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Rich phase diagram of quantum phases in the anisotropic subohmic spin-boson model
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We study the anisotropic spin-boson model (SBM) with the subohmic bath by a numerically exact method
based on variational matrix product states. A rich phase diagram is found in the anisotropy-coupling strength
plane by calculating several observables. There are three distinct quantum phases: a delocalized phase with even
parity (phase I), a delocalized phase with odd parity (phase II), and a localized phase with broken Z2 symmetry
(phase III), which intersect at a quantum tricritical point. The competition between those phases gives an overall
picture of the phase diagram. For small power of the spectral function of the bosonic bath, the quantum phase
transition (QPT) from phase I to III with mean-field critical behavior is present, similar to the isotropic SBM. The
phase diagram with three different phases can be found at large power of the spectral function: For the highly
anisotropic case, the system experiences the QPTs from phase I to II via first order, and then to phase III via
second order with the increase of the coupling strength. For the low anisotropic case, the system only experiences
the continuous QPT from phase I to phase III with the non-mean-field critical exponents. Very interestingly, at
the moderate anisotropy, the system would display the continuous QPTs for several times but with the same
critical exponents. This unusual reentrance to the same localized phase is discovered in light-matter interacting
systems. The present study on the anisotropic SBM could open an avenue to the rich quantum criticality.
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I. INTRODUCTION

The quantum phase transition (QPT) has been studied
for many years and continues to be a hot topic in many
correlated matters and light-matter interacting systems [1],
such as fermionic [2], spin [1], bosonic [3], as well as fermion
(spin)-boson coupling systems [4,5]. Because fermions have
both spin and charge degrees of freedom, rich quantum phases
can emerge in the fermionic model and the bosonic model if
bosons are formed by composite fermions or cold atoms in
strongly correlated systems.

In light-matter interacting systems, many prototype models
including the quantum Rabi model [6], the Dicke model [7],
and the spin-boson model (SBM) [5] only experience a single
QPT from the normal to super-radiant phase for the single-
mode bosonic cavity or delocalized to localized phase for the
bosonic bath. The QPTs of most models are trivially of the
mean-field nature. Only the subohmic SBM can also display
the non-mean-field critical behavior with the large power of
the spectral function of the bosonic bath [8]. The nonclassical
critical behavior is at the heart of so-called local quantum
criticality [9].

To obtain the rich phase diagram, the generalized Dicke
models, such as the anisotropic Dicke model [10,11], the
anisotropic Dicke model with Stark coupling terms [12],
and the isotropic Dicke model with antiferromagnetic bias
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fields [13] have been recently studied by several groups. A
quantum tricritical point (QuTP) [14] is seldomly supported
in solid-state materials and is almost impossible to appear in
prototype models of light-matter interacting systems due to
the single phase transition. Interestingly, it has been found to
exist in the anisotropic Dicke model [11] and the isotropic
Dicke model with a special configuration of bias fields [13].
In the former model, the QuTP lies at the symmetric line of
the super-radiant “electric” and “magnetic” phases, which can
be switched mutually by interchanging the interaction terms
with the two quadratures of a bosonic mode while, in the
latter model, the first-order critical line meets the second-
order one at the QuTP. Yet it has not been found that three
critical lines intersect at the QuTP and separate three phases
in an asymmetric way as in the He3−He4 mixture [14] in
light-matter interacting systems until now, to the best of our
knowledge.

The phase diagrams in those generalized Dicke models be-
come richer than their prototype models, but still only include
one first-order and one second-order critical line, possibly due
to the fact that only a single phase transition with a mean-field
type is present in the prototype models. This situation might
be changed in a generalized model if its prototype one can
exhibit both non-mean-field and mean-field critical behaviors,
like the subohmic SBM.

