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Exciton-driven giant nonlinear overtone signals from buckled hexagonal monolayer GaAs
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We report here a giant |χ (2)
baa| = 780 pm/V second harmonic and |χ (3)

aaaa| = 1.4 × 10−17 m2/V2 third harmonic
signal from single atomic sheet of buckled hexagonal GaAs. We demonstrate this through the solution of an
ab initio real-time Bethe-Salpeter equation by including the electron-hole screened-exchange self-energy. The
coupling between time-dependent external electric field and correlated electrons is treated within the modern
theory of polarization. The result of our calculation envisage monolayer GaAs to be a prominent member in the
material library for nonlinear signal generations.
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I. INTRODUCTION

Breaking and pairing of symmetry rules in crystalline
structure leads to many exciting physical phenomena. For
example, the pairing of a broken-inversion and time-reversal
symmetry in the presence of a laser constructs a direct valley
entangled electron-hole recombination that sparks a strong
linear (i.e., absorption) as well as a nonlinear optical (NLO)
response (i.e., second, third, and other higher harmonic gen-
erations). In recent years, there had been benchmark spec-
troscopic experiments performed on exfoliated and van der
Waals epitaxy monolayer (ML) of transitional metal dichalco-
genides (TMDCs) [1–8] and monochalcogenides (TMMCs)
[9,10] demonstrating extraordinary NLO responses. These
materials possesses a crystalline noncentrosymmetricity and
therefore, the noncancellation of induced dipole leads to
the second harmonic generation (SHG) as a lowest detected
NL response. Such responses find wide applications in two-
dimensional (2D) optical modulators [11], surface morphol-
ogy characterizations and sum and difference frequency gen-
erations [12,13], etc.

The frequency-dependent-induced macroscopic polariza-
tion in an NL medium is governed by the infinite series [14,15]
ε−1

0 Pi(ω) = [χ (1)
i j (ω)E j (ω)+χ

(2)
i jk (−ω; ω1, ω2)E j (ω1)Ek (ω2)+

χ
(3)
i jkl (−ω; ω1, ω2, ω3)E j (ω1)Ek (ω2)El (ω3) + · · · ], where χ

(1)
i j

is the linear response, χ
(2)
i jk is the SHG response, χ

(3)
i jkl is the

third harmonic generation (THG) response, and so on, and
E (t ) is the time-dependent (TD) external electric field. SHG
is the condition when ω1 = ω2 = ω, thus χ

(2)
i jk (−2ω; ω,ω).

THG is the condition when ω1 = ω2 = ω3 = ω, thus
χ

(3)
i jkl (−3ω; ω,ω,ω). The index i is the polarization direction

while j, k, l, . . . are the electric field directions.
Within the linear response theory, �χ

(1)
i j (ω) contains a

rich source of information about the optical absorption spec-
trum. The peaks in the spectrum with energy below the gap
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correspond to bound state electron-hole pairs, known as ex-
citons. Both the excitonic ground- and excited-state energies
about the fundamental gap can be obtained once �χ

(1)
i j (ω) is

known. Further information on exciton binding energy, shape
of the absorption spectrum above the gap and its deviations
from the independent particle approximation (IPA) can also
be extracted from the photoluminescence spectroscopy, and
therefore such features can be tailored via tuning the excitonic
energies and lifetimes.

The SHG and THG responses in principle can be obtained
experimentally by altering the average incident power (or
intensities) of the applied field from the pump and measuring
the corresponding reflected average power (or intensities).
Once the measurement is done, a suitable physics-based
model is then used to extract these responses. In the case
of 2D materials, two common models, “sheet” and “bulk,”
are used to obtain these responses. The main difference in
the SHG responses extracted from these two models is that
the refractive index (n) of the substrate at ω appears in the
former model, whereas an intrinsic refractive index of the
2D material itself both at ω and 2ω appears in the later.
Particularly, Clark et al. [16] demonstrated that the bulk and
the sheet SHG responses are related by a “scaling factor”
F (in order of 10) that takes care of the reflectance and
transmittance emerging due to the refractive index mismatch
between the bulk crystal and the underlying substrate and air,
respectively. These authors demonstrated that the prefactor in
χ

(2)
bulk = 32πF n2D(ω)

√
n2D(2ω)

(nsubstrate+1)3 χ
(2)
sheet is close to 103, which scales

|χ (2)
bulk| ∼ 105 pm/V. This essentially provides a 3–4 orders of

magnitude difference between the two models. For instance,
the 2D MoS2 [16] and GaSe [9] reportedly exhibit a giant
SHG of the order 105 and 103 pm/V, respectively, when
calculated using the bulk model. In contrast, the sheet model
predicts only up to ∼100–500 and ∼400 pm/V, respectively
[16]. The THG response is likewise indirectly evaluated by
measuring the reflected average power of the TH beam. A
similar sheet model, depending on the refractive index of
the substrate at ω, is finally used to obtain the TH response
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[8]. The reported THG response for 2D MoS2 and WSe2 is
found to be in the order of 10−19 m2V−2 [2,7,8]. Interestingly,
the best THG response in ML family is still from graphene
∼10−16 m2V−2 [17,18]. However, graphene is centrosymmet-
ric and thus the SHG is identically zero.

First principles calculations based on the solution of the
many-body GW and Bethe-Salpeter equation (BSE) [19,20]
are nowadays the most reliable theoretical approach to in-
vestigate exciton affairs in crystals. The excitonic spectra
within the linear optics can be achieved from the solution
of a time-independent equation of motion (EOM), whereas it
needs a solution from the time-dependent EOM to efficiently
understand the NL behavior [21]. In-fact, the reduced SHG
values mentioned in the preceding paragraph are also sup-
ported by the ab initio calculations [22], thus validating the
sheet model to be a more accurate description for SHG and
THG in MLs. Using the first principles based calculations
and a real-time (RT) approach [23] to solve the TD-BSE,
we estimate here the SHG and THG responses in ML GaAs.
We demonstrate that buckled ML GaAs offers a giant exciton
binding energy of 1.10 eV, an SHG of 780 pm/V and a THG
of 1.4 × 10−17 m2V−2. These appealing all-in-one values may
open window to let enter ML GaAs as a prominent member
in the optoelectronics family. What follows, our approach is
based on a fully state-of-the-art ab initio-based calculations
and is free from any ad hoc parameters. This paper is orga-
nized as follows: In Sec. II, we discuss in separate subsections
the detailed methodology of both ground-state and excited-
state linear and nonlinear calculations. This is followed by
the results and discussion outlined in Sec. III for both the
above cases. Finally, Sec. IV briefs the summary of our work.
The Appendix outlines the necessary mathematical equations
which we solved using the ab initio methods. Additionally,
the Supplemental Material [24] contains the supportive figures
and convergence criteria used in this work.

