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Hopf insulators are exotic topological states of matter outside the standard tenfold-way classification based on
discrete symmetries. Its topology is captured by an integer invariant that describes the linking structures of the
Hamiltonian in the three-dimensional momentum space. In this paper, we investigate the quantum dynamics of
Hopf insulators across a sudden quench and show that the quench dynamics is characterized by a Z2 invariant ν

which reveals a rich interplay between quantum quench and static band topology. We construct the Z2 topological
invariant using the loop unitary operator and prove that ν relates the pre- and postquench Hopf invariants through
ν = (L − L0 ) mod 2. The Z2 nature of the dynamical invariant is in sharp contrast to the Z invariant for the
quench dynamics of Chern insulators in two dimensions. The nontrivial dynamical topology is further attributed
to the emergence of π defects in the phase band of the loop unitary. These π defects are generally closed curves
in the momentum-time space, for example, as nodal rings carrying Hopf charge.
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I. INTRODUCTION

Over the past decade, topological quantum matter [1,2] has
become an active research area in condensed-matter physics.
A topological phase is characterized by the bulk invariant
of its ground state and the corresponding gapless surface
and edge states, which are usually robust against detrimental
effects such as impurities. Based on the underlying discrete
symmetries and dimensionality, topological states have been
categorized into ten different classes, the so-called Atland-
Zirnbauer tenfold way [3–6]. Recently, much attention has
been paid to the exploration of topological phases outside
the standard tenfold way. A notable example is the three-
dimensional (3D) Hopf insulator [7–12] in the absence of
any symmetries, for which the tenfold way would normally
predict a trivial insulator. Besides its theoretical importance,
several proposals [13,14] have been put forward for realiz-
ing such Hopf insulators in ultracold-atom experiments. And
topological links and Hopf fibration have been observed in
solid-state quantum simulator of nitrogen-vacancy centers in
diamond [15].

Compared to conventional topological insulators, the Hopf
insulator is characterized by an integer topological invariant:
the linking number L, arising from the unique knot topology
in the 3D momentum space associated with the mathematical
Hopf map [16]. Formally, a minimal model of Hopf insulator
[7–12] is represented by a 3D two-band Hamiltonian H (k) =
n̂(k) · σ, where the 3D unit vector n̂(k) bridges a mapping
from the 3D Brillouin zone (BZ), which is a three-torus T3

to the target state space of two-sphere S2. By ignoring the
nontrivial cycle of the torus [17] and treating T3 as three-
sphere S3, the nontrivial band topology is reduced to a Hopf
map and characterized by homotopy group π3(S2) = Z. The
preimage of any quantum state on the Bloch sphere is a closed
curve in the 3D BZ. The Hopf invariant L is identical to the

linking number [18,19] of the preimages of any two quantum
states.

The studies of topological phases have also been extended
to out-of-equilibrium systems, e.g., systems with periodic
driving [20–36] or quantum quenches, which refer to sudden
changes in some Hamiltonian parameters at a specific time. A
Hopf insulator under periodic driving was studied in Ref. [31],
and a novel Floquet topological phase, termed the Floquet
Hopf insulator, was identified. For quantum quenches, the
postquench dynamics is intimately connected to the static
band topology of pre- and postquench Hamiltonians and may
exhibit nontrivial dynamical phenomena [37–57]. Facilitated
by the great controllability of ultracold-atom experiments,
the interplay between quantum dynamics and band topology
can now be investigated in laboratories [58–60]. A typical
example is the recent observation of dynamical vortices and
spatiotemporal Hopf links [41] for quantum quenches of two-
dimensional (2D) Chern insulators [51–53] through the time-
and momentum-resolved Bloch-state tomography [61–64].

It is then natural to investigate the quench dynamics of
Hopf insulators, in particular, how to characterize its dy-
namical topology and relate it to the static band topology
of pre- and postquench Hamiltonians. We expect it to differ
significantly from the quench of Chern insulators [41,42]. For-
mally, the quantum quench is governed by the time evolution
|ξ (t )〉 = U (k, t )|ξ0〉 = e−iH (k)t |ξ0〉 (h̄ = 1), with |ξ0〉 being
the initial state. The postquench state |ξ (t )〉 defines a mapping
from the (3 + 1)-dimensional [(3 + 1)D] momentum-time
space (which is a four-torus T4) to the Bloch sphere S2. Such
homotopy mapping is characterized by a Z2 invariant. We
formulate this invariant using the loop unitary Ul constructed
from the pre- and postquench Hamiltonians [42] and show the
dynamical topology is characterized by the homotopy group
π4(SU(2)) = Z2. Using the phase-band representation of the
loop unitary, we further prove the Z2 invariant ν is related
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to the change of static Hopf invariant across the quench, ν =
(L − L0) mod 2, where L (L0) is the Hopf invariant of the
postquench (prequench) Hamiltonian. The loop unitary also
provides an intuitive interpretation of the nontrivial dynamical
topology as the emergence of π defects in the phase bands.
These results, as summarized in Eqs. (15), (17), and (20),
reveal the Z2 invariant and underlying dynamical topological
properties from different physical aspects. As the dynamical
topology of quantum quenches studied in previous works
[37–55] belongs to the Z class labeled by an integer invariant
(e.g., dynamical Chern number, momentum-time Hopf invari-
ant), our characterization constitutes a nontrivial example of
the Z2 class of quench dynamics.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the minimal model of Hopf insu-
lators and demonstrate the Hopf links as manifestations of
static band topology. In Sec. III, we construct the homotopy
invariant ν using the loop unitary Ul as well as its phase-band
representation and reveal its Z2 nature. In Sec. IV, we relate
the dynamical invariant to the static pre- and postquench
Hopf invariants by using a homotopy-equivalence relation.
Section V discusses the π defects in the phase bands of Ul

