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It is shown in a recent preprint (arXiv:2001.10008) that the central spin model with XX -type qubit-bath
coupling is integrable for a central spin s0 = 1/2. Two types of eigenstates, separable states (dark states) and
entangled states (bright states) between the central spin and the bath spins, are manifested. In this work we
show by using an operator product state approach that the XX central spin model with central spin s0 > 1/2 and
inhomogeneous coupling is partially solvable. That is, a subset of the eigenstates are obtained by the operator
product state ansatz. These are the separable states and those entangled states in the single-spin-excitation
subspace with respect to the fully polarized reference state. Due to the high degeneracy of the separable states,
the resulting Bethe ansatz equations are found to be nonunique. In the case of s0 = 1/2 we show that all the
separable and entangled states can be written in terms of the operator product states, recovering the results in
arXiv:2001.10008. Moreover, we also apply our method to the case of homogeneous coupling and derive the
corresponding Bethe ansatz equations.

DOI: 10.1103/PhysRevB.101.155145

I. INTRODUCTION

The central spin model describes a central spin �S0 inter-
acting with a noninteracting bath composed of N spins {�S j}
via XXZ-type inhomogeneous hyperfine couplings [1]. It is
described by the Hamiltonian

H (XXZ )
CSM = hSz

0 +
N∑

j=1

[
g j
(
Sx

0Sx
j + Sy

0Sy
j

) + g′
jS

z
0Sz

j

]
, (1)

where h is an external magnetic field acting on the central
spin, and {g j} ({g′

j}) are the in-plane (Ising) part of the
inhomogeneous anisotropic coupling constants. The size of
the central spin and the jth bath spin are denoted s0 and
s j , respectively, each of which can be either an integer or a
half-odd integer. With the advent of quantum technologies,
the central spin model and related generalizations nowadays
play an important role in solid-state based systems, such as
electron or hole spins confined in semiconductor quantum
dots and nitrogen vacancy centers, which are believed to
be promising setups to realize quantum computation [2–6].
This has stimulated many theoretical studies on both static
[7–14] and dynamical properties [15–21] of central spin sys-
tems without/with intrabath coupling. Moreover, the exactly
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solvable central spin models belong to the class of Gaudin-
type long-range interacting systems [22]. The existence of
exact solutions offers a range of benefits aiding the analysis
of Gaudin models including topological properties [23,24],
efficient numerical procedures [10,25], benchmarks for under-
taking perturbative studies [26], and opportunities for exact
calculations in open systems [27].

For general inhomogeneous and nonzero {g j} and {g′
j}, it is

known that H (XXZ )
CSM admits exact solutions through an operator

product state ansatz [12]. These have the structure

|ψM〉 =
M∏

q=1

B+/−
q |φ〉, (2)

which is generated by acting a set of parameter-dependent
collective raising (lowering) operators, B±

q = ∑N
j=0 Aq jS

±
j ,

onto a proper reference state |φ〉. Here M is the number of spin
excitations with respect to |φ〉 according to the conservation of
total magnetization of the system. By employing a similar op-
erator product state ansatz, von Delft and co-workers [28,29]
studied Richardson’s reduced BCS model [30] and derived the
associated Bethe ansatz equations in an elegant and natural
way with the help of an operator approach based purely on
the commutator scheme [28,29]. The above method was later
successfully applied to the inhomogeneous Dicke model [31],
pairing models coupled to a single bosonic mode [32], and
the anisotropic XXZ central spin model [12]. The operator
approach has proven to provide a concrete and less abstract
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tool to treat Gaudin-like models. Throughout this work, a
Hamiltonian is said to be solvable (partially solvable) if all
(some) of the eigenstates can be constructed by the operator
product state ansatz. We avoid using the term quasiexactly
solvable here, since this typically applies to an operator de-
fined on an infinite-dimensional vector space which admits an
invariant finite-dimensional subspace [33–36]. The Hamilto-
nian (1) acts on a finite-dimensional space.

It has long been known that H (XXZ )
CSM is integrable at

the isotropic point with g j = g′
j, ∀ j [1]. Several types of

anisotropic generalizations having specific forms of {gj} and
{g′

j} are also shown using the Gaudin algebra to be integrable
(see [22] and references therein). Using the aforementioned
operator method, it is argued in Ref. [12] that H (XXZ )

CSM is
solvable for arbitrary spin sizes under the solvability condition

g′2
j − g2

j = const., j = 1, 2, . . . , N, (3)

with general inhomogeneous and nonvanishing couplings.
Actually, it is known that for spin-1/2 systems the condition
given by Eq. (3) can be derived from the Gaudin algebra (see,
for example, Refs. [9,11,37,38]). Note that there also exists a
class of spin-1/2 XXZ integrable models built from nonskew
symmetric r matrices, which do not necessarily obey Eq. (3)
(see Ref. [39] for a recent review on the generalized Gaudin
models and classification of their corresponding r matrices).
In spite of the above-mentioned known results for the XXZ
central spin model, less is known about the fully anisotropic
limit with g′

j = 0, where H (XXZ )
CSM is reduced to the XX cen-

tral spin model described by H (XX )
CSM = hSz

0 + ∑N
j=1 g j (Sx

0Sx
j +

Sy
0Sy

j ). First attempts in this direction were carried out by
Jivulescu et al. [40], who employed the procedure proposed
in the original paper of Gaudin [1] to single out the structure
of a subset of exact eigenstates of H (XX )

CSM for s j = 1/2, ∀ j.
Most recently, Villazon et al. [14] showed by constructing an
extensive set of conserved quantities that H (XX )

CSM is actually
integrable for s0 = 1/2 and real {gj}. It is found that the
eigenstates of H (XX )

CSM can be divided into two classes: Dark
states having a product state structure between the central spin
and bath spins, and bright states for which the central spin
is entangled with the spin bath. In this work, the dark states
(bright states) will be simply referred to as separable states
(entangled states) due to their different structures.

The integrability of H (XX )
CSM may at first sight seem puzzling,

since g′
j = 0 violates the integrable condition given by Eq. (3).