II. COMPUTATIONAL DETAILS

A. Ground-state calculations

All density functional theory (DFT) calculations were
carried out with the quantum espresso package [25]. A
fully relativistic, norm-conserving pseudopotential with PBE
exchange-correlational functional was used. The 3d semicore
orbital was included in both Ga and As along with 4s and
4p valence electrons. A kinetic cutoff energy of 120 Ry
(see Fig. S2 in the Supplemental Material [24] for details
of convergence criteria) was selected. The Brillouin zone
(BZ) was sampled on a 12 × 12 × 1 grid using a � centered
Monkhorst-Pack scheme with the force and energy thresholds
of 10−5 Ry/Bohr and 10−5 Ry, respectively. A vacuum of 30 Å
in either side of the ML was selected to prevent the Coulomb
interference between the repeated images. A two-spinor wave-
function along with the noncollinear and spin-orbit coupling
(SOC) criteria was expanded in the plane-wave basis set. The
resulted in-plane and buckled lattice constants achieved were
a = 4.05 Å and 0.58 Å, respectively (see Fig. 1). The lattice vi-
bration calculation was carried out on a uniform 18 × 18 × 1
dense phonon grid using a rigid self-consistent error threshold
below 10−18 Ry (see Fig. S6 in the Supplemental Material
[24] for details of phonon convergence criteria).

FIG. 1. (a) Crystalline structure of monolayer GaAs exhibiting
a hexagonal C3v 3m point group symmetry. An in-plane lattice
constant a = 4.05 Å and (b) a buckling height along the out-of-plane
(z direction) is found to be 0.58 Å after performing a ground-state
energy relaxation calculation.

B. Excited-state G0W0+BSE and real-time BSE calculations

All linear and nonlinear optical excitations were computed
using the extended version of many-body perturbation theory
YAMBO package [21,26]. Two-hundred bands (28 occupied
and 172 unoccupied) along with a response block size of 7 Ry
(see Fig. S7 in the Supplemental Material [24] for details
of convergence criteria) were considered in the evaluation of
polarization function within the random-phase approximation
in the presence of local-field effects. A Godby-Needs [27]
plasmon-pole approximate model was used to calculate the
microscopic inverse dynamic dielectric screening function.
The transferred momentum q divergences [see Eq. (A15)
in the Appendix] were fixed using a random integration
method [28,29] in which by keeping the potential unchanged,
a smooth momenta integrand function is assumed in each
small volumetric region of the BZ. This BZ integral is finally
evaluated through a Monte Carlo method. Random-q points
(106) with a cutoff of 3 Ry were found sufficient to cover and
compute the BZ integral fully. Likewise in DFT, a Coulomb
truncation of 30 Å on either ML side in form of a box structure
was used. The BSE computation was done by dense sampling
the BZ to 72 × 72 × 1 on a shifted grid and then mapping it to
12 × 12 × 1 regular grid. This methodology [30] essentially
speed up the numerical computation without losing the nu-
merical accuracy. The screening part W0 in BSE was obtained
by borrowing the statically screened microscopic dielectric
function evaluated during G0W0. The full diagonalization
of the BS matrix was finally implemented after considering
the anti-resonant elements as well. The linear spectrum is
found to get converged with top five valence and lowest five
conduction bands (see Fig. S8 in the Supplemental Material
[24] for details of convergence criteria). To know the exciton
wave-function radius, a hole was kept on the top of As atom at
a distance of 1 Å. This is indicated by a dark spot in the inset of
Fig. 5. In real-time calculations, a length-gauge was used [21]
and the subsequent calculations were then carried out with the
same 72 × 72 × 1 grid and same number of transition bands.
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FIG. 2. Schematic of valence band splitting at � of the BZ in
the presence of crystal-field and SOC for zincblende and hexagonal
GaAs monolayer type structures. Note that �5v , �6v is the Kramers
pair with | j, mj〉 = | 3

2 , ± 3
2 〉.

III. RESULTS AND DISCUSSIONS

A. Ground-state and linear response

To support our results, we start with the ground-state
calculations. In contrast to the conventional zincblende and
wurtzite crystalline structures, the monolayer GaAs exhibit
an in-plane hexagonal lattice symmetry (like a monolayer
h-BN) with alternating Ga and As atom and a small buckling
height with large interlayer separation. In the bulk zincblende
structure, the valence band at the BZ center exhibits a six-
fold degenerate �15 state [31]. As schematically shown in
Fig. 2, the presence of an SOC splits this state to a fourfold
degenerate �8 heavy and light hole state (higher in energy)
and a doubly degenerate split-off hole �7 (lower in energy)
state. In case of single layer hexagonal GaAs, the point
group becomes C3v 3m, resulting in a threefold symmetry
(see Fig. 2). In the presence of crystal-field only (non SOC),
the irreducible representations �1v , �2v , and �3v splits into
twofold degenerate �2v or �3v (higher in energy) and a
nondegenerate level �1v (lower in energy). In the presence of
an SOC, the double group �3v additionally splits into three
levels: �3v ⊗ �4v = �4v (doubly degenerate) +�5v + �6v in
which due to the presence of time-reversal symmetry, �5v and
�6v becomes Kramers pair. The crystal-field split lower level
�1v in presence of SOC becomes �1v ⊗ �4v = �4v (doubly
degenerate). Consequently, the doublet �5v , �6v corresponds
to a heavy-hole, �4v to a light-hole and the lower �4v

(hereafter symbolically represented as �cf
4v) to a crystal-field

split-off hole, respectively. It should be noted that there is
no crystal-field splitting in case of zincblende structures. To
further resolve the SOC and crystal-field splitting parameters,
a quasicubic model of Hopfield [32] is often used. However,
due to the parametric symmetry in the equation, a thorough
knowledge of the transition intensities are also required [33].
Such analyses are altogether a different methodology and thus
remain beyond the scope of this work. Instead, we outline

below the splitting energy differences from our analysis, both
in the presence and absence of SOC in ML GaAs.

The effect of crystal-field splitting on the valence band in
the absence of SOC is demonstrated in Figs. 3(a)–3(c) by
projecting the partial density-of-states (p-DOS) of As atom
on the energy eigenvalues along the BZ route. We observe
in Figs. 3(a) and 3(b) that at the � point, the contribution
from the px and py orbitals forms a doubly degenerate highest
valence state �3v . The next highest valence state �1v is formed
by the singly degenerate As pz orbital [Fig. 3(c)]. The differ-
ence �3v − �1v= −1.95 eV, signifying a strong crystal-field
splitting. In the presence of SOC, �3v splits to Kramers pair
�5v , �6v with orbital weight from As 4P3/2 and total angular
momentum, mj = ±3/2. The state �4v has contribution from
As 4P3/2, mj = ±1/2 [Figs. 3(e) and 3(f)]. We also find that
at �, the orbital weight of the state �1c comes from Ga 3S1/2

mj = ±1/2, while �cf
4v has major contribution from As 4P3/2

mj = +1/2. Thus the states �1c, the doublet �5v and �6v;
and �4v together appear to be like a sp2-sp3 hybridized state
(see Fig. S10 in the Supplemental Material [24] for details
of individual atomic p-DOS). The valence spin-orbit splitting
(�0 = �5v − �4v) and the direct band-gap (E0 = �1c − �5v)
at � is 0.22 and 1.13 eV, respectively. The presence of SOC
makes �1v − �cf

