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Optically generated electron-hole pairs can probe strongly correlated electronic matter, or, by forming exciton-
polaritons within an optical cavity, give rise to photonic nonlinearities. The present paper theoretically studies
the properties of electron-hole pairs in a two-dimensional electron liquid in the fractional quantum Hall regime.
In particular, we quantify the effective interactions between optical excitations by numerically evaluating the
system’s energy spectrum under the assumption of full spin and Landau level polarization. Optically most active
are those pair excitations which do not modify the correlations of the electron liquid, also known as multiplicative

states. In the case of spatial separation of electrons and holes, these excitations interact repulsively with each
other. However, when the electron liquid is compressible, other nonmultiplicative configurations occur at lower
energies. The interactions of such dark excitations strongly depend on the liquid, and can also become attractive.
For the case of a single excitation, we also study the effect of Landau level mixing in the valence band which

can dramatically change the effective mass of an exciton.
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I. INTRODUCTION

Quantized electronic transport is the characteristic fea-
ture of integer and fractional quantum Hall systems [1,2].
It emerges when a two-dimensional electronic system is ex-
posed to a strong perpendicular magnetic field. This intriguing
transport behavior manifests the topological nature of the
electrons’ quantum state [3], and the incompressibility of the
topological liquid [4]. To probe this physics beyond transport,
different methods of optical spectroscopy have been applied,
including photoluminescence [5—11], inelastic light scattering
[12—-14], or absorption spectroscopy [15-17]. Specifically,
these techniques have enabled to study the spin physics
of quantum Hall materials, including spin-wave excitations
and topological spin textures (“skyrmions”) [13-15,17]. Re-
cent advances incorporated a quantum Hall system in an
optical cavity [18-20]. The formation of exciton-polaritons
can lead to increased lifetimes of optical excitations, and
optical nonlinearities were detected using four-wave mixing
[20]. Strikingly, interactions between exciton-polaritons were
found to be strongly enhanced for some incompressible liquid
phases, making such a system a potential source for photonic
nonlinearities.

A simple theoretic model for optical excitations in a quan-
tum Hall system restricts electrons and holes to the lowest
Landau level (LLL) of the lowest subband, an assumption
which holds for strong layer confinement and strong magnetic
field. This model exhibits a remarkable “hidden” symmetry
[21-23], making the optical excitations behave as an ideal
Bose gas despite the presence of strong Coulomb interac-
tion. In this scenario, the electron-hole pair has no explicit
correlations with the electron liquid, and these excitonic
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states are therefore called “multiplicative states.” They incur
the system’s entire oscillator strength, leading to a single
emission/absorption line at a frequency which is independent
on the filling factor. However, this remarkable theoretical re-
sult is not supported by experimental evidence from photolu-
minescence, which show a nontrivial spectral structure, as, for
instance, a doublet peak near filling v = 1/3, cf. Refs. [7,11].
This demonstrates that in real systems the hidden symmetry is
broken due to finite electron-hole separation in asymmetric
wells and/or due to Landau level mixing. Theoretical at-
tempts to explain the structure of emission spectra were made
[10,11,24,25] considering broken particle-hole symmetry in
the interaction term.

However, the existing literature is limited mainly to the
case of a single electron-hole pair (however, see Ref. [26] for
the study of a system with multiple charged complexes). In
the present paper, we examine the behavior of a second pair,
and specifically, we investigate how neutral excitons interact
with each other. Interacting states of charge-neutral excitons
are found in systems with finite electron-hole separation, and
some of these states stand out due to a large overlap with
the multiplicative states. We establish that these “quasimul-
tiplicative” states are the most relevant ones for optical ex-
periments, although nonmultiplicative configurations happen
to be the ground state in compressible phases. Specifically,
we show that energy differences between quasimultiplicative
states appear as the dominant peaks in photoluminescence
spectra. Our numerical study of the system demonstrates that
exciton-exciton interactions are repulsive, but in contrast to
the experiment of the authors of Ref. [20] no dependence on
the filling factor and/or the compressibility of the electron liq-
uid is seen in the strength of the nonlinearity. This mismatch
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might be due to significant differences in the carrier density:
By invoking the LLL approximation our theoretical study is
valid for the high-density regime, becoming exact in the limit
of infinite magnetic fields. In contrast, the study of Ref. [20]
was performed at rather low carrier densities, at which the
LLL becomes fractionally filled in magnetic fields of only a
few Tesla.