As is well known that the SBM is a paradigmatic model in
many fields, ranging from quantum optics [15] to condensed-
matter physics [5] to open quantum systems [16,17]. With the
advance of modern technology, various qubit and oscillator
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coupling systems can be engineered in many solid-state de-
vices, such as superconducting circuits [18,19], cold atoms
[20], and trapped ions [21]. Recently, the SBM has been
realized by the ultrastrong coupling of a superconducting flux
qubit to an open one-dimensional transmission line [22]. The
counter-rotating terms can be suppressed in some proposed
schemes [10,23,24]. In some systems, the anisotropy appears
quite naturally, because they are controlled by different input
parameters [25].

In the subohmic SBM, the second-order QPT from the
delocalized phase, where spin has equal probability in the
two states, to the localized phase, in which spin prefers to
stay in one of the two states, has been studied extensively
[8,26–34]. Unlike the Dicke model and the quantum Rabi
model, the SBM has various universality classes, depending
on the power of the spectral function of the bosonic bath.
Therefore, its generalized model including anisotropy might
support richer quantum phases with the help of the additional
parameter dimension.

In this paper, we will extend the variational matrix product
state (VMPS) approach [31] to study the anisotropic spin-
boson model (ASBM) with the subohmic bath. The multi-
coherent state (MCS) variational approach is also employed
to provide independent evidence of the emerging phase. The
paper is organized as follows. In Sec. II, we introduce the
ASBM briefly. Some methodologies including the VMPS
and the MCS variational approaches are reviewed briefly.
The rich phase diagrams revealed by the VMPS method are
presented in Sec. III. A QuTP is observed and the quantum
criticality based on VMPS studies on the parity, the order
parameter, and the entanglement entropy are also analyzed.
Finally, conclusions are drawn in Sec. IV.

II. GENERALIZED MODEL HAMILTONIAN
AND METHODOLOGIES

The ASBM Hamiltonian can be written as (h̄ = 1)

Ĥ = �

2
σz + ε

2
σx +

∑
k

ωka†
k ak + 1

2

∑
k

gk (a†
k + ak )σx

+ λ

2

∑
k

gk (ak − a†
k )iσy, (1)

where σi (i = x, y, z) are the Pauli matrices, � is the qubit
frequency, ε is the energy bias applied in a two-level system,
and λ reflects the degree of anisotropy of this model. ak

(a†
k ) is the bosonic annihilation (creation) operator which can

annihilate (create) a boson with frequency ωk , and gk denotes
the coupling strength between the qubit and the bosonic bath,
which is usually characterized by the power-law spectral
density J (ω),

J (ω) = π
∑

k

g2
kδ(ω − ωk ) = 2παω1−s

c ωs
(ωc − ω), (2)

where α is a dimensionless coupling constant, ωc is the cutoff
frequency, and 
(ωc − ω) is the Heaviside step function. The
power of the spectral function s classifies the reservoir into
superohmic (s > 1), ohmic (s = 1), and subohmic (s < 1)
types. On the one hand, the isotropic SBM can be described
by Hamiltonian Eq. (1) with λ = 0. On the other hand, if the

counter-rotating terms involving higher excited states, a†
kσ+

and akσ−, are neglected (λ = 1 ), the ASBM is reduced to the
SBM in the rotating-wave approximation (RWA), which has
been studied by the present authors recently [35].

The ASBM at ε = 0 possesses a Z2 symmetry, similar to
the isotropic SBM model. The parity operator is defined as

�̂ = exp(iπ N̂ ), (3)

where N̂ = ∑
k a†

k ak + σ+σ− with σ± = (σx ± iσy)/2 is the
operator of the total excitation number. The parity operator �̂

has two eigenvalues ±1, corresponding to even and odd parity
in the symmetry-conserved phases. The average value of the
parity may also become zero due to the quantum fluctuations
in the symmetry broken phase, so the parity can be employed
to distinguish different phases in the ASBM.