4v = −0.11 eV.
The effect of quasiparticle (QP) corrections is shown in

Fig. 4(a) where the use of a G0W0 formalism estimate the self-
energy correction of 1.82 eV to E0 leading to a gap of 2.95 eV.
The corresponding valence spin-orbit splitting improvements
are insignificant. Here we note that the most favorable bond-
ing structure for group III elements is sp2 hybridization which
results in a trigonal planar structure. In contrast, due to higher
ionic radius in group V elements; P, As, and Sb prefers
trigonal pyramidal structure with sp3 bonding. Therefore, a
stable ML GaAs is expected to showcase a mixture of sp2-sp3

hybridization which results in a prominent buckling [34]. As
shown in Fig. 4(b), we verified the thermodynamic stability
from the phonon dispersion, which portrays no soft-modes.
At � of the BZ, all the optical out-of-plane ZO (159 cm−1),
and the degenerate in-plane longitudinal (LO) and transverse
(TO) modes (264 cm−1) are infrared as well as Raman active.

The absorption spectra are obtained by solving a coupled
electron-hole Green’s propagator with the screen-exchange
(SEX) potential in the self-energy [see Appendix Eqs. (A18),
(A19), and (A20)]. The excited-state energy corrections were
borrowed from the preceding G0W0 calculations. The spectra
in Fig. 5 demonstrate three relevant peaks in the energy range
of 1.8–2.5 eV. These peaks correspond to three interband
critical points [31] E0, E0 + �0 and E1 [see Fig. 4(a)] with
exciton peak positions at 1.85, 2.07, and 2.32 eV, respectively.
E0 and E1 critical points are due to the transition from
highest valence band to the lowest conduction band at � and
K points of the BZ, respectively. E0 + �0 corresponds to
transition from the next highest valence band to the lowest
conduction band at �. The first two excitonic peaks are
due to the spin-splitting of the valence band in which we
see that the peak position difference is exactly �0 in the
electronic dispersion. From the exciton peak positions, we
measure a binding energy of 1.10 eV for the lowest exciton.
This first peak E0 is formed by a pair of degenerate dark
and bright exciton. We find here that intravalley transitions
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FIG. 3. Ground-state electron energy dispersion in ML-buckled GaAs in the absence of SOC demonstrating the p-DOS contributions from
(a) px , (b) py, and (c) pz orbitals of As. The difference, �3v − �1v = −1.95 eV, signifying a strong crystal-field splitting. In the presence of
an SOC, the p-DOS contributions for (d) Ga 3S1/2, mj = ±1/2, (e) As 4P3/2, mj = ±1/2 and (f) As 4P3/2, mj = ±3/2 are demonstrated. The
presence of SOC makes �1v − �cf

4v = −0.11 eV. At the � point, the valence spin-orbit splitting (�0 = �5v − �4v) and the direct band-gap
(E0 = �1c − �5v) at � is 0.22 eV and 1.13 eV, respectively. EF is the Fermi energy and the top of the valence band is set to zero energy scale.

with antiparallel spins produce bright excitons and vice versa.
This showcases that the excitons forming from E0 + �0 as
well as E1 (the bottom conduction and top degenerate valence
band at K is formed by Ga 3S1/2, mj = −1/2 and As 4P3/2,
mj = +3/2, respectively) transitions are both bright and non-
degenerate. In the noninteracting picture up to the level of
Hartree kernel, the absorption spectra blue-shifts entirely with
reduced peak amplitudes and broadened valleys. Interestingly,
the E0 exciton wave function unfolds over the real-space ML
lattice with a radius of approximately 16 Å (∼ four unit
cells). Such large spanning characterizes it to be a Frenkel
exciton [35].

B. Nonlinear response

To capture the NL responses, we solve in real-time
the time-dependent Schrödinger equation in presence of an

external electric field E (t ). The induced macroscopic polariza-
tion is calculated using King-Smith and Vanderbilt formalism
[36] which uses a Berry’s geometric phase of the momentum
state k [see the Appendix Eq. (A25)]. The symmetry group
arguments in buckled ML GaAs leads to nonvanishing suscep-
tibility tensor elements [15] χ

(2)
bbb = −χ

(2)
baa = −χ

(2)
aab = −χ

(2)
aba

in which a and b are the in-plane ML axes. To verify first
that the time-dependent Schrödinger equation with the SEX
kernel in the system Hamiltonian (i.e., the TD-BSE) converge
to a time-independent excitonic BSE at weak intensities, we
hit our ML system with a δ-like electric field at low intensity
of 500 KWcm−2. A priori Hartree and the SEX collision
integrals were carried out with an energy cutoff of 35 Ry
to evaluate the Hartree+SEX self-consistent potentials. We
note here that one can also calculate such potentials at each
step in the dynamics, for which the results are same. The
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FIG. 4. (a) Electronic dispersion of ML buckled GaAs using the ground-state DFT and excited-state G0W0 theory. The zero-level is set at
the top of the DFT valence band. The single-shot GW or G0W0 improves the gap E0 at � by 1.82 eV. The valence spin-splitting �0 is 0.22 eV.
E1 is the gap at K. (b) Phonon dispersion showing no soft modes at �.

EOM is then integrated using a Crank-Nicholson algorithm
[37] at a time-step of 10 as. The application of a δ-like
impulse probes the system response at all frequencies. The
linear χ

(1)
i j is an a posteriori calculation and we find it to be

in excellent agreement with the response obtained directly by
solving the time-independent BSE. This is demonstrated in
Figs. 6(a) and 6(b). It should be noted that a sudden switching-
on of the external field sparks spurious initial nonlinearities
in the macroscopic polarization function, which should be
filtered out [see Fig. 6(c)]. For this, a finite dephasing time of
about 7 fs is added in the EOM Hamiltonian amounting to a

damping of 0.2 eV. This phenomenological damping [23] also
mimics the presence of any experimental dissipative effects
like electron scatterings, defects and lattice vibrations. We
run this simulation for 55 fs. We carefully note that beyond
the dephasing time of about 32 fs (almost 5 dephasing time
constants), all the spurious components in the polarization are
exponentially diminished. The extraction of the responses are
evaluated in this time window between 32 and 55 fs. Figure 7
demonstrates the linear responses �χ (1)

xx (ω) and �χ (1)
xx (ω)

extracted from the preceding discussion. The phase delay ϕ

is evaluated from the complex phasor χ (1)
xx (ω) = |χ (1)

xx (ω)|eiϕ .

