−1 + iα2N )/2. The
similar feature can be found when the dissipation is located
at the other sites.

First, let us consider the case with γ = 0. Then the spectra
between the XY model and p-wave superconducting model
are related by

E =
∑

i

niεi, ni = {0, 1}, (8)

where εi are single-particle spectra in p-wave superconducting
model and E is the many-body spectra in XY model. Thus,
the N eigenvalues from the single particle Hamiltonian can be
used to construct all the 2N eigenvalues in the quantum XY
model [see Figs. 1(a) and 1(c)]. In the fermion representation,
the two localized zero modes at the open ends give rise
to the twofold degeneracy in the XY model. We focus on
g1 > 0 and g2 > 0, and the phase diagram for the XY model
and its corresponding single fermion phases are given in
Fig. 1(b), with boundary at λ = g2/g1 = 1 (see Appendix A).
In fermion representation, it can be regarded as two separate
Majorana chains A(α1, α4, α5, · · · ) and B(α2, α3, α6, · · · ), as
shown in Fig. 1(d). We can bring Eq. (5) to a form of paired
Majorana operators [36,46],

H = i

2

N−1∑
k=1

εkb′
kb′′

k + iδEc

2
αLαR, (9)

where δEc ∼ e−N/ξ [(−1)N + 1]. After a special orthogonal
transformation, the Hamiltonian in Eq. (5) can be brought into
small Jordan blocks, with b′

k and b′′
k being some new Majorana

operators, following the pioneering work by Kitaev [36]. By a
transformation from Majorana fermion to canonical fermion,

ck = (b′
k + ib′′

k )/2, c†k = (b′
k − ib′′

k )/2, (10)

the spectra of the bulk bands can be obtained as ±εk . In the
last term, αL and αR are edge modes at the left and right edges,
which can be written as αL = α1 − λα5 + λ2α9 − · · · and αR
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FIG. 1. (a) The two lowest energy levels in the XY model are
separated from the excited bands by an energy gap εg. (b) Phase di-
agram. The two ferromagnetic (FM) phases in the XY model will be
mapped to two distinct topological p-wave superconducting phases
after fermionization. The phase boundary given by g1 = g2 is shown
in Appendix A. (c) Energy levels in the fermion representation,
in which the two edge modes, occupied or unoccupied, give the
twofold degeneracy of the XY model. (d) The odd-even effect due
to the oscillation of coupling between the two edge modes in the two
subchains A and B with weak dissipation.

= α2N − λα2N−4 + λ2α2N−8 − · · · (for λ < 1). In δEc, ξ ∝
1/| ln g1 − ln g2| defines the correlation length [36]. This odd-
even effect is a typical feature of coupling between two distant
zero modes, which may happen even in the continuous space
[47]. With these operators, the two ground states in Fig. 1(a)
can be written as

|1〉 = 1 + αL√
2

|0〉, |2〉 = 1 − αL√
2

|0〉, (11)

where |0〉 = ∏
k c†k |vac〉 is the state that all levels with energy

smaller than zero are occupied. This is the ground state of the
many-body XY model. In the thermodynamic limit, the above
two states are energetically degenerate.

When γ is switched on, the many-body dynamics will
respect the parity symmetry [L, P] = 0, with

P =
N∏
j

σ z
j = iN

2N∏
j

α j . (12)

This parity operator satisfies P2 = 1. This parameter operator
in the second equal mark was used by Kitaev in the derivation
of the edge modes in the one dimensional spinless model
in proximity with a p-wave superconductor [36]. This parity
operator accounts for the twofold ground-state degeneracy of
the zero modes. Since it is a product of all σ z

j operators or
all the Majorana fermion operators, it is robust against local
perturbation. In the long-time limit when approaching the
steady solution, only this symmetry operator is important and
we have

ρ̄ = lim
t→∞ ρ(t ) = (I + wP)/2N , (13)

where w = 〈
0|P|
0〉 is determined by the initial wave func-
tion. This corresponds to the maximally mixed state at infinite
high temperature.

III. EVOLUTION OF THE DENSITY MATRIX

A. Majorana fermion representation

In general, there are two different ways to express the
density matrix. In the spin representation, it can be expressed
as

ρXY = 1

2N

∑
oi={0,1,2,3}

ρσσ
o1
1 ⊗ σ

o2
2 ⊗ σ

o3
3 · · · ⊗ σ

oN
N , (14)

where we have defined σ 0, σ 1, σ 2, σ 3 to be Pauli matrix
1, σ x, σ y, σ z and σ = (σ o1

1 , σ
o2
2 , σ

o3
3 , · · · , σ

oN
N ). The coeffi-

cient ρσ can be obtained from

ρσ = Tr
(
ρXY σ

o1
1 ⊗ σ

o2
2 ⊗ σ

o3
3 · · · ⊗ σ

oN
N

)
. (15)

This density matrix has the dimension of 2N × 2N , and the to-
tal possibility of basis is 4N , which is too complex to be solved
analytically. A novel way is to express the total Hamiltonian
in terms of Majorana operators as follows [48–50]:

ρ = 1

2N

∑
ca1,a2,··· ,a2N α

a1
1 α

a2
2 · · · αa2N

2N , (16)

where a j = {0, 1}. Notice that the total number of basis in this
new representation is also 4N , which is exactly the same as that
in the spin representation ρXY . In principle, there is a one-to-
one correspondence between these two representations (see
several examples in Appendix B), thus they are equivalent.

B. Multiple timescales

We can prove that the master equation preserves the num-
ber of Majorana operators (see details in Appendix C), which
is given by n = ∑

i ai, thus the dynamics of ρ is decoupled
into different subspaces denoted as Kn for n = 0 − 2N . For
this reason, we can define

K = K0 ⊕ K1 ⊕ K2 ⊕ · · · ⊕ K2N , (17)

where the dimension of Ki is Ci
2N . We can readily check that

the dimension of K (the whole dimension of the Hamiltonian)
is C0

2N + C1
2N + C2

2N + · · · + C2N
2N = 4N . This decoupling is

essentially the same as the probability distribution in the
classical Ising model by Glauber [51]. By a direct comparison
with Eq. (13), we can find that while the first term (a j ≡ 0)
and the last term (aj ≡ 1) are unchanged, which gives
Eq. (13), all the other terms will disappear in the long-time
limit.