However, as shown in Ref. [12], condition (3) is derived under
the assumption that the coefficient Aq0 appearing in B±

q is
nonzero for every q, which is a necessary requirement for
g′

j �= 0 in the framework of the operator approach. In this
work we will apply the aforementioned operator approach
to the study of the high-spin XX central spin model with
s0 � 1/2. Due to the absence of the Ising coupling g′

j , the
collective raising/lowering operator B±

q in the ansatz (2) does
not necessarily contain the lowering operator of the central
spin S−

0 , giving rise to new solvability conditions other than
(3). It is precisely the number of this kind of new operator
(denoted by Q with 0 � Q � M) in the operator string

∏
q B±

q
which determines the structure of the eigenstates. Specifically,
to guarantee possible (at least partial) solvability of H (XX )

CSM in

the subspace with M spin excitations, it will be shown that Q
must be either M − 1 or M.

Through a step-by-step construction of the eigenvalue
problem based on the operator product approach, we show
that for s0 = 1/2 the case of Q = M (Q = M − 1) corre-
sponds exactly to the separable (entangled) states revealed in
Ref. [14]. For s0 > 1/2, we find that the operator product state
ansatz still provides all the separable states with a constant
energy, but only a subset of the entangled states lying in the
single-spin-excitation subspace. In this sense, the high-spin
XX central spin model is only partially solvable. Since the
manifold of the separable states is highly degenerate, the
Bethe ansatz equations derived do not have a unique form.
We finally apply our method to the case of homogeneous
coupling. In contrast to the case of inhomogeneous coupling,
all values of Q (0 � Q � M) are allowed. We also derive the
corresponding Bethe ansatz equations.

The rest of the paper is organized as follows. In Sec. II we
introduce the XX central spin model with complex coupling
and the operator approach to be used throughout this work.
In Secs. III and IV we study in detail the construction of the
separable and entangled states for Q = M and Q = M − 1,
respectively. In Sec. V we study the case of the homogeneous
coupling and derive the corresponding Bethe ansatz equations.
Conclusions are drawn in Sec. VI.

II. MODEL AND METHODOLOGY

A. The XX central spin model and the operator
product state ansatz

We are interested in the XX central spin model described
by the Hamiltonian

H = h
(
Sz

0 − s0
) + 1

2

N∑
j=1

(g jS
+
0 S−

j + g∗
jS

−
0 S+

j ). (4)

We assume that each gj is nonvanishing, since otherwise the
jth bath spin is isolated from the system. The nonuniform
coupling constants {g j} are allowed to be complex. From the
relation Sx

0Sy
j − Sy

0Sx
j = i(S+

0 S−
j − S−

0 S+
j )/2, we can rewrite H

as

H = h
(
Sz

0 − s0
) +

N∑
j=1

(Re g j )
(
Sx

0Sx
j + Sy

0Sy
j

)

+
N∑

j=1

(Im g j )
(
Sx

0Sy
j − Sy

0Sx
j

)
,

which shows that the real (imaginary) part of gj measures the
XX -type (Dzyaloshinskii-Moriya-type) interaction between
the central spin and the jth bath spin. The complex XX -type
coupling between the central spin and the bath in Eq. (4) is
both interesting and important in various physical scenarios
because of its resemblance to the atom-field interaction. For
example, it was noted in Refs. [18,41] that for real and
homogeneous coupling the resultant qubit big-spin model can
mimic the collapse and revival of Rabi oscillations observed
in the Jaynes-Cummings model. Equation (4) can also be
used to describe the interaction between a bunch of quantum
emitters/Frenkel excitons to a single-mode cavity when the
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cavity mode is approximated as a two-level system in the zero-
and single-photon subspaces [42].

The c-number term −hs0 in Eq. (4) is introduced to make
H satisfy H |F 〉 = 0 and H |F ′〉 = −2hs0|F ′〉, where

|F 〉 = |s0〉|s1, . . . , sN 〉,
|F ′〉 = | − s0〉| − s1, . . . ,−sN 〉 (5)

are the highest-weight and lowest-weight state (with the first
index denoting the central spin), respectively. Below |F 〉 will
mainly be taken as the reference state on which the operator
string appearing in the ansatz acts, though nearly equivalent
analysis can be performed for |F ′〉. It is easy to see that the
total magnetization L̂z = ∑N

j=0 Sz
j (its eigenvalue will be de-

noted as Lz) of the central spin and the spin bath is conserved.
To obtain an eigenstate |�M〉 of H in the subspace spanned

by all spin configurations with magnetization Lz = ∑N
l=0 sl −

M, we introduce M collective spin lowering operators

B−
q =

N∑
l=0

AqlS
−
l , q = 1, 2, . . . , M, (6)

where {Aql} are M(N + 1) parameters to be determined by
letting the following (unnormalized) operator product state
ansatz

|�M〉 = PM
1 |F 〉 (7)

satisfy the Schrödinger equation

H |�M〉 = EM |�M〉. (8)

Here

Pn
m ≡

{∏n
q=m B−

q , m � n,

1, m > n,
(9)

and EM is the corresponding eigenenergy. For later use we also
define

Pn,(l )
m ≡ Pl−1

m S−
0 Pn

l+1 (m � l � n). (10)

B. The operator approach

Following the operator approach [12,28,29], we start with
the identity

[
H, PM

1

] =
M∑

q=1

Pq−1
1 [H, B−

q ]PM
q+1, (11)

which is a direct consequence of the Leibniz rule

[x, y1y2 · · · yn] = [x, y1]y2 · · · yn + y1[x, y2]y3 · · · yn

+ · · · + y1 · · · yn−1[x, yn]

for arbitrary operators x, y1, . . . , yn. The commutator [H, B−
q ]

in Eq. (11) can be calculated as

[H, B−
q ] = Sz

0

N∑
j=1

Aq0g jS
−
j + S−

0

N∑
j=1

Aq jg
∗
jS

z
j

−hAq0S−
0 . (12)

The above commutator can be simplified by imposing certain
constraints on the parameters {Aq j}. The main idea is to gather
terms on the right-hand side of Eq. (12) that contain spin

lowering operators and demand that their linear combinations
take the form of the collective lowering operator B−

q . The
usual way is to require Aq0g j to be proportional to Aq j with
a j-independent nonvanishing coefficient −ωq [12], i.e.,

Aq0g j = −ωqAq j, (13)

so that the first term on the right-hand side of Eq. (12) be-
comes −ωqSz

0

∑N
j=1 Aq jS

−
j = −ωqSz

0(B−
q − Aq0S−

0 ). Note that
Aq0 must be nonzero for otherwise we have Aq j = 0, ∀ j.