FIG. 5. Absorption spectra [i.e., the imaginary part of the macroscopic dielectric function εM (ω)] as function of photon energy using
G0W0 + BSE and IPA (Hartree-kernel) energy corrections. The dotted lines are the DFT and G0W0 gap energies at 1.13 and 2.95 eV,
respectively. The inset shows exciton wave-function unfolded over the ML GaAs real-space lattice. To know about the exciton wave-function
radius, a hole was kept on the top of As atom at a distance of 1 Å. This is indicated by a dark spot in the inset.
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FIG. 6. (a) Comparisons between the absorption spectra of ML buckled GaAs calculated with real-time approach [see Appendix Eqs. (A24)
and (A29)] and direct (static) BSE [see Appendix Eq. (A22)]. A scissor is added in both the cases to mimic G0W0 corrections. The real-time
spectra is obtained by applying a δ-like electric field of intensity 500 KWcm−2. The corresponding induced electric polarization is shown in
(b). (c) Induced polarization along crystal b axis in the presence of a quasimonochromatic electric field along the a axis. The initial sudden
response can be seen in which vanishes almost at 32 fs.

Note that the delay closely follows the �χ (1)
xx (ω). A positive

delay indicates that the polarization is leading the field and
vice versa. The horizontal line at ϕ = π/2 signifies an in-
plane oscillation of the polarization current − ∂Px

∂t with E (t )
[39]. Plasmonic oscillations are seen when �χ (1)

xx (ω) → 0, for
which ϕ → π . For nonnegligible �χ (1)

xx (ω) and ϕ > π/2, the
oscillations can be due to the delocalized excitons, whereas
for ϕ < π/2, it could be due to the localized excitons.

We now demonstrate the SHG response using a quasisi-
nusoidal monochromatic field for three hierarchical perturbed
Hamiltonian models in the EOM, namely, TD-IPA, TD-DFT,
and TD-BSE [see Eqs. (A27)–(A29) in the Appendix]. The

external field is along the a axis while the SHG is computed
along the b axis. We note here that the NL calculations are
treated with a proper choice of gauge. The response functions
χ

(2)
i jk (−2ω; ω,ω) and χ

(3)
i jkl (−3ω; ω,ω,ω) suffer from unphys-

ical divergences of the form 1
ω2

, 1
ω2

2
and 1

ω3
, 1

ω2
3

appearing
as leading terms in the respective responses. While indeed
Aversa et al. [40] used a length gauge, they do not suffer from
such unphysical divergences. In fact, it is in the velocity gauge
that these divergences occur for ω → 0, unless removed by
using separation of intra and interband processes and/or using
sum rules to eliminate them. The length gauge formalism,
popular for molecules, has difficulties for an infinite periodic

FIG. 7. �χ (1)
xx (ω) and �χ (1)

xx (ω) as function of the applied frequency. The responses are evaluated using the real-time approach within the
TD-BSE level of approximation. The corresponding phase delay about π/2 between the electric polarization and the applied electric field as
function of the applied frequency is also shown.
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solid in formulating the matrix elements. The problem of
unphysical divergences using different gauges was thoroughly
addressed in a series by Sipe [41–44], both with Aversa [40]
and earlier with Ghahramani [45] and based on a careful
separation of intra and interband contributions to the matrix
elements all these divergences can be avoided. Such diver-
gences were overcome in Sipe’s work [45] and the consis-
tency of both gauge choices was explicitly demonstrated. The
sum over band transition approach within the IPA (whether
formulated in length or velocity gauge) gives expressions
for NLO susceptibilities that show resonances both at ω

and 2ω (and in third order also at 3ω). This gives a more
complete picture of the interplay of such different terms to the
χ

(2)
i jk (−2ω; ω,ω) or χ

(3)
i jkl (−3ω; ω,ω,ω). Unfortunately, this is

only possible within the long-wavelength limit IPA, and the
present formulation which includes local field contributions
and even excitonic effects, does not allow for as clear a
separation of these different types of contributions to the NLO
response. Therefore, one resorts to a qualitative comparison to
linear response at 1/2 and 1/3 of the frequency. We therefore
use this approach to distinguish the 1, 2, and 3ω resonances
by comparing the spectra of |χ (2)

baa(ω)| and |χ (3)
aaaa(ω)| with

the �εM (ω) and �εM (ω/2); and �εM (ω) and �εM (ω/3) for
each of the IPA, TD-DFT, and TD-BSE case, respectively.
These comparisons to linear response are possibly useful but
just a qualitative comparison and are customarily used by
the scientific community [22,46–50]. Figure 8(a) exhibits the
SHG response for IPA. To this IPA and for all subsequent
discussions, a rigid shift in the gap has been opened by a
scissor operator, which is sufficient instead of the expensive
G0W0 correction since we target to achieve the information
of 1, 2, or 3ω resonances that influence the response. These
processes in SHG are extracted by comparing with �εM (ω)
and �εM (ω/2), at the same Hamiltonian level as shown in
Fig. 8(b). As �χ

(1)
i j is the linear response, a δ-like field as

mentioned in the preceding paragraph is then required for
each of the cases. The SHG IPA spectra are characterized
by a number of peaks in the energy range 1.7–3.8 eV. The
most prominent peak (A) is at 1.91 eV. There exists also
a small shoulder peak B near 1.46 eV. When compared to
�εM (ω/2), this shoulder peak is found due to the E0 electronic
transition at � and is a 2ω resonance. The peak A is due to
the E1 transition at K and is also a 2ω resonance. Apparently,
the peak near 3.65 eV (C) corresponding to a small hump
(C′) in the �εM (ω), is mainly due to a 1ω resonance. The
modifications in the NL and linear spectra in TD-DFT case
[Figs. 8(c) and 8(d)] are due to the presence of time-dependent
Hartree and exchange-correlation potentials, respectively. In
the presence of the SEX kernel, the TD-BSE spectra modifies
remarkably as shown in Figs. 8(e) and 8(f). This is due to
the incorporation of exciton dynamics which is absent in the
previous two cases. The shoulder peak B as detected in IPA
is now completely smeared out and a prominent peak D at
1.16 eV emerges due to the E1 transition. This is due to a
2ω resonance for which |χ (2)

baa|=780 pm/V and almost two
to five times larger than the spectra of exfoliated ML MoS2

when computed with the “sheet” model [4,16]. Similarly, the
second and the third peaks, E and F, respectively, are also due
to a 2ω resonance. Unlike the other cases, the fourth peak G
is both due to 1 and 2ω resonances. In all the above three

situations, the main contribution to the 2ω resonance comes
from E1 transition [see Fig. 4(a)] which means that this optical
phenomenon is a K-point transition instead of � transition.
This observation is based on the fact that the E1 transition
in linear optics already gives apparently a stronger oscillator
strength (peak height in the �χ2

baa) in the exciton than the E0 or
E0 + �0 transitions. The same holds true for the 1ω resonance
as well in this case. Therefore, we can conclude that the
second harmonic generation in buckled ML GaAs is indeed
a K point phenomena having minor contributions from �

transitions. To calculate the static response χ
(2)
baa(ω = 0), one

need to put a zero dephasing rate. However, this would mean
an infinite simulation time. Instead, we extrapolate |χ (2)

baa(ω)|
to obtain |χ (2)

baa(ω = 0)| = 150 pm/V.
Similar processes are also seen in case of monolayers of

hexagonal BN, MoS2 [47], as well as in zincblende bulk III-V
compounds [39]. In Fig. 8(e) we have particularly shown the
experimental SHG of zincblende bulk GaAs from Bergfeld
and Daum [38]. One can observe that the transparency region
is below 1 eV where only 2ω resonances contribute with a
peak of 750 ± 40 pm/V at nearly 1.5 eV.