as the origin of nontrivial dynamical topology. We show the
emergence of these defects by explicit examples. In Sec. VI,
we provide a geometric perspective of the dynamical topolog-
ical invariant. Section VII discusses the dynamical behaviors
of the surface states of Hopf insulators across the quantum
quench. We draw conclusions in Sec. VIII.

II. HOPF INSULATOR

The primary model for the Hopf insulator [7,8] is the
following two-band Hamiltonian:

H p,q = n̂(k) · σ, (1)

with σ = (σx, σy, σz ) the Pauli matrices. Here n̂(k) = z†σz is
a normalized pseudospin vector, |n̂(k)| = 1. The CP1 field z
is defined as

z =
(

z↑
z↓

)
= 1√|η↑|2p + |η↓|2q

(
η

p
↑

η
q
↓

)
, (2)

where η↑,↓ are complex numbers given by

η↑ = sin kx + i sin ky,

η↓ = sin kz + i(cos kx + cos ky + cos kz − M ) (3)

and p, q are integers. M is a tunable parameter to induce
topological phase transitions. As any unit vector is represented
by a specific point on the Bloch sphere, n̂(k) in fact defines a
mapping from the 3D BZ, i.e., T3 to the Bloch sphere S2. This
mapping is indexed by the Hopf invariant defined as

L = −
∫

BZ
d3k F · A, (4)

where A is the Berry connection satisfying ∇ × A = F and
F = (Fx, Fy, Fz ) is the corresponding Berry curvature,

Fμ = 1

8π
εμνρ n̂ · (∂ν n̂ × ∂ρ n̂). (5)

FIG. 1. Momentum-space Hopf links formed by the preimages
of two unit Hamiltonian vectors n̂ = (0, ±1, 0) (red and blue curves)
in the 3D BZ [see model (1)]. (a) p = 1, q = 1; (b) p = 2, q = 1;
(c) p = 1, q = 2; and (d) p = 2, q = 2. M = 2.2 for all four cases.
The linking numbers of the preimages are L = pq.

Here εμνρ is the Levi-Civita symbol. μ, ν, ρ refer to the
momentum indices, and summation over repeated indices is
implied.

The above T3 → S2 mapping can be decomposed into two
steps. The first step is a mapping T3 → S3 defined by the
CP1 field z. We denote the four real numbers of z as N1 =
Re[z↑], N2 = Im[z↑], N3 = Re[z↓], and N4 = Im[z↓], which
satisfy

∑4
j=1 N2

j = 1. Hence, z is represented by a point on
the three-sphere S3. The second mapping is the well-known
Hopf map S3 → S2 defined by the unit pseudospin vector
n̂ = z†σz. From this two-step mapping, the Hopf invariant can
be explicitly calculated as [9]

L =
⎧⎨
⎩

0, |M| > 3,

pq, 1 < |M| < 3,

−2pq, |M| < 1,

(6)

with the coefficients 0, 1,−2 coming from the nontrivial
wrappings in the first mapping T3 → S3. As (p, q) can take
arbitrary integers, the Hopf invariant apparently can take
any integer depending on the values of p, q, and M. As a
consequence, the Hamiltonian H p,q constructed above realizes
Hopf insulators with arbitrary linking numbers.

The Hopf invariant gives the linking number of the trajec-
tories of preimages in the 3D BZ for any two points (unit vec-
tors) on the Bloch sphere [18,19]. Figure 1 demonstrates the
appearance of such Hopf links by four examples, correspond-
ing to (p, q) = (1, 1), (2,1), (1,2), and (2,2) of model (1) with
1 < M < 3. The preimages for two points n̂ = (0,±1, 0)
on the Bloch sphere form Hopf links, with linking number
L = pq. For the (p, q) = (1, 1) case, the preimages link once
(the simplest Hopf link) in the BZ, as depicted in Fig. 1(a).
For (p, q) = (2, 1), the preimages link twice and form the
so-called Solomon’s knot, as shown in Fig. 1(b). For (p, q) =
(1, 2), another Solomon’s knot is formed with linking number
2, as shown in Fig. 1(c). For (p, q) = (2, 2), each preimage
contains two components and traces two closed curves in the
BZ. Each component links once with either component of
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the other preimage, giving rise to four linkings in total, as
depicted in Fig. 1(d). For generic (p, q) and parameter M, the
preimages form ever more complicated Hopf links in the BZ,
with linking number dictated by Eq. (6).