III. VMPS APPROACH

To apply VMPS in the ASBM, first the logarithmic dis-
cretization of the spectral density of the continuum bath [8]
with discretization parameter � > 1 is performed, followed
by using orthogonal polynomials as described in Ref. [36];
the ASBM can be mapped into the representation of an one-
dimensional semi-infinite chain with nearest-neighbor inter-
action [37]. Thus, Hamiltonian Eq. (1) can be written as

Hchain = �

2
σz + ε

2
σx + c0

2
(b0 + b†0)σx + λ

c0

2
(b0 − b†0)iσy

+
L−2∑
n=0

[εnb†nbn + tn(b†nbn+1 + b†n+1bn)], (4)

where b†n(bn) is the creation (annihilation) operator for a new
set of boson modes in a transformed representation with εn

describing frequency on chain site n, tn the nearest-neighbor
hopping parameter, and c0 the effective coupling strength
between the spin and the new effective bath. These parameters
are expressed below:

c0 =
√∫ ωc

0

J (ω)

π
dω,

εn = ξs(An + Cn),

tn = −ξs

(
Nn+1

Nn

)
An,

where

ξs = s + 1

s + 2

1 − �−(s+2)

1 − �−(s+1)
ωc,

An = �− j (1 − �−( j+1+s) )2

(1 − �−(2 j+1+s) )(1 − �−(2 j+2+s) )
,

Cn = �−( j+s) (1 − �− j )2

(1 − �−(2 j+s) )(1 − �−(2 j+1+s) )
,

N2
n = �−n(1+s)(�−1 : �−1)2

n

(�−(s+1) : �−1)2
n(1 − �−(2n+1+s) )

,

with

(a : q)n = (1 − a)(1 − aq)...(1 − aqn−1).

For details, one may refer to Ref. [36].
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Then as introduced in Refs. [38,39], the ground-state wave
function of Hamiltonian Eq. (4) can be depicted as

|ψ〉 =
dn∑

{Nn}=1

M[N1] . . . M[NL]|N1, . . . , NL〉, (5)

where Nn is the physical dimension of each site n with
truncation dn, and we employ the standard matrix product
representation with optimized boson basis |̃nk〉 through an
additional isometric map with truncation number dopt � dn

as in Refs. [31,37] to study the quantum criticality of ASBM.
Each site in the 1D chain can be described by the matrix M,
which is optimized through sweeping the 1D chain iteratively
to obtain the ground state, and Dn is the bond dimension for
matrix M with the open boundary condition, bounding the
maximal entanglement in each subspace.

For the data presented below, we typically choose the same
model parameters in Ref. [31,35], as � = 0.1, ωc = 1, ε = 0,
the logarithmic discretization parameter � = 2, the length
of the semi-infinite chain L = 50, and optimized truncation
numbers dopt = 12. In addition, we adjust the bond dimension
as Dmax = 20, 40 for s = 0.3, 0.7, respectively, which is suf-
ficient to obtain the converged results.

IV. MCS ANSATZ

We also apply the MCS ansatz [40–42] to the ASBM. To
facilitate the variational study and visualize the symmetry
breaking explicitly, we rotate the Hamiltonian Eq. (1) with
ε = 0 around the y axis by an angle π/2, and have

HT = −�

2
σx +

∑
k

ωka†
k ak + 1

2

∑
k

gk (a†
k + ak )σz

+ λ

2

∑
k

gk (ak − a†
k )iσy. (6)

The trial state |ψT 〉 is written in the basis of the spin-up state
|↑〉 and spin-down state |↓〉,

|ψT 〉 =
(∑Nc

n=1 An exp
[∑L

k=1 fn,k (a†
k − ak )

]|0〉∑Nc
n=1 Bn exp

[∑L
k=1 hn,k (a†

k − ak )
]|0〉

)
, (7)

where An (Bn) is related to the occupation probability of the
spin-up (spin-down) state in the nth coherent state; Nc and
L are numbers of coherent states and total bosonic modes,
respectively, and fn,k (hn,k) represents bosonic displacement
of the nth coherent state and kth bosonic mode. The symmetric
MCS ansatz (An = ±Bn with ± denotes the even and odd
parity and fn,k = −hn,k) can only be applied to the delocalized
phase, so one can easily detect the symmetry breaking.