In the case of THG, we keep all the NL parameters
same as in SHG, except the intensity which is increased to
106 KWcm−2 to achieve a significant response. The external
field is along a axis and thus we look for |χ (3)

aaaa(ω)|. In a
similar approach to SHG, we start with IPA as shown in
Fig. 9(a) and compare the respective spectra with �εM (ω) and
�εM (ω/3) in Fig. 9(b). The first peak A′ is in the transparency
region at 0.98 eV, is due to the E0 transition and is a 3ω

resonance. The most prominent peak B′ at 3.16 eV is due
to E0 + �0 transition and is a 1ω resonance. The on-set
of this peak near 2.81 eV (C′) is, however, due to both
1 and 3ω resonance. Similar to SHG, the THG response
variations in TD-DFT [Figs. 9(c) and 9(d)] is because of
time-dependent Hartree and exchange-correlation potentials,
respectively. However, the SEX kernel modifies the response
in Fig. 9(e) remarkably. Red-shifted peaks in the transparency
region at 0.62 (D′) and 0.69 eV (E ′) emerge due to spin-
splitted E0 and E0 + �0 transitions, respectively (in-fact the
difference when multiplied by 3 gives �0), and is a 3ω

resonance. Likewise, the peak F′ at 0.78 eV is again a 3ω

resonance due to E1 transition. The peak G′ near 1.08 eV
is the most prominent 3ω resonance in the same region and
emerges due to a broadened shoulder peak around the same
energy as shown in Fig. 9(f). At this energy, we note the
|χ (3)

aaaa| = 1.4 × 10−17 m2/V2. This is in two order magnitude
larger than reportedly exfoliated ML MoS2 and WSe2 [2,7].
The next two consecutive humps H ′ and I ′ are again due to a
3ω resonance. The giant peak K ′ at 2.13 eV is a 3ω resonance
and is due to the E1 transition. The on-set of this peak near
1.76 eV (J ′) is due to both 1 and 3ω resonance. Hence, we
can conclude that major contributions to the 3ω resonance
are coming from E0, E0 + �0, and E1 which makes it � as
well as K point optical phenomena. However, 3ω resonance
in this case is entirely coming from E1 transition, i.e., a K
point phenomena and the most prominent one in the entire
THG spectra. In addition, both the Figs. 8 and 9 also show
the real and imaginary parts of the respective responses. One
can clearly see that �χ

(2)
baa and �χ (3)

aaaa goes to zero below half
and one-third of the band gap in all the respective cases. The
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FIG. 8. Nonlinear SHG spectra of ML buckled GaAs as function of laser frequencies. Panels (a, c, and e) are the SHG computed
using IPA + scissor, TD-DFT, and TD-BSE level of theory, respectively (all are respective absolute values). Panels (b, d, and f) show the
absorption spectra computed at ω and ω/2 under the IPA+scissor, TD-DFT, and TD-BSE level of theory, respectively. The open circles are
the experimental SHG spectra of zincblende bulk GaAs taken from Bergfeld and Daum [38] and put here for comparison with our monolayer
structure. The solid and dashed vertical lines are for the ω and ω/2 gaps. The imaginary and real parts for each of the theory are also presented.
From the imaginary part, one can see that �χ

(2)
baa goes to zero below half of the band-gap in all the cases. All of these computations were

performed on 72 × 72 × 1 k-point grid.

two parts in each case are related through the well-known
Kramers-Kronig relations with the exception of self-induced
changes [�χ (3)

aaaa(ω; ω,ω,−ω)] in the refractive index [15].
One should note that the above interesting observations

are based only on a qualitative comparison to the linear
spectra at ω/2 and ω/3 to identify the 2ω and 3ω resonances.
Moreover, the E0 and E0 + �0 related peaks are seem to be
more prominent in linear and THG spectra but not in SHG.
To understand such smearing-out in presence of excitons, the
sum over bands approach by Sipe et al. [40] might give

additional insights into this by the possibility to examine the
matrix elements. However, one then might miss the specific
excitonic enhancement effects. At this point a more theoretical
development is needed to understand this problem of smearing
out of the spin-peaks in SHG, which for now can be attributed
to a mere observation only. A similar smearing situation is
also seen in case of various other TMDCs [51].

In addition, optical signals are quite prone to the choice
of substrate. But, typically dielectric coated substrates are
best choice as it reduces the bulk SHG, although there could
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FIG. 9. Nonlinear THG spectra of ML buckled GaAs as function of laser frequencies. Panels (a), (c), and (e) are the THG computed
using IPA + scissor, TD-DFT, and TD-BSE level of theory, respectively (all are respective absolute values). Panels (b), (d), and (f) show
the absorption spectra computed at ω and ω/3 under the IPA + scissor, TD-DFT, and TD-BSE level of theory, respectively. The solid and
dashed vertical lines are for the ω and ω/3 gaps. The imaginary and real parts for each of the theory are also presented. From the imaginary
part, one can see that �χ (3)

aaaa goes to zero below one-third of the band-gap in all the cases. All of these computations were performed on
72 × 72 × 1 k-point grid.

be some contribution also coming from the surface SHG.
Moreover surface roughness in ML (e.g., in 2D tetragonal
structures) may lead to large charge inhomogeneities which
may also react with the underlying substrate. Interface defects
are great problematic leading to trap and charge transference
and can significantly modify the SHG and THG signals.
There are reports that metal substrates fits good for hexagonal
structures of TMDCs, for example CVD thin gold for 2D
MoS2 [52], whereas Si/SiO2 are good for THG signals from

MoS2 [2]. For 2D TMMCs, CVD Si/SiO2 suits as a good
substrate for SHG [9]. Theoretically, DFT calculations show
that substrate choice for tetragonal 2D III–Vs within 1%
of lattice mismatch could be metallic (100) surfaces of Pt,
Cu, Pd [34]. A scope therefore opens for careful analysis of
substrate choice for wurtzite III–V monolayers. Finally, in all
our NL computations the peak electric field is of the order
107 Vm−1. Such values are in-fact weak enough to initiate a
Zener breakdown.
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IV. CONCLUSIONS