For simplicity, the model Hamiltonian Eq. (1) is set up
to have two flat bands at Ek = ±1. More general two-band
models can be considered. In describing the topology of their
quench dynamics, it is convenient to carry out the following
“band-flattening” procedure [42]: we rescale the Hamiltonian
H (k) → h(k) = H (k)/|Ek|, where ±Ek are the eigenvalues
of H (k).

III. Z2 DYNAMICAL INVARIANT

Now let us formulate the quench dynamics of Hopf insula-
tors following the general framework established in Ref. [42].
Without loss of generality, let us suppose the quantum quench
occurs at time t = 0 when the Hamiltonian goes through a
sudden change H0(k) → H (k), where H0(k) and H (k) are
called pre- and postquench Hamiltonians, respectively. The
initial state |ξ0〉 is set as the ground state of H0. We set the
postquench Hamiltonian as the Hopf Hamiltonian H (k) =
H p,q introduced in Sec. II. The ensuing time evolution accord-
ing to the postquench Hamiltonian is given by

|ξ (t )〉 = e−iH (k)t |ξ0〉. (7)

At t = π , the time-evolved state |ξ (t = π )〉 = −|ξ0〉 returns
to the initial state up to a minus sign. Thus, the time evolution
has period T = π (we set h̄ = 1 throughout). Further, the two-
component state |ξ 〉 can be represented by a unique point on
the Bloch sphere, corresponding to the unit vector

ξ = 〈ξ (t )|σ|ξ (t )〉. (8)

Equations (7) and (8) together define a mapping from the
(3 + 1)D momentum-time space to the Bloch sphere S2. The
former can be regarded as a four-torus T4 due to the peri-
odicity of the 3D BZ and time evolution. Usually, we can
ignore the nontrivial cycle of the torus and treat it as a sphere
[17]. The quench dynamics is then characterized by homotopy
group π4(S2) = Z2, yielding a reduced Z2 classification of the
underlying dynamical topology.

Such homotopy classification does not care about the de-
tails of the base manifold, as long as it is closed and homo-
topic to the four-torus. The Z2 invariant is therefore rather
general and applies to generic, gapped two-band systems.
For dispersive bands, the time evolution is still periodic for
each momentum k, with a k-dependent period Tk. The base
manifold T3 × [0, Tk] is a deformed four-torus, the topology
of which is homeomorphic to T4. The band-flattening proce-
dure discussed above makes this explicit. By rescaling H (k),
or, equivalently, rescaling time t → τ = |Ek|t , all momentum
modes have the same time period [42]. The (k, τ ) space
becomes T4. While mathematically the Z2 invariant may be
extracted from the cobordism of the framed two-manifold
[65], the construction from this cobordism is complicated
and abstract. Here we take another route using the recently
introduced concept of the loop unitary operator [42] for
generic quantum quench to construct its associated dynamical
invariant.

A. Loop unitary for quantum quench

The loop unitary Ul of quantum quench is a periodized
unitary operator satisfying Ul (t = 0) = Ul (t = π ) = I. Ul

contains the information of both the pre- and postquench
Hamiltonians. We note the time evolution operator U (k, t )
does not have the period of the quench dynamics T = π ,
U (t = π ) �= I. Following the standard decomposition of the
unitary time-evolution operator into a loop part and a constant
part [29], the loop unitary is formally defined as [42]

Ul (t ) = e−iH (k)t eiH0(k)t , (9)

where the first term on the right-hand side is the time evo-
lution U (k, t ) and the second term is the constant evolution
according to H0(k).

In contrast to the T4 → S2 mapping provided by the
postquench state vector ξ, Ul = Ul (k, t ) defines a mapping
T4 → SU(2). Note that any SU(2) matrix can be represented
using the Pauli matrices as u0I + iu · σ, with

∑3
j=0 u2

j = 1.
The SU(2) manifold is isomorphic to the three-sphere S3. The
above mapping is then characterized by the homotopy group
π4(SU(2)) = π4(S3) = Z2. An important property of the loop
unitary is that Ul (t )|ξ0〉 = e−it |ξ (t )〉; that is, the action of the
loop unitary on the initial state |ξ0〉 gives exactly the same
postquench state on the Bloch sphere with a global phase
factor. We recall the homotopy relation π4(S3) = π4(S2);
therefore, the Z2 invariant extracted from the homotopy group
π4(SU(2)) agrees with π4(S2) discussed above. It can char-
acterize the quantum dynamics and its associated dynamical
topology. The loop unitary also possess other useful proper-
ties, as will be discussed later.