However, there exists an alternative, perhaps more obvious,
choice,

Aq0 = 0, (14)

for which the terms involving S−
j ’s in Eq. (12) all vanish, while

Aq j might be left arbitrary at the moment. We emphasize
that the choice given by Eq. (14) cannot be incorporated into
Eq. (13) where Aq0 must be finite.

Noting that [B−
q , B−

q′ ] = 0, we can assume without loss
of generality that the first Q (B−

q )’s in the ansatz (7) are
associated with condition (14), and the remaining M − Q ones
are associated with condition (13):

Aq0 = 0, q = 1, 2, . . . , Q,

Aq0 �= 0, q = Q + 1, Q + 2, . . . , M.

We write

Ãq j = Aq j, q = 1, . . . , Q (15)

to distinguish the (Aq j )’s for q � Q from those for q > Q, so
that

B−
q =

N∑
j=1

Ãq jS
−
j , q = 1, . . . , Q,

B−
q =

N∑
j=0

Aq jS
−
j , q = Q + 1, . . . , M. (16)

The commutators [H, B−
q ] are accordingly divided into two

categories:

[H, B−
q ] = S−

0 X̃q, q = 1, . . . , Q, (17)

X̃q ≡
N∑

j=1

Ãq jg
∗
jS

z
j, (18)

and

[H, B−
q ] = −ωqB−

q Sz
0 + S−

0 Xq, q = Q + 1, . . . , M, (19)

Xq ≡
N∑

j=1

Aq jg
∗
jS

z
j − Aq0h + Aq0ωqSz

0. (20)

The two operators X̃q and Xq do not induce spin flipping and
satisfy

X̃q|F 〉 = x̃q|F 〉, (21)

Xq|F 〉 = xq|F 〉, (22)
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with eigenvalues

x̃q =
N∑

j=1

Ãq jg
∗
j s j, (23)

xq =
N∑

j=1

Aq jg
∗
j s j − Aq0h + Aq0ωqs0. (24)

By noting that H |F 〉 = 0 and using the usual trick [12], we
obtain

H |�M〉 = −s0

M∑
q=Q+1

ωq|�M〉

+
Q∑

q=1

x̃qPM,(q)
1 |F 〉 +

M∑
q=Q+1

xqPM,(q)
1 |F 〉

−
M∑

q=Q+1

ωqPq
1

[
Sz

0, PM
q+1

]|F 〉

+
Q∑

q=1

Pq−1
1 S−

0

[
X̃q, PM

q+1

]|F 〉

+
M∑

q=Q+1

Pq−1
1 S−

0

[
Xq, PM

q+1

]|F 〉, (25)

where the commutators read

[
Sz

0, PM
q+1

] = −
M∑

p=q+1

Ap0PM,(p)
q+1 , (26)

[
X̃q, PM

q+1

] = −
Q∑

p=q+1

Pp−1
q+1

N∑
j=1

g∗
j Ãq j Ãp jS

−
j PM

p+1

−
M∑

p=Q+1

Pp−1
q+1

N∑
j=1

g∗
j Ãq jApjS

−
j PM

p+1, (27)

and

[
Xq, PM

q+1

] = −
M∑

p=q+1

Aq0Ap0ωqPM,(p)
q+1

−
M∑

p=q+1

Pp−1
q+1

N∑
j=1

g∗
jAq jApjS

−
j PM

p+1. (28)

To proceed further, we demand that, for example, the prod-
uct g∗

j Ãq j Ãp j should be expressible as a linear combination of
Ãq j and Ãp j , and similar requirements should be imposed for
g∗

j Ãq jApj and g∗
jAq jApj [12]. We now look at the second term

in Eq. (28). If Q � M − 2, then we are forced to deal with
the expression

∑N
j=1 g∗

jAq jApjS
−
j with Q + 1 � q < p � M.

However, from Eq. (13) we have

N∑
j=1

g∗
jAq jApjS

−
j = Aq0Ap0

ωqωp

N∑
j=1

|g j |2g jS
−
j , (29)

which can never be made proportional to any B−
q unless g j is

of the form

g j = |g|eiθ j , (30)

where |g| is the common norm of each gj and θ j is an
arbitrary real number. This can be regarded as an extension
of homogenous coupling with a local gauge transformation
on the bath spins. Nevertheless, below we will assume that
{g j} are generally inhomogeneous and discuss the case given
by Eq. (30) in Sec. V.

The above arguments indicate that H is possibly solvable
via the operator product state ansatz given by Eq. (7) only for
Q = M or Q = M − 1. As we will see, these two situations
exactly correspond to the dark states and bright states revealed
in Ref. [14]. Before ending this section, let us discuss the case
with M = 1 to see how these two types of states emerge.

C. Single-spin-excitation subspace with M = 1

As a warm up, let us first study the simple case of M = 1.
In this case there is a single spin excitation upon the reference
state |F 〉 and Q can be either 1 or 0. From Eq. (25) we have

H
∣∣� (1)

1

〉 = x̃1S−
0 |F 〉 (31)

for Q = 1 and

H
∣∣� (0)

1

〉 = −s0ω1|� (0)
1 〉 + x1S−

0 |F 〉 (32)

for Q = 0, where the superscript in the states denotes the value
of Q. We see that if we can suitably choose the parameters
Ã1 j for Q = 1 (A1 j for Q = 0) such that x̃1 = 0 (x1 = 0), we
obtain the eigenstate |� (1)

1 〉 (|� (0)
1 〉) with eigenenergy E (1)

1 =
0 (E (0)

1 = −s0ω1).
From Eq. (23) the condition x̃1 = 0 reads

N∑
j=1

Ã1 jg
∗
j s j = 0. (33)

The rank-nullity theorem tells us that there are N − 1 lin-
early independent solutions, {Ã(α)