In principle, the dynamics of ρ can be calculated using
the hierarchy equations, similar to that used in Ref. [51]. In
general, the dynamics in all the subspaces Ki are coupled. To
this end, we may define the following variables:

ψi = Tr(ραi ),

ψi j = Tr(ραiα j ), (18)

ψi jk = Tr(ραiα jαk ),

with i �= j �= k and then calculate their time evolution based
on the Heisenberg equations (see details in Appendix C). We
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FIG. 2. (a) Eigenvalues Re (λnσ ) of the super-operator L in
XY model with N = 6, γ = 0.5. Here Re(λnσ ) is arranged in de-
scending order with Re(λnσ ) � Re(λn+1σ ), and σ = 0, 1 accounts
for different parity. (b) The lines are eigenvalues of H0 + i� [see
Eq. (21)] with smallest imaginary energy and symbols are Re(λ2σ )
of L. In both figures g1 = 1.0, g2 = 0.7. Panels (c) and (d) show the
projection of ρ(t ) to the ground state of the XY model |n〉 (n = 1, 2);
and to the edge modes αR/L of the fermion model, respectively,
where ρ(0) = |1〉〈1|. In both figures g1 = 1.0, g2 = 0.7, N = 6, and
γ = 20. Panels (e) and (f) plot the same results as panels (c) and
(d) with dissipation rate γ = 0.005.

find that for the boundary dissipation in Eq. (1), the dynamics
of these variables are restricted to their own subspaces K1,2,3

due to the reason proved in details in Eq. (C5). This limit
will show up the multiple timescales during dynamics much
more clearly. Obviously, this approach can be generalized to
models with more complicated dissipation and many-body
interaction.

We first compare the full calculation of ρ against the
dynamics in subspace K1. In Fig. 2(a), we present the real
part of the eigenvalues of superoperator L of Eq. (1), in which
the two zero eigenvalues correspond to the unchanged state in
K0 and K2N subspaces. We also calculate the corresponding
eigenvalues of this superoperator in the subspace constructed
by K1, which is given in Fig. 2(b). We find that the smallest
eigenvalue Re(λ1σ ) of the L in the XY model is the same as
the spectra in K1 subspace, indicating that in the long-time
limit, all the higher-order terms in Kk�2 subspaces decay
much faster than that in K1, leaving K1 to be the dominated

relaxation channel for the quantum XY model. In Fig. 2(b),
we find that while the increasing of the decay rate is observed
with the increasing of dissipation rate in the weak dissipation
limit, it is greatly suppressed in the strong dissipation limit,
with a inflexion point happens near γ ∼ 1. In Figs. 2(c) and
2(d), we show the projection of ρ(t ) to the ground states of the
XY model and the edge modes. In Fig. 2(c), it will approach
1/2N [w = 0 in Eq. (13)]; while in Fig. 2(d), it will approach
zero, as expected.

To reinforce this conclusion, we also calculate the eigen-
values of the superoperator L in subspaces K2 and K3. Let
us denote the eigenvalues as λ in each subspace. We find
that, roughly, the slowest decay rate in K2 is two times faster
than that in K1. Similarly, the decay rate in K3 is much
faster than that in K2. Similar relations can be found in
Ref. [51] by a finite truncation of the hierarchy equations.
Thus, in the long-time and long-chain limits, we can fully
characterize the relaxation time of the many-body system in
terms of the single-particle and the few-particle dynamics.
This observation may have universal significance, which may
applicable to the other many-body systems.

With this density matrix, we can understand the dynamics
in the many-body state for any given initial wave function. For
example, for the results in Figs. 2(c) and 2(e), we can express
the dynamics of |n〉〈n| as

Tr(ρ(t )|n〉〈n|) = 1

2N

(
c0··· +

∑
i

c0···1i ···0(t )〈n|αi|n〉

+
∑

i j

c0···1i ···1 j ···0(t )〈n|αiα j |n〉

+
∑
i jk

c0···1i ···1 j ···1k ···(t )〈n|αiα jαk|n〉 + · · ·
)

,

(19)

where the coefficients can be determined by calculating the
dynamics of the density matrix ρ in each subspace Ki. Ini-
tially, we may find that the coefficients ca1,a2,··· ,a2N and the
overlap 〈n|αa1

1 α
a2
2 · · · αa2N

2N |n〉 are in the order of unity, which
after a long-time relaxation will approach the steady solution
as shown in Eq. (13). For this reason, not only the single-
particle terms, but also all the many-particle terms, which
correspond to the many-body relaxation, will contribute to the
relaxation process. As a result, we find that the dynamics of
the many-body state will exhibit multiple timescales during
relaxation, in which some of these lifetimescales are shown
in Fig. 3 (more details about the eigenvalues in the K1,2,3

subspaces in Fig. 3 are presented in Table I). We find that in
the K2 and K3 subspaces, the eigenvalues of the superoperator
L in these spaces can be approximated (with high accuracy)
as

λ2
i′ = λ1

i + λ1
j , λ3

i′ = λ1
i + λ1

j + λ1
k, (20)

where λk
i is the eigenvalues of the superoperator L in Kk

subspace. The similar feature can be found even in the clas-
sical spin model [51]. Thus, due to the presence of these
multi-particle relaxations, we find that in general the decay
rates of many-particle states are faster than the single-particle
ones (see Fig. 2 and data in Table I). Notice that in Figs. 2(e)
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FIG. 3. Eigenvalues of the superoperator L and multiple
timescales in the subspaces K2 (a) and K3 (b) with g1 = 1, g2 =
0.5, γ = 0.5, and N = 30 (by open circles). For comparison, we
also present λ1

i + λ1
j in (a) and λ1

i + λ1
j + λ1

k in (b) with crosses [see
Eq. (20)], where λ1

i are eigenvalues of L in the subspace K1. The
relative error is estimated to be of the order of 10−5. Some of the
lowest eigenvalues in the subspaces K1, K2, and K3 are listed in
Table I.

and 2(f), the decay processes have the same oscillation period
due to the finite coupling between the two edge modes, which
in the many-body case will have the same energy splitting in
the two ground-state energy in the XY model [see Fig. 1(a)
and Eq. (8)]. However, in an odd chain, this oscillation will
disappear due to the absence of coupling.