A key concept related to the loop unitary is its phase band
[24,29,30,42,66]. The phase band is the eigenphase of the
loop unitary operator. Formally, for the two-band case, we can
express Ul in its eigenbasis as

Ul (t ) = eiφ(k,t )|φ+〉〈φ+| + e−iφ(k,t )|φ−〉〈φ−|. (10)

Here ±φ(k, t ) (with 0 � φ � π ) are called phase bands, and
|φ±〉 are their corresponding eigenstates.

Generally, the phase bands depend on both momentum and
time and are continuous functions over the whole base mani-
fold T4. Two phase bands are degenerate at two special values,
φ(k, t ) = 0, π , due to the periodicity of the quasienergy zone.
Such band touching points are singularities of the loop unitary
[66] and play a crucial role for the dynamical topological
properties [24,29,30,42]. For example, the phase band sin-
gularities in 3D momentum-time space resemble the Weyl
points, and their total charges equal the number of edge states
in the corresponding quasienergy gap [23,24].

We further define the phase-band spin vector as

m̂ = 〈φ+|σ|φ+〉. (11)

In terms of m̂, the loop unitary can be rewritten as Ul =
cos φ + i sin φ m̂ · σ. Making a comparison with Eq. (9), the
explicit form of the phase band is determined by

cos φ(k, t ) = cos2 t + sin2 t H (k) · H0(k), (12)

where H0(k) and H (k) are pre- and postquench Hamiltonian
vectors, defined by H0(k) = H0(k) · σ and H (k) = H (k) · σ.
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B. Homotopy invariant

Now we are ready to construct the analytical form of the Z2

invariant to characterize the homotopy mapping π4(SU(2)).
The procedure follows the constructions of the dynamical
invariant of Floquet Hopf insulators introduced in Ref. [31].
This technique first embeds the SU(2) unitary loop operator
into an extended three-band unitary space U(3) [67,68],

V (t ) =
(

Ul (t ) 0
0 1

)
. (13)

The next step is to find a continuous path Ṽ (t, r), which is
parameterized by 0 � r � π

2 to contract the above three-band
unitary smoothly to the trivial identity such that Ṽ (t, r =
0) = V (t ) and Ṽ (t, r = π

2 ) = I3×3. The necessity of the above
embedding into the extended U(3) space is due to the triviality
of homotopy mapping π4(U(3)). Without the embedding, the
continuous contraction of the loop unitary Ul to identity I2×2

may be forbidden due to the topological singularities hidden
in the phase bands (i.e., π defects, as will be discussed
later). Remarkably, the desired Z2 invariant characterizing
the homotopy mapping T4 → SU(2) can be computed by the
following five-dimensional integral [67]:

ν = −i

240π3

∫ π
2

0
dr

∫
T4

dtd3k Tr(Ṽ −1dṼ )5 mod 2. (14)

Here the integrand takes the exterior wedge product of dif-
ferential forms. While the integral value may depend on the
chosen contraction path, it turns out the parity of the integral
is a quantized topological invariant (that is why we should
take modulo 2), independent of the specific contractions [67].

By inserting the phase-band representation of the loop uni-
tary and employing a band-switching contraction path [31],
the Z2 invariant can be recast into

ν = 1

2π

∫
T4

dtd3kεi jkl ∂iφA jFkl mod 2, (15)

where the indices (i jkl ) take values in (t, kx, ky, kz ), A j =
−i
4π

[〈φ+|∂ jφ+〉 − 〈∂ jφ+|φ+〉] is the Berry connection of
the phase band, and Fkl = −i

2π
[〈∂kφ+|∂lφ+〉 − 〈∂lφ+|∂kφ+〉] is

the corresponding Berry curvature. The (k, t) dependence of
the phase band {φ, |φ+〉} is explicitly given by Eqs. (9), (10),
and (12).

IV. RELATION WITH STATIC HOPF INVARIANT

Having established the Z2 invariant, the next question is
how to relate it to the integer Hopf invariants of the pre- and
postquench Hamiltonians. In our system, however, the quench
dynamics and static band topology are characterized by dif-
ferent types of indices. To proceed, we utilize an important
property of the loop unitary [42]: Ul is homotopic [29] to the
following two-step evolution generated by H (k) and H0(k),

Ug =
{

e−2iH (k)t , 0 < t < π
2 ,

−e2iH0 (k)(t− π
2 ), π

2 < t < π.
(16)

Note that Ug is also a periodized unitary operator satisfying
Ug(t = 0) = Ug(t = π ) = I2×2. Such homotopy equivalence
indicates that we can find a continuous path to connect the
two loop unitaries Ul and Ug by preserving the relevant π gap

in the phase bands. Consequently, Ul and Ug have the same
global properties and topological invariant ν = ν[Ug]. This
statement reveals the connections between quantum quench
and Floquet driving systems. For Floquet Hopf insulators [31],
the time evolution is, in general, not time periodic. However,
the time evolution operator can always be decomposed into
the product of a micromotion operator and constant evolution
operator [29]. Similar to the loop unitary, the micromotion
operator constructed for a given gap defines a T4 → SU(2)
mapping. A full description of the Floquet topology of a
periodically driven Hopf insulator requires two dynamical
invariants extracted from the micromotion operators, one for
each gap, and an additional Hopf invariant for the quasienergy
bands. The dynamical invariant for each gap dictates the
appearance of Floquet surface modes.