The energy expectation value can be calculated as follows:

E = 〈ψT |HT |ψT 〉
〈ψT |ψT 〉 . (8)

Minimizing the energy expectation value with respect to vari-
ational parameters yields the self-consistent equations, which
in turn give the ground-state energy and the wave function.
It has been demonstrated that this wave function with at least

FIG. 1. Upper panel: Phase diagram in the α − λ plane for the
ASBM drawn from the parity 〈�〉: delocalized phases with even (I)
and odd parity (II) with conserved Z2 symmetry, and the localized
phase (III) with broken Z2 symmetry. Middle panel: Order parameter
|〈σx〉|. Lower panel: Entanglement entropy 〈SE 〉. The power of the
spectral function is (left) s = 0.7 and (right) 0.3. � = 0.1, ωc = 1.
The parameters used in the VMPS approach are � = 2, L = 50,
dopt = 12, and D = 20, 40 for s = 0.3, 0.7, respectively.

100 coherent states can describe the localized phase of the
SBM [43].

For both VMPS and MCS approaches described above,
discretization of the energy spectrum of the continuum bath
should be performed at the very beginning in the practical
calculations. The same logarithmic discretization is taken for
both approaches if comparisons are made.

Within the ground-state wave function, the average magne-
tization |〈σx〉| is easily calculated. Note that it can be regarded
as the order parameter in the ASBM. The information of the
ground state can also be described by the von Neumann en-
tropy SE of the ASBM, which characterizes the entanglement
between spin and the bosonic bath,

SE = −Tr(ρspin log ρspin), (9)

where ρspin is the reduced density matrix for the spin. We will
calculate these two quantities together with the average parity
to study the criticality of the ASBM in this paper.

V. RESULTS AND DISCUSSIONS

A. The phase diagram

Generally, the isotropic subohmic SBM exhibits the mean-
field critical behavior for small s and the nonclassical one for
large s, so we focus on two typical powers of the spectral
function s = 0.7 and 0.3 in this paper. The main results for
the ASBM based on VMPS approaches are presented in Fig. 1
at s = 0.7 (left) and 0.3 (right). The different phases in the
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ASBM can be precisely characterized by the parity, which
allows for composing the ground-state phase diagrams in the
anisotropy λ and the coupling strength α plane in the upper
panel. We call phases I and II the two delocalized ones with
〈�〉 = ±1, respectively, and phase III the localized phase with
〈�〉 = 0. The boundary between phases I and II is marked
with the black dashed line and the boundary of phase III and
any delocalized phase is indicated with the red dashed line.
Clearly, for s = 0.7, we do observe three full phases with the
phase diagram, and a QuTP is the intersecting point of the
three critical lines.

Color plots for the order parameter |〈σx〉| and the entan-
glement entropy SE between the two-level system and the
environment bath are displayed in the middle and lower panels
of Fig. 1, respectively. It is remarkable to see that the skeleton
of the phase diagram can be directly obtained from the color
plot of the entropy. In the small α region, the entropy increases
quickly but still continuously within the phase I area and no
phase transition takes place. The order parameter shares the
common shape with the phase boundary marked by the red
dashed line.

For small power of the spectral function, as shown in
Fig. 1(b) for s = 0.3, the phase diagram only consists of two
phases (I and III). It follows that only a single second-order
QPT from the delocalized to localized phase is observed in
this case, similar to the isotropic SBM. This phase diagram
can be replotted in a similar way as Fig. 2 in Ref. [11] for the
anisotropic Dicke model, if using �E ∝ √

α,�M ∝ λ
√

α.
Surprisingly, for large power s = 0.7, a new delocalized

phase with odd parity (phase II) can grow at the phase III
region and have a common border with phase I, as exhibited in
Fig. 1(a). It intervenes between phases I and III in an unusual
way. The QPT between the two delocalized phases is of first
order due to the level crossing caused by the different wave
functions with opposite parities, whereas the QPTs from any
delocalized phase to a localized phase are definitely of second
order due to the symmetry breaking.