Our study is based on numerical diagonalization of the
electron-hole Hamiltonian in a toroidal geometry [27]. In
contrast, the vast majority of the existing numerical work
on electron-hole fluids, cf. Refs.[10,11,21-24,28-30] was
performed on spherical surfaces. Like the sphere, the torus
provides a compact geometry, but it is somewhat more re-
alistic due to its equivalence to a rectangular plane with
periodic boundary conditions. In particular, the rectangular
model naturally allows for particle-hole symmetry breaking
by confining electrons and holes to two parallel planes sepa-
rated by a finite distance d.

For the special case of particle-hole symmetry (i.e., within
the LLL approximation and assuming spatially overlapping
electron and hole layers), our study predicts a negative effec-
tive mass for the multiplicative exciton on top of a Laughlin
liquid. In other words, the global ground state of the system
occurs at finite momentum, and the momentum can be as-
signed to the electron-hole pair. Earlier numerical work on
the sphere has seen a similar behavior, and attributed it to the
formation of a charged complex [29,30]. By explicitly con-
structing a trial wave function for the finite-momentum many-
body states, we show that these states can rather be interpreted
as dressed excitons, as in Refs. [23,24,28]. We demonstrate
that Landau level mixing as well as a finite distance between
electrons and holes render the exciton mass positive. Our
account of Landau level mixing has been restricted to the
valence band hole, as it is greatly enhanced due to the heavy
mass of the hole.

The paper is organized in the following way. We describe
our model of the system in Sec. II, and present the results
in Sec. IIl. This section is subdivided into three parts. The
first part studies a system with a single pair excitation and the
second part considers the system with two pairs. Both parts
assume the LLL approximation, whereas in the third part we
reconsider the scenario of a single pair excitation, but allowing
for Landau level mixing in the valence band. A discussion
which summarizes our results is given in Sec. IV. Technical
details related to the numerical treatment of quantum Hall
systems are given in the Appendixes.

II. SYSTEM AND MODEL

We study electrons in a quantum well exposed to a strong
perpendicular magnetic field B. To make the numerical treat-
ment more tractable, we assume that both conduction and va-
lence band electrons are spin-polarized and the well confine-
ment is strong enough to neglect subband mixing. The band
structure is then given by flat Landau levels in conduction and
valence band. The energy gap between Landau levels is given
by the cyclotron frequency cojg'E = eB/m;Eff, depending on the
effective mass mj}f of the band, with index + referring to the
valence band, and index — referring to the conduction band.
Even for the extraordinarily light conduction band electrons

in GaAs (m_; ~ 0.07m, with m. the electron rest mass),
the cyclotron gap wy = 2.5THz x (B/T) is orders of magni-
tude smaller than the optical band gap (Eyg /i ~ 2140THz in
GaAs). Accounting for the valence band degrees of freedom
in terms of holes, and switching into a frame which rotates
with the band-gap energy, the single-particle Hamiltonian can
be written as

Hy=hY (wgel en;+ofh! ). (1)

n,j

Apart from a Landau level index n, the creation and anni-
hilation operators for conduction band electrons (ejw., en,j)

and valence band holes (h}; j» hn,j) carry a second index j.
Assuming the absence of disorder, this index is related to
a gauge-dependent geometric symmetry of the system, e.g.,
rotational symmetry in the symmetric gauge or translational
symmetry in the Landau gauge. For concreteness, we choose
the latter one, in which the magnetic field is expressed through
a vector potential A = B(0, —x), and thus j is conveniently
associated with invariant momentum along y, p, = fik, =

+hj %, with opposite signs for electrons and holes. The

spatial wave functions ¢, ;j(x, y) associated with these states
are explicitly given in the Appendix for a system with periodic
boundary conditions (i.e., a torus), which was chosen for this
work.