To summarize, we use the first principles many-body ap-
proach and evaluate both linear as well as nonlinear responses
in buckled ML GaAs. We go beyond the static theory of the
BSE to evaluate the nonlinear optical harmonic generations.
The inclusion of exciton dynamics significantly enhances both
the SHG and THG responses compared to ML TMDCs and
TMMCs. The prominent SHG and THG responses are due to
the 2 and 3ω resonance and falls in the transparency region,
respectively. These giant responses open the possibility for the
generation of nonlinear signals from ML GaAs.
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APPENDIX

1. Linear spectra: G0W0 and Bethe-Salpeter Equation

Within the linear response many body perturbation theory
(MBPT), we first start with the electronic Hartree-Fock ex-
change static self-energy

∑x
nk. The matrix elements of this

self-energy in the plane wave basis set are diagonal and can
be expressed as [53,54]

∑x
nk = 〈nk|

x∑
|nk〉 = −

occ∑
m

∫
BZ

dq
(2π )3

∑
G

v(q + G)

× |ρnm(k, q, G)|2 fm(k−q), (A1)

in which |nk〉 is the momentum state of nth band, q are the
transferred momenta, m are the number of occupied electronic
bands, f is the Fermi function, and ρ is the density matrix.
G are the G vectors with v(q + G) = 4π

|q+G|2 as the three-
dimensional Coulomb potential in the Fourier transformed q
plane.

At this level, the Hartree-Fock contribution to the ground-
state Kohn-Sham energy eigenvalues can be written as

EHF
nk = EDFT

nk +
(

x∑
nk

− V xc
nk

)
, (A2)

in which V xc
nk is the exchange and correlation functional at the

level of local density or generalized gradient approximation.
The GW approximation theory is the generalization of

this Hartree-Fock theory achieved by replacing the bare static
screening potential v(r, r′) by a dynamic screened interaction
W(r, r′; ω). We describe this scheme as follows: Using the
time-ordered single-particle noninteracting Green’s propaga-
tor G0, the polarization within the random phase approxima-
tion (RPA, i.e., using Hartree-kernel) is first calculated as

P (r, r′′; τ ) = −iG0(r, r′; τ )G0(r′, r; −τ ), (A3)

where τ = t − t ′, while t and t ′ are the time developments
in the Green’s propagator. Note that Eq. (A3) is summed
over both the occupied and unoccupied states in the Fourier

transformed ω-plane,

P (r, r′′; ω) =
occ∑

i

unocc∑
j

ψ0
i (r)ψ0∗

j (r)ψ0∗
i (r′)ψ0

j (r′)

×
[

1

ω + E0
i − E0

j + iη
− 1

ω − E0
i + E0

j − iη

]
,

(A4)

where the number η is infinitesimal real and positive number.
The microscopic dielectric function is the convolution of
P (r, r′′; ω) with v(r, r′)

ε(r, r′; ω) = δ(r − r′) −
∫

P (r, r′′; ω)v(r, r′′)d3r′′. (A5)

From Eq. (A5), the inverse microscopic dielectric function
ε−1(r, r′′; ω) is obtained and is again convoluted with v(r, r′)
to get

W(r, r′; ω) =
∫

ε−1(r, r′′; ω)v(r, r′′)d3r′′. (A6)

Equation (A6) signifies that a quasiparticle at r induces an
effective screened interacting dynamic potential W(r, r′; ω)
at r′. Once W(r, r′; ω) is known, the GW self-energy is a final
full frequency-axis convolution of noninteracting propagator
G0 with W(r, r′; ω),

GW∑
(r, r′; ω)

= i

2π

∫ +∞

−∞
G0(r, r′; ω + ω′)W(r, r′; ω′)eiω′ηdω′. (A7)

Single-shot GW or G0W0 is the condition when the noninter-
acting Green’s function is used and the screened interaction
W is only once iterated through RPA. Note that now, the
screening W implicitly defines ε−1

GG′ in Fourier transformed
q-plane. A pure correlational G0W self-energy can be ex-
tracted from Eq. (A7) as

c∑
(r, r′; ω)

= i

2π

∫ +∞

−∞
G0(r, r′; ω + ω′)Wc(r, r′; ω)dω′, (A8)

leaving the pure exchange term as

x∑
(r, r′; ω) = i

2π

∫ +∞

−∞
G0(r, r′; ω + ω′)v(r, r′)eiω′ηdω′,

(A9)

in which Wc(r, r′; ω) = W(r, r′; ω) − v(r, r′). Equation (A9)
can be computed analytically in both q and ω plane leading to
Eq. (A1). Symbolically, the total GW self-energy is split into
a respective exchange (Hartree-Fock) and correlational part as
iGv + iG(W-v). Because of the presence of several poles of
both G0 and W, located infinitely close to the real-frequency
axis, the above frequency integral Eq. (A7) becomes com-
putationally expensive. What is then done is to replace ε−1

GG′
with an effective inverse dielectric function model consisting
of a single pole, essentially at the plasma frequency describing
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the collective charge-neutral excitation. This approximation is
known as the “plasmon-pole model.” There has been various
such celebrated approximate models developed in the past
like the Hybertsen-Louie (HL) [55], Godby-Needs (GN) [27],
Linden-Horsch (LH) [56], and Engel-Farid (EF) [57], to name
a few [58]. Out of these, the first two are the most common in
practice. Here, we use the GN plasmon-pole model approxi-
mation since this is found to be most stable and fits the above
inverse dynamic dielectric function and the corresponding
QP energies very accurately when evaluated by the complete
full-frequency integral [58].

The GN plasmon-pole model replace this ε−1
GG′ with a single

pole function of the form

ε−1
G,G′ (q, ω) ∼δG,G′ + RG,G′ (q)

{
1

[ω − �G,G′ (q) + i0+]

− 1

[ω + �G,G′ (q) + i0+]

}
. (A10)

The residuals RG,G′ (q) and the energy �G,G′ (q) parame-
ters are generally obtained by fitting after calculating the
RPA inverse dielectric matrix at two given frequencies ω

= 0 and at a user defined imaginary frequency (iω′
p), in

which (ω′
p) is typically chosen such that it should be near

to the plasmon frequency (ωp). These two parameters are
then evaluated as RG,G′ (q) = 1

2ε−1
G,G′ (q, ω = 0)�G,G′ (q) and

�G,G′ (q) = ω′
p

√
ε−1

G,G′ (q,ω=ω′
p)

ε−1
G,G′ (q,ω=0)−ε−1

G,G′ (q,ω=ω′
p)

. To account for the

charge inhomogeneity, a local field effect was also employed
along the in-plane periodic direction using a sufficient re-
sponse block size cutoff.