For the highly anisotropic case, both the first- and second-
order QPTs take place successively from phases I to II, then
to phase III, similar to the SBM in the RWA. Note, however,
that the total excitation in the ASBM is not conserved, unlike
the SBM in the RWA. Especially in the moderate anisotropic
model, with increasing coupling strength, the system would
undergo second-order QPTs three times: I → III, III → II,
and II → III. This is an unusual reentrance to the same
localized phase in light-matter interacting systems. For the
low anisotropic case, since the rotating-wave terms and the
counter-rotating terms are comparable, it is not essentially
different from the isotropic SBM, and thus exhibits the similar
critical phenomenon.

To be more complete, we have performed extensive calcu-
lations based on VMPS for many different values of s, and
found that phase II only emerges for s > 0.38 in the ASBM.
We also extend the anisotropic constant regime to λ > 1. In
this case, we can absorb λ into gk , and have g′

k = λgk . The
coupling strength in Eq. (2) becomes α′ = λ2α. Set λ′ = 1/λ.
The transformed Hamiltonian is the same as Hamiltonian
Eq. (1) if interchanging the coefficients of the last two terms
and removing primes in λ′ and α′. Regarding |〈σy〉| as the
order parameter, the phase diagram can also be obtained in
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(I)->(II)->(III)(I)->(III)->(II)->(III)

FIG. 2. Parity 〈�〉 (upper panels), magnetization |〈σx〉| (middle
panels), and entanglement entropy 〈SE 〉 (lower panels) as a function
of α in the ground state for λ = 0.3 (left) and λ = 0.9 (right) by
VMPS approach. � = 0.1, ωc = 1, ε = 0, � = 2, L = 50, dopt =
12, and D = 40 for s = 0.7.

the α′ − λ′ plane for 0 < λ′ < 1, which is exactly the same as
Fig. 1 for the same s. The results for λ > 1 are qualitatively
the same as those for the anisotropic parameter 1/λ at the
same power s, because only the phase boundaries are scaled
by 1/λ2.

To study the QPTs deeply, we will discuss the order
parameter and the entanglement entropy in detail in the next
subsections. For more clarity, we extract the data of the parity,
magnetization, and the entropy as a function of coupling
strength α at λ = 0.3 and 0.9 in Fig. 1, and replot them in
Fig. 2 for s = 0.7 and Fig. 3 for s = 0.3, respectively.

B. Order parameter

Generally, in the delocalized phase, spin has equal proba-
bility in the two states, spin-up and spin-down (both in the x
axis here), while in the localized phase, spin prefers to stay in
one of the two states. Because phases I and II are delocalized
with opposite parities (±1), the order parameter must be zero
due to the conserved symmetry. So, we cannot distinguish
phase II from phase I by the order parameter, which is shown
in the blue regime of Fig. 1(c). Nonzero order parameter is
only found in the localized phase due to symmetry break-
ing. Thus, |〈σx〉|, the order parameter, can only be used to
determine the boundary of the continuous QPTs. The parity
always jumps to different plateaus when crossing any phase
boundaries. These characteristics are clearly shown in the
upper panels of Figs. 2 and 3, which can be used to compose
the phase diagram precisely.
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FIG. 3. Parity 〈�〉 (upper panels), magnetization |〈σx〉| (middle
panels), and entanglement entropy 〈SE 〉 (lower panels) as a function
of α in the ground state for λ = 0.3 (left) and λ = 0.9 (right) by
VMPS approach. � = 0.1, ωc = 1, ε = 0, � = 2, L = 50, dopt =
12, and D = 20 for s = 0.3.

One can indeed see that the order parameter remains zero
in phases I and II and only becomes nonzero in phase III in
the middle panels of Figs. 2 and 3. The remarkable peak of the
order parameter in Fig. 2(c) for s = 0.7, λ = 0.3 is originated
from the narrow localized phase III.