In most parts of the present paper we will apply the lowest
Landau level (LLL) approximation, in which electrons and
holes are restricted to level n = 0. Within the nonrelativistic
Landau level Hamiltonian considered here, the LLL approxi-
mation is justified when the magnetic field is strong because
the Landau level gap scales linearly with the magnetic field
strength B, whereas the Coulomb energy scales only with
\/E. The scaling of the last term is due to the distance
between electrons which scales with the magnetic length /5 =
h/eB. Within the LLL approximation, the single-particle
Hamiltonian reduces to a constant and the interaction poten-
tial becomes the crucial Hamiltonian term. We consider a
two-dimensional Coulomb potential for electrons and holes,
but the planes to which different carrier types are confined
may be different parallel layers spaced by a distance d. In
Fourier space, the Coulomb potential then becomes V (g) =
5exp(—dq), cf. Ref. [27,31]. The divergent term at g =0
is excluded from the Fourier sum, which can be justified
by assuming a homogeneous “background” charge density
neutralizing each layer. However, in the real material charge
neutrality applies only to the system as a whole, thus we
need to add a charging energy E.(M,,d) which takes into
account that each layer has a net charge =MN,e. Accordingly,
the charging term reads

e2d d/lp
Hc = 27'[5]\7}% = N_q;(eZ/ElB)th’ (2)

where A is the area of the system and Ny = A/ (an,%) is the
number of magnetic fluxes. As a convenient unit of energy, we
use e /el throughout this paper, and /3 as a unit for length.
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The actual interactions are given through the Hamiltonian

— ny,ny;nz,n T
V= E Z [V111]22]33144(0)( 1, j1 €na. jo €n3,j36na, s
{ni, ji}
T T np,npin3,n.
+ hﬂ4 ]4hl’l3 ]3h”25j2h”]vjl) Zvjlljzzj3z]44(d)
T T
X €y, j]hnz jzhﬂz,jzem,h]- 3)

The interaction matrix elements V"1 ]'2”];’3]”“ (d) are evaluated in
the Appendix for the torus geometry In the Appendix, we also
provide further details of our numerical study, in particular a
discussion of the translational symmetry which leads to con-
served many-body pseudomomenta. These provide quantum
numbers for the many-body eigenstates [32], which we denote
by integers (K, K), defined modulo Ny and related to the
pseudomomenta via K, = K, 2~ and K, = K, 2%, where a and
b denote the dimensions of the unit cell

One advantage of periodic boundary conditions is the im-
mediate and unique connection between particle-to-flux ratio
and filling factor v, which characterizes the system in the
thermodynamic limit. In the absence of holes, the filling factor
is v = N./Ng. Charge-neutral optical excitations shall not
change this value, and therefore we generalize the definition
of the filling factor in the presence of N, electron-hole pairs to

_ Ne— Ny
==

In the next section, we will numerically determine eigen-
states and energies of V, in a finite system with given numbers
of electrons N,, holes M, and magnetic fluxes Ng. In particu-
lar, we are interested how the states and energies behave when
electron-hole pairs are created, i.e., when both N, and N, are
increased by 1. Some analytical insight in this question can be
obtained by defining an operator X f (k,, ky), which creates an
electron-hole pair at momentum k, and ky:

“

No—1
_ 27 jky /N T T
XT(kxv k)) = Z e / ®em0d(j+ky,Nq>)h./" (5)
j=0

At d =0, i.e., for systems without spatial separation be-
tween electrons and holes, the commutator [V, X T(O, 0)]
manifests an interesting “hidden” particle-hole symmetry
[21-23]: [V, X1(0, 0)] = ExX (0, 0). This relation demands
the existence of “free” excitonic states with binding energy
Ex. More precisely, let |E]£,') N, Nd’(Kx,Ky)) denote the ith
eigenstate of V at pseudomomenta K = (K,, K,), with en-
ergy E 1$ ) Ny.No (Kx, Ky). Then, the hidden symmetry guarantees

that X (0, 0)|E1$:.Nh,N¢(KX’K)’)> is an eigenstate of V in a
system with N, + 1 electrons and N, + 1 holes, at energy
E) v no (Ko Ky) + Ex.