Assuming that the difference between the QP and the
mean-field energies are small, the nonlinear QP energy [53],

EQP
nk = EDFT

nk + 〈nk|
GW∑ (

r, r′; ω = EQP
nk

) − V xc|nk〉, (A11)

can be linearized [53,59] by taking the first-order Taylor’s
series expansion around the Kohn-Sham DFT eigen-energies
to get

EQP
nk = EDFT

nk + Znk〈nk|
GW∑ (

r, r′; ω = EDFT
nk

) − V xc|nk〉.
(A12)

The QP lifetimes are the reciprocal of the imaginary part of∑GW
nk =〈nk| ∑GW (r, r′; ω = EDFT

nk )|nk〉. This factor,

Z =
[

1 − d
∑GW

nk

dω

]−1

, (A13)

with 0 � Znk � 1 is then the QP renormalized weight factor.
Values of Z very close to 1 signifies a pure QP state. The
corresponding spectral function,

An,k(ω) = 1

π
×

∣∣∣∣�
GW∑
nk

∣∣∣∣
[[

ω − EDFT
nk − (� GW∑

nk

−V xc
nk

)]2

+
[
�

GW∑
nk

]2]−1

, (A14)

is Lorentzian and the spreading (full-width at half maximum,
FWHM) defines the strength of the correlated interaction. A
sharp spectral function defines a less correlated interaction,
while a dwarf and spread defines a strong interaction.

One of the major challenges when dealing with 2D sys-
tems, like in our case with ML GaAs, is the finite length in
one of the spatial direction. This introduces rapid variations in
screening and as a result the integral quantities like exchange
self-energies, BS kernel, total energy expression, etc., suffers
q → 0 divergence problem due to the quasi-2D nature of
Coulomb interaction. To compute those quantities properly,
“random integration method” emerged as the most numer-
ically accurate methodology [26,28,29]. These divergences
can be solved by the state-of-the-art computational method-
ologies performed on high-performance CPUs. We explain
this in the spirit of Refs. [26,28,29]: The numerical evaluation
of the GW self-energy [Eq. (A7)] is a horrendous task. A fine
sampling of the BZ would require an exorbitant computational
cost since large grids of transferred momenta are always
connected with the use of equally large grids of k points [29].
Therefore, a preferable solution is to fix certain k-points grid
and the integration is then performed over the BZ by using
a large random grid of points to do the q-summation. These
random points are chosen in such a way to cover the whole
of the BZ. Quantitatively, rewriting the Coulombic integral as∫

d3q[ f (q)
|q+G|2 ], each of this kind of term appearing in static

or dynamic self-energy (in GW or BSE-only for oscillators
and occupation numbers) is integrated around each q over
a small volume centered at q + G whereas the rest of the
integrand f (q) remains almost constant. Computationally, this
small volume could be a box for planar geometry, cylinder for
one-dimensional geometry, and sphere for bulk. The height of
the box should be equal to the either side distance between
the periodic images done while using ground state or the
density functional theory task. We particularly this divergence
overcome situation for the diagonal matrix elements, the case
with off-diagonal matrix elements is then straight forward:
The diagonal matrix element of the exchange self-energy
[Eq. (A1)] after assuming that the integral is a smooth function
of momenta, can then be written as

〈nk|
x∑

|nk〉 ≈
∑

qi

∑
G

F (qi, G)
∫

smallBZ(qi )
d3q

4π

|q + G|2 .

(A15)

This integral can now be evaluated using a Monte Carlo
method and the procedure is known in literature as random
integration method. This way we see that the qi → 0 diver-
gence is also resolved here since the 3D q integration forbids
this to happen. In addition, the integral prefactor is also regular
when qi → 0. 106 random points were incorporated in our
calculation to evaluate the Coulomb integrals with a G-vector
cutoff of 3 Ry. The numerical integral was defined within a
box-structure extending 30 Å on either side of the ML GaAs.
This truncated the Coulomb potential between the repeated
images and a faster convergence was achieved.

Excitonic affairs are governed by a two-particle (elec-
tron and hole) Dyson-like equation of motion. In a
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ladder-approximation representation [53],

L(12; 1′2′) = L0(12; 1′2′)

+
∫

d (3456)L0(14; 1′3)K (35; 46)L(62; 52′),

(A16)

in which L(12; 1′2′) and L0(12; 1′2′) are the interacting and
noninteracting two-particle Green’s propagator, respectively.
The variable “(1)” (and similar others) is a shorthand notation
for the spatial, spin, and four time (two creation and two
annihilation) coordinates: (1) ≡ (r1, σ1, t1), respectively. In
case of occupied (v) and unoccupied (c) states, L0 in Fourier
transform plane has the form

Lvcv′c′
0 (ω) = 1

ω − (
EDFT

c − EDFT
v

) + iη
δcc′δvv′ . (A17)

Note here that the four time variables are now decomposed in
a single frequency in the ω plane.

The kernel Kvckv′c′k′ is a functional static quantity and is
the sum of a bare exchange Coulomb repulsion and statically
screened Coulomb attraction between the electron and hole.
The latter is represented as

W(vck; v′c′k′) = 1

�

∑
GG′

v(q + G′)ε−1
GG′ (q)〈v′k′|e−i(q+G′ ).r

× |vk〉〈ck|ei(q+G′ ).r|c′k′〉δq,k−k′ , (A18)

while the former is

V (vck; v′c′k′) = 1

�

∑
G �=0

v(G)〈v′k′|e−iG.r|c′k′〉〈ck|eiG.r|vk〉,

(A19)

where � in this case is the cell volume. K is thus defined
as Kvck;v′c′k′ = 〈vck|W − 2V |v′c′k′〉. It is in this statically
screened kernel W in which the G0W0 QP energies are
included to get the correct transition energies. Note that to
obtain a solvable BSE [60], W is approximated to be a static,
which can be borrowed from the preceding dynamic screening
calculations in G0W0 simply by putting ω = 0.

Assuming that the off-diagonal elements in the self-
energies are small which consequently makes the total Hamil-
tonian to be a Hermitian and the QP states orthogonal, the
exciton EOM (i.e., the BSE) becomes [53](

EQP
ck − EQP

vk

)
As

vck +
∑
v′c′k′

〈vck|Kvcv′,v′c′k′ |v′c′k′〉As
vck

= ES
X As

vck, (A20)

in which S is each exciton (i.e., a pair state with a distinct
principal quantum number and momentum wave-vector dif-
ference between v and c), EX is the excitonic energy that is
obtained by diagonalizing this Hamiltonian and As

vck is the
excitonic amplitude in the electron-hole basis and contains the
light polarization direction. As the momentum wave-vector
difference is zero for vertical transitions, therefore excitons
with such transitions (bright excitons) are only detectable. The

resonant Green’s propagator is then

Lvc,v′c′ (ω) =
∑

S

AvckS AS∗
v′c′k′

ω − EX + iη
. (A21)

The numerator can be obtained via residue theorem and signi-
fies the exciton oscillator strength. The macroscopic dielectric
function (i.e., the absorption spectra) is thus evaluated in limit
of long wavelength q → 0 [53]

εM (ω) = 1 − lim
q→0

(
8π

|q|2�
) ∑

vck

∑
v′c′k′

〈vk − q|e−iqr|ck〉

× 〈c′k′|eiqr|v′k′ − q〉
∑

S

(
AS

vckAS∗
v′c′k′

ω − EX + iη

)
.