For small power of the spectral function, say s = 0.3, there
only exist two phases: delocalized phase with even parity I
and localized phase III. Although phase II does not show up
in the phase diagram in this case, it still plays some roles. The
magnetization for different anisotropy shows different behav-
iors after the critical point in the middle panel of Fig. 3 for
λ = 0.3 and 0.9. For λ = 0.3, the order parameter increases
monotonously to the global maximum, while for λ = 0.9, it
displays a nonmountainous behavior with α. One can find in
the phase diagram that the high anisotropy λ and large s favor
the emergence of phase II. Even for small s, phase II finally
disappears due to the failure in the competition with phase
III, but its effect would not disappear completely without a
trace. According to the different symmetry, note that phase
III enhances but phase II suppresses the magnetization, which
cooperate to result in the local minimum of the magnetization
in this region. Of course, if phase II somehow truly appears
in this region, the magnetization must be zero and no local
minimum can be seen.

C. Entanglement entropy

The entanglement entropy SE is presented in the lower
panel of Fig. 1 for s = 0.7 and 0.3. From the lower panels
of Figs. 2 and 3, we can observe that the entropy changes

drastically when crossing all first- and second-order critical
lines. As shown in Ref. [44] in the fermionic systems, the
entanglement can be used to identify QPTs. So, the implica-
tions between the entanglement and the quantum phase in the
present ASBM should also be nontrivial.

To shed some insight, we first consider the first-order QPT
in the SBM in the RWA (λ = 1) [35]. In this case, the total
excitation N̂ = ∑

k a†
k ak + σ+σ− is the conserved number. At

the weak coupling, 〈N〉 = 0, corresponding to even parity
〈�〉 = 1, the ground-state wave function is |ψ0〉 = |0〉|↓〉 with
energy E0 = −�

2 , then we can obtain the reduced density
matrix for the spin,

ρspin = |↓〉〈↓|,
and one can easily obtained entropy SE = 0 from Eq. (9).

When exceeding the first QPT point, 〈N〉 jumps to 1,
corresponding to odd parity 〈�〉 = −1, and the ground-state
wave function for the single excitation is

|ψ1〉 = c|0〉|↑〉 +
∑

k

dkak
†|0〉|↓〉, (10)

where c and dk are the coefficients for the bosonic vacuum
and single boson number states. On can easily obtain c2 =
(1 + 〈σz〉)/2. The reduced density matrix for the spin is

ρspin = c2|↑〉〈↑| + (1 − c2)|↓〉〈↓|. (11)

If 〈σz〉 = 0, we obtain the maximum entropy Smax
E =

log 2 = 0.693 from Eq. (9). In this case, the probabilities of
spin-up and spin-down are equal, corresponding to the largest
entanglement between spin and bath. In the single excitation
state 〈σz〉 is usually small, e.g., it is found in Fig. 2(b) of our
previous work [35] that 〈σz〉 suddenly switches to a small
value around 0.3 ± 0.1 when crossing the first-order QPT
point. The entropy in the single excitation state can be larger
than 0.6.

In the presence of the counter-rotating wave terms in the
ASBM, the total excitation N̂ is no longer conserved. The state
with the even parity at the weak coupling is not |ψ0〉 = |0〉|↓〉
anymore; the components with the even number N̂ excitations
in the states would be involved gradually with the increase of
the coupling strength, so the entropy increases within phase I,
consistent with the numerical calculations shown in the lower
panels of Figs. 2 and 3.

Because phase II is of odd parity, as long as λ �= 1, its state
is different from but close to the state Eq. (10) with a single
excitation. So, the entropy is also high in phase II. We indeed
find that the entropy in all phase II regimes is high, indicating
it is a highly entangled phase. As shown in Fig. 1(e), a high
entanglement regime appears in the phase II area. In the first-
order QPT boundary from phases I and II, the entropy jumps
suddenly to a value close to Smax

E in phase II, as is just shown
in Fig. 2(f) at s = 0.7, λ = 0.9.