From the above homotopy equivalence, the Z2 dynamical
invariant can be simply computed using the phase band of Ug.
In each time step, the phase band of Ug is only linearly de-
pendent on t (without any k dependence due to its normalized
form). For 0 < t < π

2 , φ = 2t ; for π
2 < t < π , φ = 2π − 2t .

The integral in Eq. (15) then yields

ν = 1

2π

[ ∫ π

0
dφ

∫
BZ

dk3ε jkl (A jFkl )|H (k)

+
∫ 0

π

dφ

∫
BZ

dk3ε jkl (A jFkl )|H0(k)

]
mod 2

= (L − L0) mod 2, (17)

with L and L0 being the Hopf invariants of the post- and
prequench Hamiltonians, respectively.

Equation (17) is a remarkable result. It indicates that the
quench dynamics of a Hopf insulator can be categorized
into two topologically distinct classes. The trivial class cor-
responds to when the difference between the static pre- and
postquench Hopf invariants is an even number and thus identi-
cal to zero; however, for the nontrivial cases, their difference is
an odd number. Here we provide a more physical perspective
of such a Z2 nature, which does not resort to homotopy group
theory. To this end, consider the following continuous unitary
transformation of the loop unitary Ul :

U ′
l (λ) = S†(λ)UlS(λ). (18)

Here S(λ) = e−iλH0(k)t is parameterized by λ ∈ [0, 1]. It is
clear that at λ = 0, U ′

l (λ = 0) = Ul and, at λ = 1, U ′
l (λ =

1) = eiH0(k)t e−iH (k)t . This unitary transformation interpolates
between the above two unitaries while preserving the phase-
band gap (the eigenphase is invariant under the transforma-
tion). Hence, the dynamical invariant remains unchanged for
any λ ∈ [0, 1]. Using the same homotopy-equivalence argu-
ment as above, we find the dynamical invariant for U ′

l (λ = 1)
is −ν. To identify ν with −ν, it must be a Z2 number, and
modulo 2 is necessary in Eq. (17).

V. TOPOLOGICAL DEFECT OF THE LOOP UNITARY

In this section, we investigate the topological defects in
the loop unitary Ul . We first attribute the nontrivial dynamical
topology to these topological singularities [42]. With explicit
examples, we show the defects are generally closed loops in
the (3 + 1)D momentum-time space. Further, we illustrate the
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emergence of defects accompanied by the topological phase
transitions of the postquench Hamiltonian.

A. π defect and Hopf charge

In this section, we discuss the topological defects of
the loop unitary Ul associated with the nontrivial dynami-
cal topology of the quench dynamics. The analysis follows
the framework of Ref. [42]. These defects are phase-band
singularities located in the (3 + 1)D momentum-time space
and correspond to the band degeneracies. Due to the 2π

periodicity of the eigenphase, there exist two types of band
degeneracies [24,29,30,42,66] with φ = −φ. One kind is
located at φ = 0, dubbed the zero defect, where the two phase
bands touch at the zero gap; the other kind is at φ = π , dubbed
the π defect, where the two phase bands touch at the π gap.

According to the discussion of homotopy equivalence in
Sec. IV, the change in static Hopf invariants should be directly
related to the π defects. We focus on the π defects from now
on. It is clear from Eq. (12) that the π defects are determined
by the following two conditions:

t = π

2
, H (k) = −H0(k). (19)

The second condition gives the momentum points in the BZ
where pre- and postquench Hamiltonian vectors are antipar-
allel to each other. As the time evolution of the state after
quench can be regarded as the precession of the spin vector
ξ with respect to the postquench Hamiltonian vector H (k), it
is obvious that at these special momenta the spin vector ξ stays
fixed at its initial direction.