IV. EVOLUTION OF THE SINGLE-PARTICLE
DENSITY MATRIX

A. Relaxation in the long-chain limit

The above results have established a connection of many-
body dynamics and single-particle dynamics in the long-time
limit for the dynamics of the ground state in the quantum XY
model. From the symmetry point of view, the steady solution
ρ̄ has also been well understood. However, some more issues
need to be explained. (1) Why Re(λ2σ ) exhibits an inflexion
point at γc ∼ 1; (2) What will happen in the long-chain limit?
(3) What are the different roles played by the edge modes and
bulk modes during relaxation? We focus on the subspace K1,
in which the dynamics of ψi is given by the following non-
Hermitian Schrödinger equation [see Fig. 5(a)]:

i∂t
 = 2(H0 + i�)
, (21)

where � = diag(−γ , 0, · · · , 0,−γ ) and

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ig2 0 · · · 0
−ig2 0 ig1 · · · 0

0 −ig1 0
. . . 0

...
...

. . .
. . . ig2

0 0 0 −ig2 0.

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

TABLE I. Several eigenvalues in the subspaces K1,K2, and K3

for the results presented in Fig. 3 with g1 = 1, g2 = 0.5, γ = 0.5,
and N = 30. In the last line, the relative error of λk

2,3 indicates the
high accuracy of Eq. (20).

K1 λ1
1 −0.00050 − 2.98579i λ1

1

λ1
2 −0.00050 + 2.98579i λ1

2

λ1
3 −0.00130 − 2.98548i λ1

3

λ1
4 −0.00130 + 2.98548i λ1

4

λ1
5 −0.00197 − 2.94336i λ1

5

λ1
6 −0.00197 + 2.94336i λ1

6

K2 λ2
1 −0.00010 + 0.00000i ∼λ1

1 + λ1
2

λ2
2 −0.00180 − 0.00031i ∼λ1

1 + λ1
4

λ2
3 −0.00180 + 0.00031i ∼λ1

2 + λ1
3

λ2
4 −0.00180 − 5.97127i ∼λ1

1 + λ1
3

λ2
5 −0.00180 + 5.97127i ∼λ1

2 + λ1
4

λ2
6 −0.00247 − 0.04243i ∼λ1

1 + λ1
6

λ2
7 −0.00247 + 0.04243i ∼λ1

2 + λ1
5

λ2
8 −0.00247 − 5.92915i ∼λ1

1 + λ1
5

λ2
9 −0.00247 + 5.92915i ∼λ1

2 + λ1
6

λ2
10 −0.00259 + 0.00000i ∼λ1

3 + λ1
4

K3 λ3
1 −0.00229 − 2.98548i ∼λ1

1 + λ1
2 + λ1

3

λ3
2 −0.00229 + 2.98548i ∼ λ1

1 + λ1
2 + λ1

4

λ3
3 −0.00296 − 2.94336i ∼λ1

1 + λ1
2 + λ1

5

λ3
4 −0.00296 + 2.94336i ∼λ1

1 + λ1
2 + λ1

6

λ3
5 −0.00309 − 2.98579i ∼λ1

1 + λ1
3 + λ1

4

λ3
6 −0.00309 + 2.98579i ∼λ1

2 + λ1
3 + λ1

4

λ3
7 −0.00376 − 2.94366i ∼λ1

1 + λ1
4 + λ1

5

λ3
8 −0.00376 + 2.94366i ∼λ1

2 + λ1
3 + λ1

6

λ3
9 −0.00376 − 8.91464i ∼λ1

1 + λ1
3 + λ1

5

λ3
10 −0.00376 + 8.91464i ∼λ1

2 + λ1
4 + λ1

6

δλk
i : |λk

i −∑
j λ

1
j |/|λk

i | ∼ 10−5

Here we have defined 
 = (ψ1, ψ4, ψ5, · · · ) in chain A, while
its treatment for chain B is rather similar (see Appendix C).
The eigenvalues in this bordered matrix are determined by
[52–55]

�N = (g1g2)m−1

sin θ

[
g1g2(2iγ + ε) sin(m + 1)θ

+ (−γ 2ε + ig2
1γ + ig2

2γ
)

sin(mθ )
] = 0, (23)

when N = 2m + 1 is odd; and

�N = (g1g2)m−1

sin θ

[(− γ 2 + g2
1 + i2γ ε

)
sin(mθ )

+ g1g2 sin(m + 1)θ − γ 2 g2

g1
sin(m − 1)θ

]
= 0, (24)

when N = 2m is even. In the above equations, ε is the
eigenvalue and its relation to θ is determined by

ε2 = g2
1 + g2

2 + 2g1g2 cos θ. (25)

The above equations will be reduced to some well-known
results in some limiting cases. In an odd chain, Eq. (23) will
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be reduced to

�N = (g1g2)m−1

sin(θ )
sin[(m + 1)θ ] = 0, (26)

in which the solution is θ = πn/(m + 1) for n =
0, 1, 2, · · · , m. In an even chain and long-chain limit,
Eq. (24) will be reduced to

�N = (g1g2)m−1

sin(θ )

[
g2

1 sin(mθ ) + g1g2 sin((m + 1)θ )
] = 0;

(27)
the solution is θ = nπ/m − ng2π/[(g1 + g2)m2] + O(m−3).