1 j } (α = 1, 2, . . . , N − 1), to
Eq. (33), resulting in N − 1 degenerate zero-energy eigen-
states

∣∣� (1)
1,α

〉 =
N∑

j=1

Ã(α)
1 j S−

j |F 〉

= |s0〉
N∑

j=1

Ã(α)
1 j

√
2s j |s1, . . . , s j − 1, . . . , sN 〉. (34)

Similarly, using Eqs. (13) and (24) the condition x1 = 0 can
be rewritten as

s0ω
2
1 − hω1 −

N∑
j=1

|g j |2s j = 0, (35)

which gives two other eigenenergies

E (0)
1,± = −s0ω1,±,

ω1,± =
h ±

√
h2 + 4s0

∑N
j=1 |g j |2s j

2s0
, (36)
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with the (unnormalized) eigenstates given by

∣∣� (0)
1,±

〉 =
N∑

j=0

A1 jS
−
j |F 〉

=
√

2s0|s0 − 1〉|s1, . . . , sN 〉

+ s0

E (0)
1,±

|s0〉
N∑

j=1

g j

√
2s j |s1, . . . , s j − 1, . . . , sN 〉.

(37)

It is apparent that the N − 1 zero-energy states |� (1)
1,α〉 and the

two states |� (0)
1,±〉 are, respectively, the dark (separable) and

bright (entangled) states revealed in Ref. [14].
We can similarly take the lowest state |F ′〉 as the reference

state to start with. The corresponding single-spin-excitation
states in the sector with Lz = −∑N

j=0 s j + 1 can be obtained

by applying the collective raising operator B′+
q = ∑N

j=1 A′
jqS+

j

to |F ′〉. It is easy to show that the such obtained two entangled
states possess energies

E ′(0)
1,± = (1 − 2s0)h + E (0)

1,±. (38)

We thus showed that all the N + 1 eigenstates in the M = 1
sector are given by the operator product state ansatz. Below
we concentrate on the cases with M � 2.

III. Q = M: SEPARABLE STATE

In this section we discuss the case of Q = M (with M � 2)
for which Aq0 = 0, ∀q. We will show that the operator product
state

∣∣� (M )
M

〉 = |s0〉
M∏

q=1

⎛
⎝ N∑

j=1

Ãq jS
−
j

⎞
⎠|s1, . . . , sN 〉 (39)

provides all the separable states for arbitrary s0 � 1/2.
For Q = M, Eq. (25) is reduced to

H
∣∣� (M )

M

〉 =
M∑

q=1

Pq−1
1 S−

0

[
X̃q, PM

q+1

]|F 〉 +
M∑

q=1

x̃qPM,(q)
1 |F 〉,

(40)

with

[
X̃q, PM

q+1

] = −
M∑

p=q+1

Pp−1
q+1

N∑
j=1

g∗
j Ãq j Ãp jS

−
j PM

p+1. (41)

Remembering that the (Ãq j )’s are still arbitrary, we have a
chance to appropriately choose them such that the product
g∗

j Ãq j Ãp j can be written as a linear combination of Ãq j and
Ãp j . We thus impose the following constraint:

g∗
j Ãq j Ãp j = βq,pÃq j + βp,qÃp j, j = 1, 2, . . . , N (42)

by considering that the left-hand side of the above equation is
symmetric with respect to the interchange of q and p.

Before discussing possible explicit forms of βp,q, let us
assume Eq. (42) is already satisfied. We insert Eq. (42) into

Eq. (41) to get

[
X̃q, PM

q+1

] = −
M∑

p=q+1

βq,pPp−1
q PM

p+1 −
M∑

p=q+1

βp,qPM
q+1, (43)

which in combination with Eq. (40) results in

H
∣∣� (M )

M

〉 = −
M∑

p>q

(
βq,pPM,(p)

1 + βp,qPM,(q)
1

)|F 〉

+
M∑

p=1

x̃pPM,(p)
1 |F 〉. (44)

The first term in Eq. (44) can be rearranged as

−
M∑

p>q

(
βq,pPM,(p)

1 + βp,qPM,(q)
1

)|F 〉

= −
M∑

p>q

βq,pPM,(p)
1 |F 〉 −

M∑
q>p

βq,pPM,(p)
1 |F 〉

= −
M∑

p=1

∑
q( �=p)

βq,pPM,(p)
1 |F 〉,

giving

H
∣∣� (M )

M

〉 =
M∑

p=1

⎛
⎝x̃p −

∑
q( �=p)

βq,p

⎞
⎠PM,(p)

1 |F 〉. (45)

We see that if we set

x̃p −
∑

q( �=p)

βq,p = 0, (46)

then |� (M )
M 〉 is an eigenstate of H with zero eigenenergy.

We now turn to discuss the solutions of Eq. (42). Following
Ref. [12], we seek solutions with antisymmetric βp,q, i.e.,

βp,q = −βq,p, (47)

for which Eq. (42) becomes

g∗
j = βq,p

(
1

Ãp j
− 1

Ãq j

)
. (48)

It is easy to see that

Ãp j = 1

a j − g∗
jνp

, p = 1, . . . , M (49)

and

βq,p = 1

νq − νp
, q, p = 1, . . . , M (50)

satisfy Eq. (48), where a j with j = 1, . . . , N are dimension-
less constants depending only on j. They correspond to the
anisotropic parameters associated with the energies {ε j} of the
bath spins in the Gaudin-type central spin problem [16]. The
M parameters νq (q = 1, . . . , M) correspond to the rapidities
in the Bethe ansatz language and have the dimension of
inverse energy.
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By combining Eqs. (23), (46), (49), and (50), we finally
obtain the following M coupled equations:

N∑
j=1

g∗
j s j

a j − g∗
jνp

−
M∑

q( �=p)

1

νq − νp
= 0, p = 1, . . . , M. (51)

Note that the above equations are independent of s0 due to
the separable nature of the state (39). If we choose a j =
1/g j in the above equations and reinterpret {νq} as rapidities
with a different dimension, we then recover the Bethe ansatz
equations for the dark states presented in Ref. [14]. However,
the constants {a j} in Eq. (51) can in principle be arbitrarily
chosen [except for those rendering Eq. (51) unsolvable]. This
freedom of choice for {a j} is consistent with the fact that the
separable states generally form a degenerate manifold in the
M sector. Different choices of {aj} account for different linear
combinations of a fixed set of separable states. In spite of the
appearance of the free parameters {aj}, we will still refer to
the M coupled equations given by (51) as the Bethe ansatz
equations, a particular form of the Bethe ansatz equations for
general central spin problems [16]. Obviously the state |� (M )

M 〉
should be independent of aj if it is nondegenerate in the M
sector.