To evaluate Ex, we may multiply the commutator
[V,XT(O, 0)] by X(0,0) from the left, and take the ex-
pectation value with respect to the vacuum. We find that
Ex is the binding energy of a single electron-pair: Ex =
N%, quj,(Vaclhjrej/Ve;hﬂvac). This implies that Ex does not
depend on the number of electrons and holes in the system,
nor on the filling factor. However, we note that Ex depends on
the number of magnetic fluxes Ng.

When the operator XT(0,0) acts on a many-body state
describing an electron liquid, the created electron-hole pair

lacks any correlations with the liquid (except for Pauli block-
ing). Therefore, these states are called “multiplicative states.”
A major goal of our numerics in the following section is
to determine to which extent eigenstates at finite d can also
be described in terms of such a multiplicative construction.
While it will be seen that, also at d > 0, some states can
be understood as quasimultiplicative states, their energy is
not obtained by adding the energy of an electron-hole pair
Ex(Nog, d) to the energy of the parent states (i.e., the state
before adding the electron-hole pair). This implies that the
excitons interact with the liquid and among themselves.

The binding energy of a single electron-hole pair,
Ex(Ng, d), at finite electron-hole separation d, is generalized
to

1 d
Ex(No,d) = N Z(Vac|h eJrVe h |vac) + N
I’
- —izvo‘)”(dwi 0. ©
T Ng 4 B No
In this expression, the term Ni accounts for the charging

energy. In the thermodynamic “limit Ng — o0, the exciton
binding energy converges to

d2
Ex(d) = —A / S yexpl-lal/2]
JT

= —/7 /2 expld®/2]erfc[d /v/2]. 7)

III. RESULTS
A. Optical excitation within the LLL approximation

Within the dipole approximation, the amplitude for optical
interband transitions is proportional to the spatial overlap
between the electronic wave functions in the two bands. This
immediately leads to the selection rule n, m <> n, m, that is,
conservation of the Landau level and orbital quantum number
[33] and optical transitions are described by the operator
X1(0,0), introduced in the previous section. As mentioned
there, an optical excitation obtained by acting with X (0, 0)
on an eigenstate of V remains an eigenstates of V in particle-
hole symmetric systems (i.e., at d = 0).

Therefore, let us start the discussion of our numerical
results by identifying these “multiplicative states”: Fig. 1(a)
shows the full energy spectrum of an electron liquid at filling
at v = 1/3 in the presence of one electron-hole pair, obtained
by numerical diagonalization of Eq. (3) in the LLL. Within
this spectrum, the multiplicative states are: the state at K =
0 and AE =0 (i.e., this state has been used as an energy
offset in the plot) and at higher energy and finite momenta
the states marked in red. We verified that the multiplicative
construction has a fidelity equal to 1 for these states, i.e., these
states can be obtained from eigenstates of the pure electronic
liquid by acting with X (0, 0) from Eq. (5). Moreover, the
multiplicative states can also be identified immediately from
their energies, which differ by Ex (Ng, 0), given by Eq. (6),
from the energy of the “parent” state, i.e., the eigenstate of
the pure liquid without the additional electron-hole pair. The
parent state at K = 0 is the Laughlin state, which, in the
absence of the electron-hole pair, describes a strongly gapped
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FIG. 1. Energy spectra with one electron-hole pair. At Landau filling factors (a), (b) v = 1/3 and (c) v = 1/5, we plot the energy spectra
in the presence of one electron-hole pair for different system sizes (i.e., different electron numbers N.). In (a), (c), we choose spatially
overlapping conduction and valence bands (d = 0), whereas (b) has separated bands. In all plots, the LLL approximation is assumed. We
use the lowest multiplicative state at K = 0 as an energy reference at each system size. In (a), the multiplicative magnetoroton states,
XT(0, 0)[Magnetorotons), are plotted in red. The blue branch is approximately given by acting with X (K) on the Laughlin state (see Table I
for fidelities of this construction). In panel (b), the dashed lines between the lowest two states indicate the transition from infinite to finite

positive effective exciton mass upon increasing the distance d.

incompressible liquid at v = 1/3. The parent states for the
red branch are the magnetoroton states, i.e .,the lowest (bulk)
excitations of the Laughlin state, which exhibit a characteristic
minimum at |[K|lg ~ 7 /2.