We find that for the extended bands, the eigenvalues and
the phases can be written as

εn = εn,r − iεn,i, θn = nπ

m + 1
+ zn,r + izn,i, (28)

where n � m and εn,i, zn,r, zn,i are small numbers in the sense
that

lim
m→∞ mzn,i/r = 0. (29)

These solutions can be obtained by linearizing the above
nonlinear equations (see details in Appendix D).

B. Solutions in some limiting conditions

(a) In the weak dissipation limit (γ � g1, g2) and in the
odd (o) and even (e) chains, we have

εo
n,i =

(
g2

1 + g2
2

)
n2π2γ

(g1 + g2)2m3
, εe

n,i = 2g2
2n2π2γ

(g1 + g2)2m3
. (30)

One can easily check our previous approximation that
limm→∞ mzn,i/r = 0. The imaginary part of ε is responsible
for the characteristic relaxation time T ∗ as

T ∗ = max[1/(2εn,i )]. (31)

This definition is consistent with that in Refs. [12,13], which
is based on the inverse gap of the Liouvillian equation in
the dissipative systems. This result accounts for the multiple
timescales during relaxation, which should be a typical feature
of many-body relaxation. When γ → 0, T ∗ → ∞, indicating
of persistent coherent dynamics. Since εn,i ∝ γ , we have

T ∗ ∝ N3

γ
, (32)

which means that in the weak dissipation limit, relaxation is
still important and can happen in a finite system. Moreover,
we find that the odd-even effect is still visible in the long-chain
limit.

(b) In the strong dissipation limit, the odd-even effect will
vanish, and we find

εn,i = 2g2
1g2

2n2π2

(g1 + g2)2m3γ
. (33)

We are surprised to find that in the strong dissipation limit, the
relaxation time

T ∗ ∝ γ N3, (34)

thus it will be prolonged by the dissipation. The crossover
between these two cases are determined by εn,i = εi

n,i with
i = e, o, which yields γc = g1 in an even chain; and γc =√

2g1g2/
√

g2
1 + g2

2 in an odd chain. Thus, the strong dissi-
pation regime can be assigned by γ > γc. These inflexion
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FIG. 4. (a) Spectra of the non-Hermitian matrix H0 + i� for g1 =
1, g2 = 0.8, N = 80 with different dissipation rates γ = 2, 4, 8.
(b) m3ε1,i as a function of γ and the odd-even effect with N = 81
and N = 80. (c) Long-time evolution of tr(ραL) for different chains
with parameters g1 = 1, g2 = 0.9, γ = 10. (d) Long-time evolution
of tr(ραL) for different dissipation rates with g1 = 1, g2 = 0.95,
N = 81. (e) Scaling of ln T ∗ ∼ c ln N [see Eq. (47)], with fitted
parameter c = 2.3 in this time window. (f) gives the scaling law of
T ∗ ∝ γ . In (c, d), ρ(0) is the same as that used in Figs. 2(c) and 2(d).

points are also numerically verified, which are presented in
Fig. 4(b). The above solutions are also approximately correct
even in a short chain for the fast decay of the imaginary energy
according to εn,i ∝ 1/N3.

For the localized edge modes, a new decomposition is
required. In the weak dissipation limit, the edge modes are not
changed by the dissipation and we can make a perturbation
around cos(θc) = −(g2

1 + g2
2)/(2g1g2), which yields

εL = εR = −iγ (1 − λ2), (35)

for the two modes at the left and right ends. In the strong
dissipation limit, the edge modes will be fully localized at
the two open ends, thus we can assume ε � −iγ , and by
perturbation about cos(θ̃c) = −(γ 2 + g2

1 + g2
2)/(2g1g2), we

have

εL = −iγ + ig2
2/γ , εR = −iγ + ig2

1/γ (36)

in the odd chain and

εL = εR = −iγ + ig2
2/γ (37)

in the even chain. The details for these solutions can be found
in Appendix D. These results are independent of chain length,
indicating that in the long-chain limit the relaxation time is
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(a) (b)

iγ− iγ−

2 2 2

3

n π xρ
N

∝

FIG. 5. Understanding of the relaxation process induced by
boundary dissipation. (a) Effective Hamiltonian with boundary com-
plex potential. (b) Single-particle wave functions and their overlaps
with the edge dissipation. Here N = 2m or 2m + 1 is the total chain
length (see text).

fully determined by the bulk bands, while the edge modes are
most vulnerable to dissipation.

V. UNDERSTANDING OF THESE RESULTS USING
PERTURBATION THEORY

The results in Eqs. (32) and (34) can be understood intu-
itively as follows. In the weak dissipation limit, the eigenstates
are determined by the unperturbed Hamiltonian, where the
dissipation can be introduced via the first-order perturbation
process, which leads to decreasing of relaxation time with
the increasing of dissipation. This is a common feature of all
quantum qubits in the environment. However, in the strong
dissipation limit, the boundary dissipation is so strong that it
can no longer be treated as a perturbation. We expect that the
wave functions at the two open ends are quickly dissipated,
leaving the other bulk lattice sites unaffected. In this case, the
larger the energy difference between the bulk bands and the
two open ends is, the weaker their coupling will be, which
leads to the decreasing of relaxation time with the increasing
of dissipation rate. One should notice that in our model, we
characterize the total relaxation time in terms of the mode(s)
with the longest relaxation time [see Eq. (31)], thus the fast
relaxation modes will not be important for T ∗.