As an example, let us consider the case with M = 2 and
N = 2, for which the two Bethe ansatz equations read (we
assume both g1 and g2 are real)

g1s1

a1 − g1ν1
+ g2s2

a2 − g2ν1
− 1

ν2 − ν1
= 0, (52)

g1s1

a1 − g1ν2
+ g2s2

a2 − g2ν2
− 1

ν1 − ν2
= 0. (53)

If we further choose s1 = s2 = 1, it is easy to solve the above
two equations to obtain a unique solution (regardless of the
order of ν1 and ν2)

ν1 = 3(g1a2 + g2a1) + i
√

3(g1a2 − g2a1)

6g1g2
,

ν2 = 3(g1a2 + g2a1) − i
√

3(g1a2 − g2a1)

6g1g2
, (54)

indicating that the separable state in the M = 2 sector is
actually nondegenerate. In turn, the four coefficients Ãq j are
given by

Ã11 =
√

3i(1 + √
3i)g2

2(a2g1 − a1g2)
, Ã12 =

√
3i(1 − √

3i)g1

2(a2g1 − a1g2)
,

Ã21 = −
√

3i(1 − √
3i)g2

2(a2g1 − a1g2)
, Ã22 = −

√
3i(1 + √

3i)g1

2(a2g1 − a1g2)
.

(55)

Thus we indeed obtain a unique separable state∣∣� (2)
2

〉 = |s0〉
[
g2

2(S−
1 )2 + g2

1(S−
2 )2 − g1g2S−

1 S−
2

]|1, 1〉
in the M = 2 sector, which is independent of a1 and a2.
The form of Eq. (55) also suggests that the Bethe ansatz
equations given by Eqs. (52) and (53) are actually unsolvable
for a j = g j/c, where c is a constant having the dimension of
energy. Unlike the case of the XXZ-type coupling for which
the Bethe ansatz equations exclude the case of homogeneous

coupling [21] (usually the Bethe ansatz equations for inhomo-
geneous XXZ-type coupling provide CM

N+1 sets of solutions
corresponding to all the states in the sector of M down spins),
i.e., they do not yield a complete set of solutions [43], here
Eqs. (52) and (53) still admit solutions for a homogeneous
coupling with g1 = g2, provided we choose a1 �= a2. In fact,
as we will show in Sec. V, the homogeneous XX central spin
model is indeed solvable for s0 = 1/2.

For a given M � 2, we can in principle obtain all the
separable states in the form of Eq. (39) by solving the
Bethe ansatz equations given by Eq. (51). However, as men-
tioned in Ref. [14], the Bethe ansatz equations (51) do not
always admit solutions. In addition, the eigenstates given
by Eq. (39) are all constructed based on the highest state
|F 〉, and hence cannot cover those separable states with
the central spin in its lowest state | − s0〉. From symmetry
considerations, the latter type of separable states also exist
and can actually be constructed by choosing the lowest state
|F ′〉 as the reference state and B′+

q = ∑N
j=1 Ã′

q jS
+
j as the

collective raising operator. The resultant separable states will
be in the form of |� ′(M ′ )

M ′ 〉 = | − s0〉
∏M ′

q=1 (
∑N

j=1 Ã′
q jS

+
j )| −

s1, . . . ,−sN 〉 and possess eigenenergy E ′(M ′ )
M ′ = −2s0h.

The analysis in this section shows that the operator product
state ansatz (7) can give all the separable states for arbitrary
s0 � 1/2. Furthermore, the total number of separable states
generated from |F 〉 and |F ′〉 are the same.

IV. Q = M − 1: ENTANGLED STATES

We now study the second possibility with Q = M − 1, for
which Eq. (25) is reduced to

H
∣∣� (M−1)

M

〉 = −s0ωM

∣∣� (M−1)
M

〉
+

M−1∑
q=1

x̃qPM,(q)
1 |F 〉 + xMPM−1

1 S−
0 |F 〉

+
M−1∑
q=1

Pq−1
1 S−

0

[
X̃q, PM

q+1

]|F 〉, (56)

with

[
X̃q, PM

q+1

] = −
M−1∑

p=q+1

Pp−1
q+1

N∑
j=1

g∗
j Ãq j Ãp jS

−
j PM

p+1

− PM−1
q+1

N∑
j=1

g∗
j Ãq jAM jS

−
j . (57)

A general eigenstate in the M sector (with M � 2) reads∣∣� (M−1)
M

〉

=
√

2s0|s0 − 1〉
M−1∏
q=1

⎛
⎝ N∑

j=1

Ãq jS
−
j

⎞
⎠|s1, . . . , sN 〉

− |s0〉
⎛
⎝ N∑

j=1

g j

ωM
S−

j

⎞
⎠M−1∏

q=1

⎛
⎝ N∑

j=1

Ãq jS
−
j

⎞
⎠|s1, . . . , sN 〉,

(58)
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which is obviously an entangled state between the central spin
and the spin bath. However, due to the restriction of the value
of Q, we are unable to construct entangled states involving
lower states |s0 − m〉 (m � 2) of the central spin, which leads
to fact that the states given by Eq. (58) cannot provide all the
entangled states for s0 > 1/2.

A. M = 2

Let us first study the case of M = 2, which is actually
nontrivial, as we will see. In this case the first term on the
right-hand side of Eq. (57) vanishes. From Eqs. (56) and (57)
we have

H
∣∣� (1)

2

〉 = S−
0

N∑
j=1

(x̃1A2 j + x2Ã1 j − g∗
j Ã1 jA2 j )S

−
j |F 〉

+ x̃1A20(S−
0 )2|F 〉 − s0ω2

∣∣� (1)
2

〉
. (59)

Due to the presence of the term x̃1A20(S−
0 )2|F 〉, we have to

distinguish two situations.