The second condition in Eq. (19) generally determines a
one-dimensional (1D) closed curve in the BZ. The π defect
then corresponds to a loop defect in the (3 + 1)D momentum-
time space, and for each defect, we can define its associated
Hopf charge [31]. To this end, we rewrite the topological
invariant using a coordinate transformation (t, kx, ky, kz ) →
(φ, x1, x2, x3). In this notation, the eigenphase φ = φ(k, t )
depends continuously on momentum and time. The three
coordinates (x1, x2, x3) locally label the 3D submanifold with
constant φ, i.e., equal-φ surface. In general this coordinate
transformation is not one to one on the entire space T4. If
this is the case, the equal-φ surface contains multiple disjoint
pieces (components) P, each labeled by its own local coor-
dinates (x1P, x2P, x3P ). The final results can be obtained by
summing over all different components. Under this transfor-
mation, the Z2 invariant in Eq. (15) is recast into

ν = 1

2π

∑
P

∫ π

0
dφ

∫
dx3

Pε jklA jFkl mod 2

=
∑

P

hP mod 2. (20)

In the first line, the second integral is performed for each
equal-φ surface, and the first integral is ramping up the
corresponding eigenphase. The summation

∑
P is for all

components, as discussed above. The second integral is noth-
ing but the Hopf invariant over the 3D submanifold. It is
independent of φ and hence defines a local charge of the π

defect as hP = 1
2

∫
dx3

Pε jklA jFkl . In general, the Hopf charge
should be determined numerically, and the 3D integral can be

performed for an arbitrary 3D submanifold (not necessarily
the equal-φ surface) enclosing these defects. Equation (20)
indicates that the Z2 dynamical invariant is nothing but the
total Hopf charges of these π defects modulo 2. By a careful
analysis of the properties of these π defects, we can fully
extract the dynamical topology of the quantum quench.

B. Examples

Now we demonstrate the emergence of π defects in the
phase bands by simple examples. For convenience, let us
suppose the initial state is fully polarized |ξ0〉 = (1, 0)T and
the prequench Hamiltonian is H0 = −σz. First, we consider a
postquench Hamiltonian H (k) = H1,1 as defined in Eq. (1)
with 1 < M < 3. Explicitly, H (k) = n̂(k) · σ, with n̂(k) =
(nx, ny, nz ), given by

nx = 2

N0

[
sin kx sin kz + sin ky

(
3∑

α=1

cos kα − M

)]
,

ny = 2

N0

[
− sin ky sin kz + sin kx

(
3∑

α=1

cos kα − M

)]
,

nz = 1

N0

⎡
⎣sin2 kx + sin2 ky − sin2 kz −

(
3∑

α=1

cos kα − M

)2
⎤
⎦.

(21)

Here N0 = |η↑|2 + |η2
↓| is the normalization coefficient. The

static Hopf invariants for the post- and prequench Hamiltoni-
ans are L = 1 and L0 = 0, respectively.

The π defect is determined by t = π
2 and n̂(k) = (0, 0, 1).

These two conditions yield a closed curve (denoted as C) in
the kx-ky plane:

C : t = π

2
, kz = 0, cos kx + cos ky = M − 1. (22)

This is a loop defect in the (3 + 1)D momentum-time space.
We note the π defects in the quench dynamics of Chern
insulators take the form of Weyl-like degeneracy points in
the (2 + 1)D momentum-time space [42]. To investigate the
dispersions near this loop defect, consider M = 3 − ε (ε is
a small quantity). The defect curve C is a circle in the kx-ky

plane given by [see Fig. 2(a)]

k2
x + k2

y = 2ε. (23)

The circle is parameterized by polar angle θ ∈ [0, 2π ], kx =
r cos θ , ky = r sin θ , with r = √

2ε. We focus on a specific
point θ0 on this curve. For the points nearby, the postquench
Hamiltonian H (δr, δkz ) = δn · σ reads (to the linear order of
derivations δr, δkz)

δnx = 2 cos θ0

r
δkz − 2 sin θ0δr,

δny = −2 sin θ0

r
δkz − 2 cos θ0δr,

δnz = 1 + O
(
δk2

z , δr2
)
. (24)
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FIG. 2. (a) Schematics of the π defect and Weyl-cone rotation.
The π defect forms a loop C [Eq. (22)] in the kx-ky plane (magenta
curve) with kz = 0 and t = π

2 . The three arrows of different colors
label the orthogonal frame defined by Eq. (26). (b) Plot of phase-band
spin vector m̂ [defined in Eq. (11)] on a cylinder enclosing the loop
defect.

The loop unitary near this defect takes the form (to the linear
order of δr, δkz, and δt)

U (δr, δkz, δt ) = −I − i(δnyσx − δnxσy − 2δtσz )

≡ −I + iδm · σ. (25)

It is clear that along the defect curve, the dispersion relations
are linear along the other three orthogonal directions of δr,
δkz. and δt . Each point on this loop defect behaves like a Weyl-
like degeneracy point, which is a general feature of the Hopf
charge [31].