Based on the above picture, let us try to understand these
anomalous results using perturbation theory (see Fig. 5). First,
in the weak dissipation limit we can treat � as a perturbation.
Based on the first-order perturbation theory, we find that for
the localized edge modes, we have

εL = Im〈ψe|i�|ψe〉 = −iγ |ψe(1)|2 = −iγ (1 − λ2), (38)

with wave function at the left end as ψe ∼ (1, 0, λ, 0, λ2, · · · )
[see Fig. 5(b)]. In this case, the dissipation is independent of
the total chain length. For the extended bands in an even chain
and in the long-chain limit, the amplitude of the wave function
at each site x is

ψn
e (x, λ) ∝

⎧⎨
⎩

sin
(

nπx
N+ 2λ

1+λ

)
, x ∈ e,

sin
( nπ (N+1−x)

N+ 2λ
1+λ

)
, x ∈ o,

(39)

where n is the band index. In an odd chain,

ψn
o (x, λ)

∝
{√

λ2 + 1 + 2λ cos θn sin
( (N−x+1)

2 θn
)
, x ∈ e,

λ sin
((

N−x
2 + 1

)
θn
)+ sin

(
L−x

2 θn
)
, x ∈ o,

(40)

where θn = 2nπ
N+1 . These wave function need to be normalized.

Then we find εn,i = 〈ψn
N |�|ψn

N 〉, which will recover the ex-
pression in Eq. (30).

In the strong dissipation limit, we need a different decom-
position,

H0 + i� = H0 + i� + V, (41)

where we have used

H0 = P1H0P1, (42)

with P1 being the projector into the zero subspace of i�,
that is P1 = diag(0, 1, . . . , 1, 0). This decomposition follows
exactly the mechanism presented at the beginning of this
section for the reason that the dissipation sites decay much
faster than the nondissipated regime.

After a few algebra, we find

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ig2 0 · · · 0
−ig2 0 0 · · · 0

0 0 0
. . . 0

...
...

. . .
. . . ig2

0 0 0 −ig2 0.

⎞
⎟⎟⎟⎟⎟⎟⎠

, (43)

which contains only the coupling at sites 2 and L − 1, while
all the other couplings are equal to zero exactly. H0 can be
obtained by extracting V from H0 [see Eq. (22)]. We can treat
V as a perturbation, and via the second-order perturbation
theory, we have

εn,i ∝ −
∑
j=a,b

〈
ψ̃n

N

∣∣V | j〉〈 j|V ∣∣ψ̃n
N

〉
(En − Ej )

. (44)

We first calculate the wave functions of the nonperturbative
Hamiltonian H0 + i�, where the extended bands

ψ̃n
N (x, λ) ∝

{
0, x = 1, N,

ψn
N−2(x − 1, λ−1), x = 2, . . . , N − 1,

(45)
and the localized modes

|a〉 = (1, 0, 0 · · · ), |b〉 = (· · · 0, 0, 1). (46)

This expression yields Eq. (33) [see the overlap between the
bulk modes and the edge dissipation in Fig. 5(b)].

We present the dynamics of tr(ραL) in Fig. 4(c), where
αL is the localized edge modes without dissipation. Since
strong dissipation can influence the profile of the edge modes
dramatically, αL is no longer the eigenvector of H0 + i�. By a
linear fitting we find

ln T ∗ = c ln N + c′, (47)

where c ∼ 2.3. The exponent of c = 3 is not reached due to
the finite time window in simulation. This is because we only
consider the dissipation of the extended bands |ψ̃n

N 〉 which
have nonzero overlap with the edge modes (〈ψe|ψ̃n

N 〉 �= 0),
thus the dynamics of tr(ραL) is dominated by the extended
bands in the long-time limit. However, it will not influence
the scaling of T ∗ with respect to γ [see Fig. 4(d)], since all
the bulk bands have the same scaling law T ∗ ∝ γ .
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VI. CONCLUSION

Dissipation in the many-body system is a fundamental
problem that up to date has not yet been well understood. We
explore the dissipation-induced relaxation in a quantum XY
model with boundary dissipation, in which the relaxation is
characterized by a characteristic time T ∗. In the short-time
limit, the many-body dissipation is dominated; however, in
the long-time limit, it is fully determined by the dynamics
of single-particle physics, thus we characterize T ∗ using the
lifetime of single-particle bands. We explore the roles played
by the edge modes and the bulk bands in T ∗, and their scaling
laws with respect to chain length N and dissipation rate γ . An
intuitive picture based on an equivalent non-Hermitian model
is proposed, which show that the weak dissipation limit and
strong dissipation limit will have totally different mechanisms
for dissipation. An perturbation theory, which is in accord
with this picture, is also provided, which yields analytical re-
sults in excellent agreement with the numerical results. These
results may also suggest that the lowest two states protected
by a finite gap width can not serve as quantum memory
under dissipation, which is consistent with the conclusions
in the previous literature [34,56–60]. Our results may have
universal significance in the understanding the dissipation in
the many-body state in the environment, in which its short-
time dynamics is determined by the many-body dissipation,
while its long-time dynamics is given by the few-body or
even single-particle dissipation. We expect this conclusion can
advance our understanding of many-body dissipation.
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APPENDIX A: SYMMETRY TRANSFORMATIONS IN THE
QUANTUM XY MODEL WITH BOUNDARY DISSIPATION

The Hamiltonian of a quantum XY model is shown in
Eq. (2) in the main text, which mainly focuses on the region
g1 > g2 > 0. The other regions could be transformed to this
condition by some unitary transformations, as shown below.
Let us define the unitary operator Un(S, θ ), which rotates the
spin along the S direction, then we can construct some unitary
operators along the three axes

Tz =
∏
n:odd

Un(Sz, π ), (A1)

Tx =
∏
n:odd

Un(Sx, π ), (A2)

Ty =
∏
n:odd

Un(Sy, π ). (A3)

from Un. We find that

Tzσ
x
i T †

z = (−1)iσ x
i , Tzσ

y
i T †

z = (−1)iσ
y
i . (A4)

Then the transformation TzHXY T †
z interchanges g1 → −g1,

g2 → −g2. Similarly, TxHXY T †
x interchanges g1 → g1, g2 →

−g2, and TyHXY T †
y interchanges g1 → −g1, g2 → g2. How-

ever, we can construct a nitary operator

S =
∏

n

Un(Sz, π/4), (A5)

which leads to

Sσ x
i S† = −σ

y
i , Sσ

y
i S† = σ x

i . (A6)

Then the transformation SHXY S† interchanges g1 → g2, g2 →
g1. By combining all these unitary transformations, we can
reach all the regions with ±g1 and ±g2 of the XY model, and
the point g1 = ±g2 corresponds to the self-dual points as the
boundary between different phases [see the phase diagram in
Fig. 1(b)]. Notice that the above transformations will leave
the Lindblad term invariant since these transformations will at
most introduce a minus sign to σ z

j , thus will not influence the
boundary dissipation terms and the related physics.