1. s0 > 1/2

In this case, to achieve an eigenstate |� (1)
2 〉 with eigenen-

ergy E (1)
2 = −s0ω2, we must set

x̃1 = 0 (60)

since (S−
0 )2 �= 0. To eliminate the first term in Eq. (59), we

further let

x2 − g∗
jA2 j = 0, ∀ j, (61)

which can be recast as

ω2
2s0 − hω2 + |g j |2 −

N∑
l=1

|gl |2sl = 0, ∀ j (62)

by using Eqs. (13) and (24). The above equations imply that
the state |� (1)

2 〉 is generally not an eigenstate of H unless
condition (30) is satisfied.

Figure 1(a) shows the energy spectrum of H for N = 2,
s0 = 1, s1 = s2 = 1/2, g1 = 1, g2 = 2, and h = 1. Since the
Bethe ansatz equations given by Eqs. (52) and (53) do not have
any solution for s1 = s2 = 1/2, there is only one separable
state in the M = 1 sector (solid black circle with Lz = 1).
There are also two entangled states in this sector (two red
circles with Lz = 1) whose energies are given by Eq. (36). The
left half of the spectrum corresponds to the counterparts of the
above states constructed from |F ′〉. However, the four states in
the M = 2 sector (blue stars) are not included in the operator
product state ansatz since |� (1)

2 〉 is not an eigenstate of H for
s0 = 1 and inhomogeneous {g j}, as shown above.

For couplings having the form of g j = |g|eiθ j , we get two
additional operator product states possessing energies given
by solutions of Eq. (62),

E (1),(hom)
2,± = −1

2

⎡
⎣h ±

√√√√h2 + 4s0|g|2
(

N∑
l=1

sl − 1

)⎤⎦, (63)

which are real for N � 2. Figure 1(b) shows the energy
spectrum of H for N = 2, s0 = 1, s1 = s2 = 1/2, g1 = g2 =
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FIG. 1. (a) The 12 eigenenergies and the corresponding total
magnetization Lz for a spin-1 XX central spin model with N = 2,
s0 = 1, s1 = s2 = 1/2, g1 = 1, g2 = 2, and h = 1. The two separable
states |� (1)

1 〉 and |F 〉 (entangled states |� (0)
1,±〉 [see Eq. (37)]) are

denoted by the two solid black circles (two red circles) on the right.
The four blue stars in the Lz = 0 (or M = 2) sector correspond to
the eigenstates that cannot be covered by the operator product state
ansatz. The left half of the spectrum corresponds to the eigenstates
constructed from |F ′〉. (b) Same as (a), but for g1 = g2 = 3. The
green circle corresponds to the operator product state |� (1)

2 〉 whose
eigenenergy is given by Eq. (63).

3, and h = 1. Two degenerate eigenstates in the Lz = 0 sector,
|� (1)

2 〉 and |� ′(1)
2 〉, appear and possess energy E (1),(hom)

2,+ = −h

given by Eq. (63) (note that E (1),(hom)
2,− = 0 is not a physical

solution since it gives A20 = 0). However, there are still two
states that cannot be expressed in the form of the operator
product state ansatz (the two blue stars).

The observations in the above two examples indicate that
the XX central spin model is only partially solvable for a
central spin with s0 > 1/2, i.e., the operator product state
ansatz can only give the separable states and those entangled
states in the single-spin-excitation sector. As we will see
below, this is actually the case for all M � 2.
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FIG. 2. The 18 eigenenergies and the corresponding total mag-
netization Lz for a spin-1/2 XX central spin model with N = 2,
s0 = 1/2, s1 = s2 = 1, g1 = 1, g2 = 2, and h = 1. The eigenenergies
of the four entangled states in the M = 2 sector (pink circles on the
right) are given by Eq. (67).

2. s0 = 1/2

For s0 = 1/2 we have (S−
0 )2 = 0 and the solvability condi-

tion becomes x̃1A2 j + x2Ã1 j − g∗
j Ã1 jA2 j = 0. Using the rela-

tion A2 j = −g jA20/ω2, we can recast it as

Ã1 j = x̃1g j

|g j |2 + x2ω2
A20

, j = 1, 2, . . . , N. (64)

We can use Eq. (23) to eliminate x̃1 and get

N∑
j=1

|g j |2s j

|g j |2 + x2ω2
A20

= 1. (65)

Using Eq. (24) we can rewrite the above equation as

N∑
j=1

|g j |2s j

|g j |2 − ∑N
l=1 |gl |2sl − hω2 + ω2

2/2
= 1. (66)

Solving Eq. (66) gives K (K � 2N) real solutions ω2,α (α =
1, 2, . . . , K), and hence the eigenenergies E2,α = −s0ω2,α .
The obtained ω2,α can then be used in the coupled linear
equations given by (64) to get the corresponding coefficients
{Ã(α)

1 j }. For example, for N = 2 and s1 = s2 = 1 the four
solutions of Eq. (66) read

ω2,1 = 1 −
√

1 + 2(|g1|2 + |g1g2| + |g2|2),

ω2,2 = 1 −
√

1 + 2(|g1|2 − |g1g2| + |g2|2),

ω2,3 = 1 +
√

1 + 2(|g1|2 − |g1g2| + |g2|2),

ω2,4 = 1 +
√

1 + 2(|g1|2 + |g1g2| + |g2|2). (67)

Figure 2 shows the spectrum of H for N = 2, s0 = 1/2,
s1 = s2 = 1, g1 = 1, g2 = 2, and h = 1. It can be seen that
all the eigenstates are given by the operator product state (7),
meaning that the XX central spin model with s0 = 1/2 is
indeed solvable in the M = 2 sector [14].