As the energy of the multiplicative states is given as the
sum of the energy of the pure liquid and the binding energy
of an isolated electron-hole pair, the electron-hole pair can
be interpreted as a charge-neutral composite object which
does not interact with the electrons in the Laughlin liquid
(which may be in its ground state or exhibit magnetoroton
excitations).

While the multiplicative branch in Fig. 1(a) is surrounded
by a continuum of other nonmultiplicative states, Fig. 1(a)
also exhibits a well-defined excitation branch, colored in
blue and separated from other state. This branch connects
the multiplicative Laughlin state with the bulk energy levels.
Interestingly, this branch is found to be nonmonotonic, with a
global minimum at Klp ~ /6. In Ref. [29], the states along
this branch were interpreted as charged complexes, but we
note that the electron-hole correlation function does not show
any accumulation of electrons in the vicinity of the hole, as
compared to the neutral exciton state. Moreover, as seen from
Table I, these states can be modeled with reasonably good
fidelity F'(k = K) by acting with X (k) from Eq. (5) onto the
Laughlin ground state.

These large fidelities indicate that the electronic correla-
tions of the topological liquid are maintained by the optically
excited system, supporting the notion of a dressed exciton
branch. Also, from the electron-hole pair correlation function

of these states we find that a single electronic charge is bound
by the hole at both zero and finite momentum. However, as
opposed to the case of a K = 0 exciton, the charge distri-
bution around the hole is not spherical-symmetric at finite
momentum. In fact, these observations suggest to interpret the
finite-momentum ground states as exciton-polarons [34-36].
The nonmonotonic behavior of this exciton-polaron branch
renders the band’s effective mass negative. This rather strange
behavior is cured when electron and hole layers are at a finite
distance d, as shown in Fig. 1(b). Atd ~ 0.5/, the branch be-
comes monotonic. At this layer separation, the effective mass
is infinite, as indicated by the horizontal black-dotted line in
Fig. 1(b). For larger d, the effective mass becomes positive,
cf. the red-dotted line in the plot. The (quasi)multiplicative

TABLE I. For different momenta (k,, k,), we list the fidelities
Fke ky) = (EN), | w1 X T (e, k)IEY) 50| of the multiplicative con-
struction. The given numbers refer to filling factor v = 1/3, at zero
and at finite separation d between electron and hole layers. Notably,
the fidelity of the construction increases with system size.

No degn F(0,0) F(1,0)=F(0,1) F(,1) F(2,0)=F(0,2)
15 0 1 0.8537 0.7656 0.6503
15 0.5 0.9993 0.8776 0.8051 0.5526
18 0 1 0.8679 0.7864 0.6368
18 0.5 0.9993 0.8883 0.8242 0.7021
21 0 1 0.8784 0.8036 0.6785
21 0.5 0.9992 0.8982 0.8387 0.7328
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(d) Photoluminescence Intensity
at different fillings

(a) Spectral position of multiplicative states and energy gap vs. filling v = (N, — Ny,)/15, at d = 0.5
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FIG. 2. Exciton-exciton interactions. (a) In blue: The energy gap A, of a pure electron liquid (N, = 0), weighted by the average level
spacing A,,, is plotted as a function of filling factor, i.e., as a function of N, at fixed N, = 15. Large gaps at N. = 5 and N, = 6 indicate
incompressible behavior at fillings v = 1/3 and v = 2/5. In red: The spectral rank (at K = 0) of the quasimultiplicative states with one and
two electron-hole pairs is plotted. Only at v = 1/3 and v = 2/5, the first multiplicative state (i.e., the multiplicative state with one pair) is
ground state (spectral rank 0). The second multiplicative state (i.e. the multiplicative state for two pairs) is the lowest-energy state only for
v =1/3. (b), (c) We plot the binding energy Ex of the exciton in the first and the second multiplicative state as a function of (b) filling
factor or (c) system size. At d > 0, different binding energies for the first and the second excitons indicate effective repulsive exciton-exciton
interactions. These interactions turn out to be independent of the filling factor and decreasing with system size. Compared to an exciton in
the vacuum, see (c), |Ex| is increased by an attractive interaction between exciton and the electronic liquid. (d) At different filling factors, we
plot the frequency-resolved photoluminescence signal (measured as distance Aw from the band gap), assuming decay of the first or the second
electron-hole pair. The distance between the peaks for the first and the second decay corresponds to the exciton-exciton interaction, and agrees
with the values determined in panels (c), (d) from the energies of the quasimultiplicative states. This shows that the quasimultiplicative states
are the relevant states to determine the optical nonlinearities. The emission spectra are evaluated at an inverse temperature = 100%. This
roughly corresponds to 2 K, if we choose a magnetic field B = 10 T and dielectric constant €4 = 12.9 as for GaAs.