APPENDIX B: DENSITY MATRIX REPRESENTATION

We illustrate the exact equivalence between the Majorana
fermion representation and Pauli matrix representation using
one and two spins. This equivalence was used in Eqs. (14) and
(15), both of which have 4N terms. In the earlier literature, this
equivalence has been used for the calculation of entanglement
entropy in various exactly solvable spin models [49]. We show
this equivalence explicitly by provide several transparent ex-
amples for it. For a single spin model, we can write the density
matrix as follows:

ρ1 = 1
2 (I + cxσ

x + cyσ
y + czσ

z ), (B1)

where the unity matrix I ensures that Tr(ρ1) = 1. With the
Jordan-Wigner transformation,

α1 = σ x, α2 = σ y, −iαxαy = σ z, (B2)

where α1 and α2 are Majorana fermion operators, this single-
particle density matrix can be written in Majorana fermion
representation as

ρ1 = 1
2 (I + cxα1 + cyα2 − iczα1α2). (B3)

We see a one-to-one correspondence between these two rep-
resentations.

Let us then consider a two spin model, which is slightly
more complicated. The density matrix for double spins can be
written as

ρ2 = 1
4

(
I + cx0σ

x
1 + cy0σ

y
1 + cz0σ

z
1 + c0xσ

x
2 + c0yσ

y
2

+ c0zσ
z
2 + cxxσ

x
1 σ x

2 + cxyσ
x
1 σ

y
2 + cxzσ

x
1 σ z

2 + cyxσ
y
1 σ x

2

+ cyyσ
y
1 σ

y
2 + cyzσ

y
1 σ z

2 + czxσ
z
1σ x

2 + czxσ
z
1σ x

2 + czzσ
z
1σ z

2

)
.

(B4)

In the Majorana fermion representation, we have

α1 = σ x
1 , α2 = σ

y
1 , α3 = σ z

1σ x
2 , α4 = σ z

1σ
y
2 , (B5)

then

ρ2 = 1
4 (I + cx0α1 + cy0α2 − cz0iα1α2 − c0xiα1α2α3

− c0yiα1α2α4 − c0ziα3α4 − cxxiα2α3 − cxyiα2α4
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− cxziα1α3α4 + cyxiα1α3 + cyyiα1α4 − cyziα2α3α4

+ czxα3 + czyα4 − czzα1α2α3α4). (B6)

We see that in the Majorana fermion representation, the basis
can always be written in the way of Eq. (15). During the basis
interchange between these two representations, we even find
that the coefficients of the basis in the density matrix are
exactly the same, which may differ at most by a prefactor
±i or a sign ±1 (or equivalently a phase πn/2 with n ∈
{0, 1, 2, 3}), thus their magnitudes are the same.

In the following, we present two concrete examples to
illustrate the above equivalent representations. For ρ2 =
|↑↑〉〈↑↑| = 1

4 (I + σ z
1 + σ z

2 + σ z
1σ z

2 ), we have

ρ2 = 1
4 (I − iα1α2 − iα3α4 − α1α2α3α4). (B7)

And for ρ2 = |+ +〉〈+ +| = 1
4 (I + σ x

1 + σ x
2 + σ x

1 σ x
2 ), where

|+〉 = (|↑〉 + |↓〉)/
√

2, we have

ρ2 = 1
4 (I + α1 − iα2α3 − iα1α2α3). (B8)

APPENDIX C: CONSERVATION OF MAJORANA NUMBER
AND SINGLE-PARTICLE DYNAMICS

Since the density matrix can be represented by the Majo-
rana fermions in the way of Eq. (15), which forms a complete
basis for the density matrix. We can calculate the dynamics of
the Lindblad equation using the same basis. To this end, let
us define the observables as ψi = Tr (ραi ), ψi j = Tr (ραiα j )
and ψi jk = Tr (ραiα jαk ) [see Eq. (18) in the main text] with
i �= j �= k. From the Lindblad equation, we have

d

dt
Tr (ραi ) = −i Tr (Hραi − ρHαi )

− γ [Tr (ραi ) + Tr (α1α2ρα1α2αi )]

− γ [Tr (ραi ) + Tr (α2N−1α2Nρα2N−1α2Nαi )].

(C1)

Using the properties of the trace operator, the above equation
is simplified to

d

dt
tr (ραi ) = −i Tr (ρ[αi, H]) − γ Tr (ραi )

− γ tr (ρα1α2αiα1α2) − γ tr (ραi )

− γ tr (ρα2N−1α2Nαiα2N−1α2N ). (C2)

This solution can be further simplified using the properties
of the Majorana fermion operators, with {αi, α j} = 2δi j . For
example, for N = 6, the A and B subchains in Fig. 1 are
described by

d

dt
�A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2γ 2g2 0 0 0 0
−2g2 0 2g1 0 0 0

0 −2g1 0 2g2 0 0
0 0 −2g2 0 2g1 0
0 0 0 −2g1 0 2g2

0 0 0 0 −2g2 −2γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�A,

(C3)

where �A = (ψ1, ψ4, ψ5, ψ8, ψ9, ψ12)T ; and

d

dt
�B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2γ 2g1 0 0 0 0
−2g1 0 2g2 0 0 0

0 −2g2 0 2g1 0 0
0 0 −2g1 0 2g2 0
0 0 0 −2g2 0 2g1

0 0 0 0 −2g1 −2γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�B,

(C4)
where �B = (ψ2, ψ3, ψ6, ψ7, ψ10, ψ11)T .