It is interesting to note that Eq. (66) reduces to a quadratic
equation for couplings of the form gj = |g|eiθ j :

|g|2
(

1 − 2
N∑

l=1

sl

)
− hω2 + 1

2
ω2

2 = 0, (68)

yielding only two solutions

Ẽ (1),(hom)
2,± = −1

2

⎡
⎣h ±

√√√√h2 + 2|g|2
(

2
N∑

l=1

sl − 1

)⎤⎦. (69)

B. M � 3

For M � 3 we have to deal with both the two terms
appearing in Eq. (57). Following the analysis in Sec. III, we
may choose

Ãq j = 1

a j − g∗
jνq

, q = 1, . . . , M − 1 (70)

and

βq,p = 1

νq − νp
, q, p = 1, . . . , M − 1 (71)

such that

g∗
j Ãq j Ãp j = Ãq j − Ãp j

νq − νp
. (72)

We note that Eq. (64) (in the case of M = 2) also has the form
of Eq. (70) with

a j = x2ω2

g jA20x̃1
, ν1 = − 1

x̃1
. (73)

As to the second term in Eq. (57), we wish to find two
coefficients γM,q and θM,q such that

g∗
j Ãq jAM j = γM,qÃq j + θM,qAM j . (74)

Using the explicit form of Ãq j and the relation AM j =
−g jAM0/ωM , the above condition can be reexpressed as

AM,0g j[θM,q(a j − g∗
jνq) − g∗

j] = γM,qωM . (75)

Note that the right-hand side of Eq. (75) is independent of j,
the parameters {a j} must be chosen so as to make the left-
hand side independent of j as well. Depending on whether
γM,q vanishes, there exist two possible choices:

(a) If γM,q = 0, we have a j = g∗
j (1/θM,q + νq) from

AM0g j �= 0. However, such a choice is actually unphysical due
to the absence of γM,q. More importantly, it can be checked
that the such obtained Bethe ansatz equations do not admit
any solution.

(b) If γM,q �= 0, we then have

θM,qa jg j − |g j |2(θM,qνq + 1) = γM,qωM/AM0. (76)

By noting that the above equation must hold for any j, we
must have

θM,q = − 1

νq
, (77)

and hence

a j = −(νqγM,q)
ωM

AM0g j
. (78)
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The above equation indicates that a j should be proportional
to 1/g j , which is in consistent with Eq. (73) for M = 2. How-
ever, Eq. (78) must hold for any q, indicating that γM,q should
be proportional to 1/νq with a q-independent coefficient. We
thus let

γM,q = − AM0

νqωM
c, (79)

where c is a constant having the dimension of energy. Apply-
ing Eq. (79) in Eq. (78) gives

a j = c

g j
. (80)

Combining Eqs. (56), (57), (72), (74), (77), and (79) and
after a straightforward calculation, we obtain

H
∣∣� (M−1)

M

〉 = −
M−1∑
q=1

AM0

νq
Pq−1

1 S−
0 PM−1

q+1 S−
0 |F 〉

+
M−1∑
p=1

⎛
⎝x̃p + 1

νp
−

∑
q( �=p)

1

νq − νp

⎞
⎠PM,(p)

1 |F 〉

+
⎛
⎝xM + AM,0

ωM

M−1∑
q=1

c

νq

⎞
⎠PM−1

1 S−
0 |F 〉

− s0ωM

∣∣� (M−1)
M

〉
. (81)

Similar to the case of M = 2, the first term on the right-
hand side of the above equation can only be eliminated for
s0 = 1/2 since AM0 �= 0 by assumption. In other words, the
eigenstates of H for s0 > 1/2 and M � 2 cannot be covered
by the operator product state ansatz. This means that H is only
partially solvable for s0 > 1/2, in the sense that only those
entangled states in the M = 1 sector are given by the operator
product state ansatz. For s0 = 1/2, it is shown in Ref. [14] that
the operator product states indeed provide a complete set.

Below we will set s0 = 1/2. The elimination of the second
term in Eq. (81) yields the Bethe ansatz equations

N∑
j=1

|g j |2s j

c − |g j |2νp
+ 1

νp
−

M−1∑
q( �=p)

1

νq − νp
= 0 (82)

by using

Ãp j = g j

c − |g j |2νp
. (83)

By further eliminating the third term in Eq. (81), we arrive at

−
N∑

j=1

|g j |2s j − ωMh + 1

2
ω2

M +
M−1∑
q=1

c

νq
= 0, (84)

which gives two branches of eigenenergies

E (M−1)
M,± = −1

2

⎡
⎢⎣h ±

√√√√√h2 + 2

⎛
⎝ N∑

j=1

|g j |2s j −
M−1∑
q=1

c

νq

⎞
⎠
⎤
⎥⎦.

(85)

Note that Eqs. (82) and (85) recover the results in Ref. [14]
if we set c = 1 and reinterpret {νq} as rapidities with a

different dimension. Actually, the results (the eigenstatates
and eigenenergies) are independent of the constant c since we
can perform the rescaling νq → cνp to obtain c-independent
expressions.

V. THE CASE OF gj = |g|eiθ j

In this section we will study the special case given by
Eq. (30), so that the Hamiltonian becomes

Hhom = h
(
Sz

0 − s0
) + |g|

2

N∑
j=1

(eiθ j S+
0 S−

j + e−iθ j S−
0 S+

j ).

(86)

By defining S̃−
j = eiθ j S−

j , S̃+
j = e−iθ j S+

j , and S̃z
j = Sz

j that
preserve the canonical commutation relations of spins, we see
that Hhom is actually equivalent to an XX central spin model
with homogeneous coupling |g| by a local gauge transfor-
mation on the bath spins. Such a correspondence indicates
that the spectrum of Hhom is independent of the phase factors
{eiθ j }, which nevertheless enter the explicit expressions of the
eigenstates.

The homogeneous XX central spin model has been widely
studied for s1 = · · · = sN = 1/2, where the collective bath
lowering operator can be treated as a large spin S̃− =∑N

j=1 S̃−
j . The XXZ central spin model with homogeneous

coupling and s1 = · · · = sN = 1/2 and arbitrary s0 has been
solved in Ref. [13]. The aim of this section is to show that
Hhom with s0 = 1/2 and arbitrary {s j} is solvable and admits
operator product state ansatz solutions.