Now let us travel along this defect curve. During the round
trip, the Weyl cone will rotate before returning to itself. In
fact, at each point along the loop, the three orthogonal vectors
δm
δr , δm

δkz
, and δm

δt define a local orthogonal frame of the Weyl
cone extending in the momentum-time space. They are

1

r

δm
δr

= 2

r
(cos θ,− sin θ, 0),

δm
δkz

= 2

r
(sin θ, cos θ, 0),

δm
δt

= (0, 0, 2). (26)

These three vectors are linearly independent, and the frame
twists by 2π about the time axis after a round trip along C,
as illustrated in Fig. 2(a). In Fig. 2(b), we plot the phase-band
spin vector m̂ on a cylinder surface enclosing the loop defect.
These vectors give the direction of the effective magnetic
field. The 2π rotation along the loop defect can be clearly
observed.

Above we have considered the case M � 3 for simplicity,
where the defect loop is a circle. However the Weyl cone
nature of the π defect and the 2π twisting along the loop
are valid for generic M. Similar calculations apply to the
quantum quench with other postquench Hamiltonians, e.g.,
H (k) = H p,1 (p > 1), and the resulting π defect is a closed
curve composed of higher-order Weyl-like band degeneracies.
The frame twisting along the loop defect is given in Eq. (26)
by replacing θ → pθ .

C. Topological phase transitions

The π defects encode the nontrivial topological properties
of quantum quench. Here we demonstrate the evolution of

FIG. 3. (a) The evolution of the π defects in the BZ with respect
to M. For 1 < M < 3, there exists only one π -defect loop centered at
k = (0, 0, 0), while for −1 < M < 1, there exist two π -defect loops
centered at k = (0, 0, π ) and k = (π, π, 0), respectively. (b) Phase
diagram with respect to M. The blue circles and red line represent the
Hopf invariant L of the postquench Hamiltonian and the dynamical
invariant ν, respectively. p = q = 1.

π defects, accompanied by the topological phase transitions
of the postquench Hamiltonian, as the tuning parameter M
in model (1) is varied from M > 3 to M < −3. The main
results are summarized in Fig. 3. For 1 < M < 3, there exists
only one loop π defect centered at (kx, ky, kz ) = (0, 0, 0).
By decreasing M, the loop defect expands. At M = 1, a
topological transition happens, with the static Hopf invariant
L changing from 1 to −2 according to Eq. (6) [see the
phase diagram in Fig. 3(b)]. Correspondingly, the π defect
touches the boundary of the BZ. After the transition within
the range −1 < M < 1, another π -defect loop emerges at the
plane of kz = π . The two loop defects are now centered at
(kx, ky, kz ) = (π, π, 0) and (0, 0, π ), respectively. For each
π defect, the dispersion nearby is linear, Weyl-like, giving
rise to Hopf charge 1. The total charge is zero due to its
Z2 nature. With further decreasing of M, the defect loop at
kz = 0 shrinks, and the π defect at kz = π expands. Finally,
at M = −1, the π defect at kz = π touches the boundary of
the BZ, while the loop at kz = 0 vanishes. The dynamical
invariant returns to ν = 1 for −3 < M < −1.

VI. GEOMETRIC VISUALIZATION
OF THE Z2 INVARIANT

In Sec. IV, we provided an explanation of the Z2 nature
of the quench dynamics based on the gap-preserving unitary
transformation besides the mathematical homotopy mapping.
Here we briefly discuss a complementary geometric perspec-
tive [31,65] of the dynamical invariant from the properties
of Jacobian twisting along preimage loops. This is possible
because both the static Hopf invariant L and dynamical invari-
ant ν are homotopy invariants which can be reduced to lower
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FIG. 4. (a) Sketch of the target manifold SU(2) ∼= S3 in the
homotopy mapping T4 → SU(2) provided by the loop unitary. For
an arbitrary point on S3 (magenta dot), the three colored arrows label
its nearby points. (b) The preimage of the chosen point, which is a
closed curve (magenta) in the base manifold T4. The end points of the
colored arrows form the preimages of the three nearby points in (a).
The twisting of the orthogonal frame by traveling along the preimage
loop is characterized by the Z2 invariant ν.

dimensions. For the Hopf invariant, we have the homotopy
relation

π3(S2) = π1(SO(2)) = Z. (27)

To see the above equivalence, we consider two infinitesimally
close points n and n + δn on the Bloch sphere, with their
preimages forming closed curves parameterized by θ as k(θ )
and k(θ ) + δk(θ ), respectively. The Hopf invariant L gives
the linking number of these two preimages. The difference
between the two preimages defines a 2 × 3 Jacobian matrix as
Ji j (θ ) = ∂n j

∂ki
, with J (θ )δk(θ ) = δn. Note that n is a unit vec-

tor; only the derivatives along the two nonradial directions are
nonzero. The Jacobian has two independent column vectors.
By choosing one of the them to point along the direction to
the second preimage (it will trace out the second preimage
with the evolution of θ ), the twisting of the two column
vectors along the first preimage then directly gives the linking
number, i.e., the Hopf invariant. The twisting is classified by
homotopy group π1(SO(2)) = Z.