The conservation of Majorana numbers during dynamics
with this particular Lindblad dissipation can be deduced in
the following way. Let us denote

∏n
k=1 αmk as the product of

n different Majorana fermion operators. The dynamics of this
operator is given by

d

dt
Tr

(
ρ

n∏
k=1

αmk

)

= −i Tr

(
ρ

[
n∏

k=1

αmk , H

])

− 2γ Tr

(
ρ

n∏
k=1

αmk

)
− γ Tr

(
ρα1α2

n∏
k=1

αmk α1α2

)

− γ Tr

(
ρα2N−1α2N

n∏
k=1

αmk α2N−1α2N

)
. (C5)

For the Hamiltonian in the quadratic of Majorana operators
[48], one can prove that [

∏N
k=1 αmk , H] either equals to zero

or conserves the number of Majorana operators. However,
due to the anticommuting relation of Majorana fermion,
α1α2(

∏N
k=1 αmk )α1α2 = ±∏n

k=1 αmk , where the sign ± de-
pend on the particular form of

∏N
k=1 αmk . The same is true

for α2N−1α2N
∏N

k=1 αmk α2N−1α2N . So the dynamics conserves
the number of Majorana operators and the dynamics of the
variables in Eq. (18) will be restricted to their own subspaces.
Otherwise, the hierarchy equations need to be considered,
which then can be solved numerically with some truncation
[51]. Based on this feature, in Appendix D, some analytical
expressions will be obtained for the dynamics in K1 subspace
in several limits, which is in accord with the mechanisms
discussed in Sec. V.

APPENDIX D: ANALYTICAL SOLUTIONS
IN SOME LIMITS

1. Extended bands in the odd chain

For odd chain with N = 2m + 1, we can expand the non-
linear Eqs. (24) and (26) around the points

εn = εn,r + iεn,i, θn = nπ

m + 1
+ zn,r + izn,i, (D1)

where n is the band index, which satisfies n � m, and
εn,i, zn,r, zn,i are small numbers in the sense that

lim
m→∞ mzn,i/r = 0, lim

m→∞ mεn,i/r = 0. (D2)
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For brevity, we define new variable

A = g1g2, B = g2
1 + g2

2. (D3)

Then the nonlinear equations can be reduced to

A(2iγ + εn) sin(m + 1)θn + (iBγ − γ 2ε) sin mθn = 0,

(D4)
and

ε2
n = B + 2A cos θn. (D5)

Substituting Eq. (D1) into Eq. (D5) and making a Taylor
expansion of zn,r and εn,i, assuming Eq. (D2), we have

(εn,r + iεn,i )
2 = B + 2A

[
1 − 1

2

(
nπ

m + 1
+ zn,r + izn,i

)2
]
.

(D6)

From the above solution, the real part and imaginary part,
respectively, yield

εn,r �
√

B + 2A, εn,i � − Anπzn,i

(m + 1)
√

B + 2A
. (D7)

In the same way, using Eqs. (D1) and (D4), we have

A(2iγ + εn,r + iεn,i )[(m + 1)zn,r + (m + 1)izn,i]

+ (iBγ − γ 2εn,r − γ 2iεn,i )

×
[
− nπ

m + 1
+ mzn,rmizn,i

]
= 0. (D8)

The real part of the above equation gives

Aεn,r (m + 1)zn,r − 2Ar(m + 1)zn,i − γ 2mεn,rzn,r

+ γ 2εn,r
nπ

m + 1
− Brmzn,i = 0, (D9)

and the imaginary part gives

2Aγ (m + 1)zn,r + Aεn,r (m + 1)zn,i − γ 2εn,rmzn,i

+ Bγ (mzn,r − nπ

m + 1
) + γ 2εn,i

nπ

m + 1
= 0. (D10)

From Eqs. (D9) and (D10), we obtain

zn,r = −πγ 2n
(
g1g2 − g2

1 − g2
2

)
g2

1g2
2m2

, (D11)

zn,i =
(
g2

1 + g2
2

)
πγ n

g1g2(g1 + g2)m2
, (D12)

εn,i = −
(
g2

1 + g2
2

)
n2π2γ

(g1 + g2)2m3
. (D13)

With this solution, we can readily check the requirement of
Eq. (D2). We find that

mzn,r, mzn,i ∝ 1

m
, mεn,i ∝ 1

m2
, (D14)

thus the perturbation assumption is always hold.
The same procedure can be used to calculate the physics in

the strong dissipation limit. We ignore the detailed calculation

here and only present our major results

zn,r = πn

m2
− πg1g2n

γ 2m2
, (D15)

zn,i = 2πg1g2n

γ m2(g1 + g2)
, (D16)

εn,i = − 2g2
1g2

2n2π2

(g1 + g2)2m3γ
. (D17)

These results always satisfy Eq. (D14), which also validate
our assumption.

2. Extended bands in the even chain

For N = 2m, we can expand the nonlinear Eqs. (24) and
(25) around the points

εn = εn,r + iεn,i, θn = nπ

m
+ zn,r + izn,i. (D18)

For brevity, we define new variable C = g2
1. We substitute

Eq. (D18) into the nonlinear Eqs. (24) and (25) and make
a Taylor expansion of zn,r and εn,i, assuming Eq. (D2), we
obtain

[γ 2 − C − 2iγ εn,r + 2γ εn,i](mzn,r + imzn,i )

− A
[nπ

m
+ (m + 1)zn,r + i(m + 1)zn,i

]

+ γ 2 A

C

[
−nπ

m
+ (m − 1)zn,r + i(m − 1)zn,i

]
= 0,

(D19)

as well as

(εn,r + iεn,i )
2 = B + 2A cos

(nπ

m
+ zn,r + izn,i

)
. (D20)

From the above solution, the real part and imaginary part,
respectively, yield

εn,r �
√

B + 2A, εn,i � −Anπzn,i

mεn,r
. (D21)