Our starting point is Eq. (25), in which the commutators
can be calculated under condition (30) as

[
X̃q, PM

q+1

] = −
Q∑

p=q+1

Pp−1
q+1

N∑
j=1

g∗
j Ãq j Ãp jS

−
j PM

p+1

+ |g|2
M∑

p=Q+1

Ap0

ωp
Pp−1

q PM
p+1, (87)

[
Xq, PM

q+1

] = −Aq0

( |g|2
ωq

+ ωq

) M∑
p=q+1

Ap0PM,(p)
q+1

+ Aq0

ωq
|g|2(M − q)PM

q+1, (88)

where Ãq j is given by Eq. (49). By inserting the above two
equations and Eq. (26) into Eq. (25) and after some manipu-
lation, we get

H
∣∣� (Q)

M

〉 = −s0

M∑
q=Q+1

ωq

∣∣� (Q)
M

〉

+
Q∑

p=1

⎛
⎝x̃p −

Q∑
q( �=p)

βq,p

⎞
⎠PM,(p)

1 |F 〉

+
M∑

p=Q+1

[
|g|2 Ap0

ωp
(M + Q − p) + xp

]
PM,(p)

1 |F 〉
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+
M∑

p=Q+1

M∑
q=p+1

ωpAq0PM,(q)
1 |F 〉

−
M∑

q=Q+1

M∑
p=q+1

Aq0Ap0
|g|2 + ω2

q

ωq
Pq−1

1 S−
0 PM,(p)

q+1 |F 〉,

(89)

where βp,q is given by Eq. (50). We note that for the homoge-
nous coupling all possible values of Q (with 0 � Q � M) are
allowed. However, this does not mean that all the entangled
state involving |s0 − m〉 with m � 2 can be given by the
operator product state ansatz. We already see this from the
simple example shown in Fig. 1(b) for s0 = 1, where only
some of the states in the M = 2 sector (the green circle) are
given by the operator product state ansatz. In fact, to eliminate
the last term in Eq. (89) we are still forced to set s0 = 1/2.

To proceed, we assume s0 = 1/2 and note that

M∑
p=Q+1

M∑
q=p+1

ωpAq0PM,(q)
1 |F 〉

=
M∑

p=Q+2

p−1∑
q=Q+1

ωqAp0PM,(p)
1 |F 〉, (90)

which converts Eq. (89) to

H
∣∣� (Q)

M

〉 = −1

2

M∑
q=Q+1

ωq

∣∣� (Q)
M

〉

+
Q∑

p=1

⎛
⎝x̃p −

Q∑
q( �=p)

βq,p

⎞
⎠PM,(p)

1 |F 〉

+
M∑

p=Q+1

[
|g|2 Ap0

ωp
(M + Q − p) + xp

]
PM,(p)

1 |F 〉

+
M∑

p=Q+2

p−1∑
q=Q+1

ωqAp0PM,(p)
1 |F 〉. (91)

Letting the second line of the above equation be zero, we
arrive at the Q coupled Bethe ansatz equations

N∑
j=1

|g|s j

a jeiθ j − |g|νp
−

Q∑
q( �=p)

1

νq − νp
= 0, p = 1, . . . , Q,

(92)

which have the same form as Eq. (51) for the separable states
by using g∗

j = |g|e−iθ j . As mentioned above, the phase factors
{eiθ j } do enter the wave functions through the rapidities {νq}.
We can always choose suitable {aj} to guarantee the existence
of physical solutions of Eq. (92). Similar to the case of the
separable states for the inhomogeneous coupling, this freedom
of choice of {a j} also indicates that some of the eigenstates
of the homogeneous model could be highly degenerate for
large enough Q. Actually, by eliminating the last two lines of

Eq. (91), we arrive at the following M − Q coupled equations

|g|2
⎛
⎝M + Q − p−

N∑
j=1

s j

⎞
⎠− hωp + 1

2
ω2

p + ωp

p−1∑
q=Q+1

ωq = 0,

p = Q + 1, . . . , M, (93)

which give the eigenenergy

E (Q)
M = −1

2

M∑
q=Q+1

ωq. (94)

It is interesting to note that the eigenenergy E (Q)
M does not

depend on the parameters {νq}, but only on |g|, h, {s j}, and
Q, consistent with our argument that some of the eigenstates
of Hhom could be degenerate.

VI. CONCLUSIONS AND DISCUSSIONS

In this work we have studied partial solvability of the
XX central spin model with arbitrary central spin moment
s0 � 1/2. By employing the operator approach based on a
commutator scheme that has been previously applied to vari-
ous Gaudin-like models, we have obtained both the separable
and entangled states of the XX central spin model with s0 =
1/2 through an operator product state ansatz, confirming the
results presented in a recent study [14]. The corresponding
Bethe ansatz equations are derived. It is found that the Bethe
ansatz equations associated with the separable states are actu-
ally nonunique due to the high degeneracy of these states.

In addition, we show that for s0 > 1/2 only some of the
eigenstates, i.e., all the separable states and those entangled
states in the single-spin-excitation subspace admit the form
of the operator product state ansatz. Finally, we found that
our method can also be applied to the case of homogeneous
coupling. We derive the Bethe ansatz equations determining
the rapidities and a coupled system of nonlinear equations that
give the eigenenergies, which are found independent of the
rapidities.

Although the partial solvability displayed here is remi-
niscent of quasiexactly solvable systems [33–35], there are
some fundamental differences and questions which should be
explored in the future. In particular, it would be useful to de-
termine whether the subspace of solvable states for s0 > 1/2
can be understood in terms of an invariance under the action
of some algebraic structure. Also, while the nonuniqueness of
a Bethe ansatz solution has been seen in other contexts, e.g.,
[36], the level of generality of Bethe ansatz equations found
for separable states in this study is unexpected and deserves to
be investigated at a deeper level.

The separable and entangled states were known to play
an important role in the control of the mesoscopic spin bath
by a central spin manipulation [44,45]. The separable states
supported by the high-spin XX central spin model will be
useful in the cooling or polarization of the spin bath through
the manipulation of a central spin with large quantum number.
Our concrete treatment of the XX central spin model using
the operator approach and the obtained results pave the way
toward finding simple solutions to Gaudin-like models. In
particular, our method also offers a promising opportunity to
study nonequilibrium dynamics and quench dynamics, e.g.,
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the quantification and real-time evolution of entanglement and
Fisher information in related central spin systems.
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