In the localized phase of the isotropic SBM, Chin et al.
found a monotonic decrease of entanglement above the tran-
sition by means of the nonadiabatic modes [30] analytically,
consistent with the numerical calculations [45]. In the present
ASBM, this behavior may be modified due to the competition
between the localized phase III and the hidden phase II; the
latter is lacking in the isotropic SBM but still possibly present
in the ASBM under some conditions. In the phase III region
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FIG. 4. (a) The order parameter |〈σx〉|, (b) the parity 〈�〉 as a
function of the coupling strength within VMPS and MCS variational
approaches. (c) The difference between the VMPS ground-state
energy and that by MCS. s = 0.7, λ = 0.9, � = 0.1, ωc = 1, ε = 0,
� = 2, L = 20, dopt = 12, D = 20, Nc = 9.

of the lower panel of Fig. 3 for s = 0.3, at λ = 0.3 and
0.9, we note that the entropy decreases first, reaches a local
minimum, and surprisingly rises again when the coupling
strength increases further, in contrast to the isotropic SBM. As
discussed in the last subsection, phase III competes with phase
II in this area and finally wins. In general, phase III exhibits
a finite value of order parameter but weak entanglement
between spin and bosonic bath, while phase II displays high
entanglement but suppresses the order parameter completely.
Although phase II cannot finally appear, it could still be
hidden there and enhance the entanglement. The observed
local minimum is just caused by the cooperated effect of the
competition of phases II and III beyond the weak coupling.
We have confirmed that, in the strong coupling limit, the
entropy in all cases must vanish (not shown here).

D. Evidence for first-order QPT between the phases with
opposite parities by MCS variational studies

The most interesting observation in the ASBM is that a new
phase II with odd parity intervenes between the conventional
phases I and III, which is absent in the isotropic SBM. To
provide more evidence of this new quantum phase, we also
employ the MCS approach here. By VMPS, for s = 0.7 and
λ = 0.9, we have observed that a large region of phase II
appears between phases I and III. Since all three phases can
be described well in the trial wave function Eq. (7), we in
principle can detect these phases in the MCS framework. In
Fig. 4, we list results for the parity, the magnetization, and the
ground-state energy by both MCS and VMPS approaches for
s = 0.7 and λ = 0.9. Notice that only L = 20 bosonic modes

-6 -5 -4 -3
-3

-2

-1

0

1

lo
g

10
(|

<
x>

|)

 s = 0.3 
 = 0.5

 = 0
 = 0.2
 = 0.6
 = 0.9

-6 -5 -4 -3
log

10
( -

c
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g

10
(|

<
x>

|)

 s = 0.7 
 = 0.3

 = 0
 = 0.2
 = 0.6
 = 0.9

-8 -7 -6 -5 -4

-3

-2

-1

0

1
s = 0.3 

1/  = 0.33

 = 0
 = 0.2
 = 0.6
 = 0.9

-8 -7 -6 -5 -4
log

10
( )

-1

-0.5

0

s = 0.7 
1/  = 0.172

 = 0
 = 0.2
 = 0.6
 = 0.9

(a) (b)

(d)(c)

FIG. 5. The log-log plot of the magnetization |〈σx〉| as a function
of α − αc (left) at ε = 0 and bias ε (right) at α = αc of the ASBM
for s = 0.3 (upper panel) and s = 0.7 (lower panel). The numerical
results by VMPS are denoted by blue, orange, green, purple circles
for λ = 0, 0.2, 0.6, 0.9, respectively, and the power-law fitting curves
are denoted by the black dashed lines, which show β = 0.5, 0.3
and 1/δ = 0.33, 0.172 for s = 0.3, 0.7, respectively. For visibility,
the curves for different λ have been shifted to distinguish them.
� = 0.1, ωc = 1, � = 2, L = 50, dopt = 12, and D = 20, 40 for s =
0.3, 0.7, respectively.

are taken for both approaches here due to the computational
difficulties in the MCS approach. However, it does not in-
fluence the essential results at all. The results in the large
part of the phase II regime by both approaches are almost
the same, convincingly demonstrating the existence of phase
II according to its characteristics. The wave function in the
MCS reproduces phase II with the odd parity explicitly by
noting An = −Bn . The deviation of the results in the transition
regime between phases II and III is indeed visible, but it does
not influence the existence of phase II. We should point out
that the MCS approach is used here to provide another piece
of evidence for the existence of phase II qualitatively, not for
the precise location of the critical points.