In the same way, using Eq. (D19), the real part of the above
equation gives

(γ 2 − C + 2γ εn,i )mzn,r + 2γ εn,rmzn,i

− A
[nπ

m
+(m + 1)zn,r

]
+γ 2 A

C

[
−nπ

m
+ (m − 1)zn,r

]
=0,

(D22)

and the imaginary part gives

(γ 2 − C + 2γ εn,i )mzn,i − 2γ εn,rmzn,r − A(m + 1)zn,i

+ γ 2 A

C
(m − 1)zn,i = 0. (D23)

Combining Eqs. (D21)–(D23), we can solve these linear equa-
tions in the weak dissipation limit and find

zn,r = −g2nπ
(
g2

1 − 2γ 2
)

g2
1m2(g1 + g2)

, (D24)

zn,i = 2g2πγ n

g1(g1 + g2)m2
, (D25)

εn,i = − 2g2
2n2π2γ

(g1 + g2)2m3
. (D26)
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While in the strong dissipation limit, we have

zn,r = g2
(
γ 2 − 2g2

1

)
πk

γ 2m2(g1 + g2)
, (D27)

zn,i = 2g1g2nπ

γ m2(g1 + g2)
, (D28)

εn,i = − 2g2
1g2

2n2π2

(g1 + g2)2m3γ
. (D29)

These results are also in accord with Eq. (D14).

3. Edge modes with strong dissipation

In this subsection we derive the dissipation of edge mode
in the strong dissipation using Taylor expansion method. For
γ � g1, g2 in the odd chain, we assume

ε = εr − iγ − iεi, (D30)

where εi is small number in the sense limγ→∞ εi = 0. From
numerical result, we find εr ∼ 0 with modest m, and we may
reasonably set εr = 0. We substitute Eq. (D30) into Eqs. (23)
and (25) and obtain

g1g2(2iγ − iγ − iεi )(sin mθ cos θ + cos mθ sin θ )

+[γ 2(iγ + iεi ) + i
(
g2

1 + g2
2

)
γ
]

sin mθ = 0 (D31)

and

cos θ = −(γ + εi )2 − g2
1 − g2

2

2g1g2
. (D32)

The above two solutions will yield sin θ =
−i
√

( (γ+εi )2+g2
1+g2

2
2g1g2

)2 − 1, and limm→+∞ cos mθ
sin mθ

= −i. Then
Eq. (D31) can be written

(γ − εi )

[
(γ + εi )

2 + g2
1 + g2

2 − g2
1g2

2

γ 2

]

−γ 2(γ + εi ) − (
g2

1 + g2
2

)
γ = 0. (D33)

By ignoring the higher-order terms of ε3
i , the above equation

can be reduced to ε2
i γ + εi(g2

1 + g2
2) + g2

1g2
2/γ = 0, which

yields

εi = −g2
1

γ
, or εi = −g2

2

γ
. (D34)

This solution is used in the main text in Eqs. (36) and (37).
For even chain, we substitute Eq. (D30) into Eq. (24) and

obtain

[−γ 2 + g2
1 + i2γ (−iγ − iεi)] sin mθ

+g1g2 sin(m + 1)θ − γ 2 g2

g1
sin(m − 1)θ = 0. (D35)

Using the properties of sin(θ ) and cos(θ ), we have

[γ 2 + g2
2 + 2γ εi][cos θ − i sin θ ]

+g1g2[(2 cos2 θ − 1) − i2 sin θ cos θ ] − γ 2 g2

g1
= 0.

(D36)

In the same way as the odd chain case, Eq. (D36) can be
simplified as

ε2
i + 2εig2

2

γ
+ g4

2

γ 2
= 0. (D37)

We have εi = −g2
2/γ , this result is used in Eq. (37) in the main

text.

4. Edge modes with weak dissipation

In the weak dissipation limit, we can expand Eqs. (23),
(24), and (25) around cos(θc) = −(g2

1 + g2
2)/2g1g2. For the

odd chain with N = 2m + 1, we assume

θ = θc + zr + izi, ε = εr + iεi. (D38)

With the aid of numerical results, we find that εr and zr decay
exponentially to zero with the increasing of m, for which
reason we can set εr = zr = 0 for large enough m. However,
we find ε ∝ γ . We substitute Eq. (D38) into Eqs. (23) and (25)
and make a Taylor expansion, obtaining

A(2γ + εi )[−i sin(m + 1)θc + cos(m + 1)θc · (m + 1)zi]

+ (−γ 2εi + Bγ )(−i sin mθc + cos mθc · mzi ) = 0
(D39)

and

ε2
i = i2A sin θczi, (D40)

where θc satisfies

cos θc = −g2
1 + g2

2

2g1g2
= − B

2A
, sin θc = i

√(
B

2A

)2

− 1.

(D41)
When m is large enough, we can prove

lim
γ→0

(m + 1)zi = 0,
cos mθc

sin mθc
= i. (D42)

Then Eq. (D39) can be reduced to

A(2γ + εi ) sin(m + 1)θc + Bγ sin mθc = 0, (D43)

which leads to εi = −γ (1 − g2
2/g2

1).
For even chain N = 2m, We substitute Eq. (D38) into

Eqs. (24) and (25) and have(−γ 2 + g2
1 − 2γ εi

)
(sin mθc + cos mθcmizi )

+ g1g2[sin(m + 1)θc + cos(m + 1)θc(m + 1)izi]

− γ 2 g2

g1
[sin(m − 1)θc + cos(m − 1)θc(m − 1)izi] = 0,

(D44)
as well as Eq. (D40). With the aid of

sin(m + 1)θc

sin mθc
= −g1

g2
,

cos(m + 1)θc

sin mθc
= −i

g1

g2
, (D45)

Eq. (D44) can be reduced to

−γ 2 − 2γ εi + g2
1zi + γ 2 g2

2

g2
1

= 0, (D46)

which gives εi = −γ (1 − g2
2/g2

1). This solution has been used
in Eq. (35) in the main text.
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