(A22)

This is also the linear response function χ
(1)
i j (ω).

To analyze if the exciton is “Frenkel” or “Wannier”-type,
the exciton wave-function is needed. This can be written as

|ΦS (re, rh)〉 =
∑
vck

AS
vckφvk(re)φck(rh), (A23)

in which re and rh are the electron and hole coordinates in
real space. We note that the evaluation of this wave func-
tion would require six coordinates. Thus, we fix the hole
position on the top of As atom and obtain the projection
|ΦS[(0, 0, 0), (0, 0, 0)]|2 on the x-y plane. This has been
exhibited as inset of Fig. 5 in the main text.

2. Nonlinear spectra: Time-dependent Schrödinger’s equation

The time-development of occupied states |νnk〉 can be
obtained from a time-dependent Schrödinger’s equation as
[21]

ih̄
d

dt
|νnk〉 = [

Hsystem
k + iE (t ) · ∂̃k

]|νnk〉, (A24)

in which Hsystem
k is the system Hamiltonian and E (t ) · ∂̃k is the

coupling of the electrons with the external field. If the system
is periodic, then the Born-von Kármán periodic boundary
condition impose the operator ∂̃k ≡ ∂

∂k . The solutions to this
equation are then gauge invariant under unitary transforma-
tions of the Bloch state |k〉.

Instead of a perturbative way (i.e., in the Fourier trans-
formed domain), Eq. (A24) is solved directly in the real-time
(RT) domain. The reasons are straightforward. A perturbative
scheme is always computationally very expensive whereas
in RT, the many-body effects can be efficiently added in the
Hamiltonian.

To find the macroscopic polarization, we follow the mod-
ern theory of polarization by King-Smith and Vanderbilt [36].
These authors argued that the Berry’s phase change generated
by a closed path in k-space correctly defines the macroscopic
polarization of a periodic system. When the states |νnk〉 are
known, the in-plane macroscopic polarization along the lattice
vector a can then be evaluated from [21,36]

P‖ = − egs

2π�

|a|
Nk⊥

∑
k⊥

�log

Nk‖−1∏
k‖

detS(k, k + q‖), (A25)
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in which e is the electronic charge, gs is the spin degeneracy,
S(k, k + q‖) is the overlap matrix between the states |νnk〉 and
|νmk+q‖ 〉, Nk‖ and Nk⊥ are the respective in-plane and out-of-
plane k-points to the polarization direction with q‖ = 2π

Nk‖
.

The system Hamiltonian in Eq. (A24) can now be con-
structed as follows: In the independent-particle approxima-
tion, the energy eigenvalues are simply evaluated from the
Kohn-Sham DFT Hamiltonian [21]

Hsystem
k = HDFT

k . (A26)

Next, the G0W0 corrections can be added to this IPA Hamil-
tonian as either by a scissor operator [21]

Hsystem
k = HDFT

k + �Hscissor

= HDFT
k +

∑
nk

�nk
∣∣v0

nk

〉〈
v0

nk| (A27)

or directly by �nk = EG0W0
nk − EDFT

nk from an ab init io compu-
tation.

The next hierarchy is the TD-DFT, where the system
Hamiltonian is [21,46]

Hsystem
k = HDFT

k + VH [�ρ(r, t )] + Vxc(r)[�ρ(r, t )], (A28)

in which VH is the self-consistent Hartree potential, and Vxc

is the exchange-correlation potential at the level of Kohn-
Sham DFT, now calculated quasistatically within LDA or
GGA. These two potentials are dependent on the time-varying
electronic density ρ(r, t ). Random phase approximation is the
condition when Vxc is neglected in the system Hamiltonian.
The change �ρ(r, t ) = ρ(r, t ) − ρ(r, 0) is the electronic den-
sity variation and is responsible for the local-field effects due
to the inhomogeneity in the system.

The next level of hierarchy is the incorporation of scissor-
corrected SEX interaction in the Hamiltonian. This is usually
known as TD-BSE [21]

Hsystem
k = HDFT

k + �Hscissor
k + VH [�ρ(r, t )] +

∑
SEX

[�γ ],

(A29)

in which �γ (r, r′, t ) = γ (r, r′, t ) − γ (r, r′, 0) is the den-
sity fluctuation matrix induced by the external field. The
self-energy

∑
SEX is the convolution between the stati-

cally screened interaction W [see below Eq. (A19)] and
�γ (r, r′, t ).

The EOM, Eq. (A24), is now numerically solved for
|νnk〉 using the following algorithm developed by Crank and

Nicholson [37] for both Hermitian and non-Hermitian type
Hamiltonians:

|vnk(t + �t )〉 = I − i(�t/2)Hsystem
k (t )

I + i(�t/2)Hsystem
k (t )

|vnk (t )〉, (A30)

in which I is the identity element. The operation is strictly
unitary for any value of time-step �t .

It turns out that if the applied field is a Dirac δ-type, the
Fourier transformed responses can be evaluated at all frequen-
cies. In case of a low intensity, one can show that the solution
of Eq. (A24) asymptotically tends to Eq. (A22) [23]. These
are numerically shown in Fig. 6(a). The extraction of the
nonlinear response function is a post-processing computation.
We follow Attacallite et al. [21] for this methodology. As
shown in Fig. 6(c), the sudden switching of a monochromatic
E (t ) induces spurious fluctuations at the initial stage. To cal-
culate the P (t ) from a clean signal, we add a dephasing time-
constant of 7 fs. This would essentially mean that after five
time-constants (∼32 fs) these spurious fluctuations are suffi-
ciently cleared out from P (t ) and the nonlinear responses can
be obtained between this time and the total simulation time
(∼55 fs). There are two approaches by which nonlinear χ can
be evaluated. Either the field may be applied in a quasistatic
way, so that the spurious fluctuations do not appear. However,
calculating P in this way takes a long time to simulate [21].
The other way is to use the previous sudden approximation
and change the following Fourier series into a system of linear
equations. The polarization Fourier series is [21]

P (t ) =
n=∞∑

n=−∞
pne−iωnt . (A31)

This series is truncated [21] to an order S larger than the
response we are interested to calculate. With a laser frequency
ωL, we find the time-period TL and within this we sample
the signal to 2S + 1 values. Equation (A31) can now be
transformed in a system of linear equation

Flin pα
n = Pα

i , (A32)

in which α is the polarization direction. By Fourier inversion
of the (2S + 1) × (2S + 1) matrix (done on sampled times
ti) (Flin ≡ e−iωnti ), each component pα

n of the coefficients pn

can be obtained.
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