E. The critical exponent for the order parameters

The critical behavior of the second-order QPT from phase I
to III and from phase II to III are discussed in this subsection.
We present the log-log plot of the order parameter |〈σx〉| as
a function of α − αc at ε = 0 and as a function of the bias ε

at α = αc for s = 0.3 and s = 0.7 with different anisotropic
parameters λ = 0, 0.2, 0.6, 0.9 in the critical regime in Fig. 5.
The order parameter critical exponents β and δ can be de-
termined by fitting power-law behavior, |〈σx〉| ∝ (α − αc)β

with the bias ε = 0 and |〈σx〉| ∝ ε1/δ at α = αc. All the
critical exponents of the anisotropic model show the same
rules as the isotropic SBM. It takes the mean-field value
β = 1/2, 1/δ = 1/3 for s < 1/2 and the hyperscaling β <

1/2, 1/δ = (1 − s)/(1 + s) for s > 1/2.
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FIG. 6. The log-log plot of the magnetization |〈σx〉| as a function
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In the present subohmic ASBM, there is at least one
second-order QPT from the conserved parity phase to phase
III. For large s and the moderate anisotropy, the model even
experiences several second-order QPTs with the increase of
the coupling strength. We also evaluate the critical exponents
for these multiple second-order QPTs for s = 0.7, λ = 0.3 in
Fig. 6. Very surprisingly, the same critical exponents β and
δ are obtained, indicating that they belong to the same uni-
versality class. Based on these observations, we can say that
counter-rotating terms would almost have no effect on critical
exponents even when several second-order QPTs are present
successively at a few critical points for fixed anisotropy in the
ASBM.

The universality in the QuTP in the ASBM is a very
challenging issue. According to the Landau theory, it should
be different from those in other critical points. The numerical
calculations cannot be used to isolate the QuTP from other
critical points, and much less distinguish the universality.
The analytical treatment is, however, lacking in any SBMs
except in the ohmic bath, unlike the Dicke models [7,11,13].
A field theory formulated from the Feynman path-integral
representation of the partition function for the SBM [5,46–48]
might be extended to the ASBM. Then analytical arguments

based on the quantum-to-classical mapping would be helpful
to clarify this issue.

VI. CONCLUSION

We have found rich quantum phases in the ASBM with the
subohmic bath by the VMPS approach. The phase diagram
has been composed in the coupling strength and anisotropy
space. For large powers of the spectral function, two second-
order QPT critical lines meet the first-order QPT line at
the same point, which is just a QuTP. At any second-order
QPT lines, the critical exponent of the order parameter and
its field-related critical exponents are the same, which only
depend on the power of the spectral function. All phase
boundaries can be precisely determined by the parity and the
entanglement entropy, besides, the second-order QPTs can
also be detected by the magnetization. The first-order QPTs
between opposite parity symmetry have been corroborated by
the MCS approach, where we can directly observe opposite
parity in the ground-state wave function. For low powers of
the spectral function, the system only experiences the second-
order QPT from the delocalized to localized phases, similar to
the isotropic SBM.

The symmetric quantum phase with odd parity emerges for
large power of the spectra function at the highly anisotropic
case and borders the conventional symmetric phase with even
parity, which enriches the critical phenomena in the spin- and
boson-coupling systems. Although this phase shares the same
odd parity with the phase in the single excitation in the SBM
under the RWA, the total excitation number is not conserved.
The QPT to the localized phase from a delocalized one with
odd parity is found in spin- and boson-coupling systems. The
ASBM might be realized in the superconducting circuit QED
system where the anisotropic parameters can be manipulated
artificially. We believe that the ASBM would serve as an
important laboratory to study the rich quantum criticality.
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