Similarly, the Z2 dynamical invariant ν can be understood
as the Jacobian twisting of SO(3) matrices, as sketched in
Figs. 4(a) and 4(b). As the base manifold is T4 and the
target manifold is S3, the preimage of a point on S3 is a 1D
closed loop, and the Jacobian is a 3 × 4 matrix, with three

independent column vectors. By traveling along the preimage
loop, the twisting of the three orthogonal column vectors
[which can be regarded as the three vectors of an SO(3)
matrix] gives the desired Z2 invariant, characterized by

π4(SU(2)) = π1(SO(3)) = Z2. (28)

The Z2 nature is followed by the standard belt trick argument
[65,69]. In the above examples (see Sec. V B) with a trivial
initial state |ξ0〉 = (1, 0)T , the π defect is nothing but the
preimage of |ξ0〉 in the (3 + 1)D momentum-time space (t =
π
2 ), and the Weyl cone twisting [see Eq. (26)] along this loop
defect is an example of the general Jacobian twisting.

VII. TIME EVOLUTION OF THE SURFACE STATE

In this section, we discuss the dynamical behaviors of the
surface states of the Hopf insulator. To this end, the prequench
Hamiltonian is set to be topological with Hopf invariant L0 =
1. The quench is implemented by a sudden change in the mass
M in model (1). For the Hopf insulator, depending on the
chosen slab geometry, there are two types of surface modes
[7]. For the (010) or (100) slab, the surface states form a
single Dirac point, as shown in Fig. 5(a), while for the (001)
slab, the surface states form a ring of gapless points. The time
evolutions of the two types of surface modes exhibit similar
behaviors. For simplicity, we focus on the single Dirac point.

We denote |ψsurf〉 as the prequench surface state in the bulk
gap. After the quench, |ψsurf〉 is no longer an eigenstate of
the postquench Hamiltonian H and evolves accordingly. The
time-resolved probability density at site j of the time-evolved
state is defined as

ρ( j, t ) = |〈 j|e−iHt |ψsurf〉|2. (29)

We numerically calculate the probability density for two
different postquench Hamiltonians, with L = 1 (but a differ-
ent M value) and L = 0, respectively. The bulk dynamical
topology for the two cases is characterized by ν = 0 and
ν = 1, respectively. For the former case, as shown in Fig. 5(b),
the probability density remains spatially localized, retaining
its initial profile due to large overlapping between surface
modes of pre- and postquench Hamiltonians. For the latter
case, as shown in Fig. 5(c), the wave train moves away from

FIG. 5. Time evolution of the surface modes of the Hopf insulator. (a) Surface states with a (010) slab. The Dirac point is located at
(kx, kz ) = (0, 0). (b) and (c) Time-resolved probability density ρ( j, t ) for the surface mode at kx = kz = 0.1; j labels the lattice site along
the y direction. For (b), M = 2.5, and the postquench Hopf invariant is L = 1. For (c), M = 4, L = 0. The prequench Hamiltonian is set as
M = 1.5, L0 = 1.
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the boundary and enters linearly into the bulk. During time
evolution, the density profiles bounce between the two oppo-
site surfaces. For both cases, the spatial profile will decay as
a power law at very long time. These results clearly show the
two different quench processes indeed have different dynami-
cal behaviors of surface modes. It remains a challenging open
problem for future work to relate these dynamical behaviors
to the Z2 topological invariants obtained here.

VIII. CONCLUSIONS AND DISCUSSION

In conclusion, we have demonstrated that the quench dy-
namics of Hopf insulators can be categorized into two topo-
logically distinct classes and characterized by a Z2 invariant
ν = (L − L0) mod 2, relating the pre- and postquench static
Hopf invariants. We have constructed this dynamical invariant
using the homotopy group π4(SU(2)) = Z2 based on the
loop unitary operator. The topological origin of the nontrivial
dynamics is further revealed by the emergence of π defects in
the phase bands. We have provided several perspectives on the
Z2 nature of the quench dynamics.

Our characterization of quench dynamics based on the
loop unitary is general and works for other spatial dimensions

and other symmetry classes [42]. Previously, we utilized this
method to characterize the quench dynamics of Chern insu-
lators in two dimensions, where the loop unitary provides a
mapping T3 → S3 with homotopy group π3(SU(2)) = Z. The
reduced Z2 classification here provides an important example,
where the quench dynamics and static band topology possess
different types of invariants (Z2 and Z).

While the Z2 invariant may appear abstract, the nontrivial
dynamical topology can be extracted by measuring the topo-
logical charge of the π defect. Recently, two proposals for
realizing Hopf insulators in lattice-trapped ultracold fermionic
atoms [13] (for example, 6Li) and dipolar molecules [14] have
been put forward. In these proposed systems, the π defect
and the phase-band winding structures (see Fig. 2) can be
directly measured from the time- and momentum-resolved full
Bloch-state tomography [51–53,61–64].
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