Laughlin state is then the true ground state of v = 1/3 liquid
in the presence of one electron-hole pair. Here we put the
attribute “quasi” in parentheses, because the K =0 state,
while not being exactly the multiplicative state at finite d,
stills has extremely large overlap with the multiplicative state
(>0.999 at d = 0.5, cf. Table I). Anticipating a result from
Sec. I C, we note that also Landau level mixing leads to
positive effective exciton masses for any reasonable magnetic
field strength.

In Fig. 1(c), we show the spectrum of a system at v = 1/5.
As seen from Fig. 2(a), at the given system size the pure
electron system at v = 1/5 lacks a gap, in stark contrast to
v = 1/3. In this context, we note that the v = 1/5 Laughlin
state, which is supported by a strong V3 pseudopotential and
which in the thermodynamic limit of a Coulombic system is
known to melt the surrounding crystallized phase [37], does
not appear as a gapped ground state in finite-size studies [38].
The spectrum in Fig. 1(c) exhibits a large number of states at

AE < 0 found at all momenta (including K = 0). As before,
energies are measured from an offset defined by the energy
of the multiplicative K = 0 state. This finding demonstrates
that in this gapless and/or compressible scenario the optically
generated exciton will energetically be less favorable than for
the incompressible liquid at v = 1/3. We checked that this
holds true both for d = 0 (shown in the plot), and at finite d
(not shown).

B. Exciton-exciton interactions

We further investigate the effect of compressibility (or
“gaplessness”) of the electron liquid on the behavior of mul-
tiple pair excitations. In recent four-wave mixing experiments
[20], a quantum Hall system within an optical cavity has
shown enhanced interactions between exciton-polaritons at
certain filling factors which corresponded to incompress-
ible liquid phases (in particular at v = 2/5). However, at
other filling factors, including v = 1/3 corresponding to the
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incompressible Laughlin liquid, no such effect has been seen.
The mechanisms behind the enhancement remain unknown,
and whether incompressibility generally leads to enhanced
nonlinearities is an open question.

In our numerical approach towards this question, we first
collect a hint for incompressibility of the pure electron liquid
by looking at the weighted energy gap Ag/A,y at different
filling factors. The weighting is over the average level spacing
A,y at the given filling. The results are shown in Fig. 2(a): For
the chosen system size (Ny = 15), incompressible behavior
occurs at v = 1/3 and v = 2/5, in agreement with promi-
nent fractional quantum Hall plateaus. Next, we analyzed the
spectral rank of the first and the second quasimultiplicative
states, i.e., of those states which are obtained by acting
once or twice with XT(0, 0) on the ground state of the liquid.
The results are also presented in Fig. 2(a): We find that only
for the incompressible liquids (i.e., only at v =1/3 and v =
2/5) the ground state with one pair is given by the quasimul-
tiplicative state. Only for the Laughlin state (v = 1/3), this
is also true in the presence of a second pair. On the other
hand, for all compressible liquids, the quasimultiplicative
state are always excited states. This generalizes our observa-
tion already made in the previous subsection in the context of
the energy spectrum at v = 1/5: The incompressibility of a
liquid energetically favors the multiplicative construction as
compared to other states. On the other hand, compressible
liquids are able to find energetically more favorable ways
to accommodate for electron-hole pairs than the formation
of multiplicative excitonic complexes, e.g., through enhanced
screening via polaron formation.

To determine the binding energy of an optical excitation,
we will follow two different approaches: In the first approach,
we take the quasimultiplicative states as the relevant levels
of the optically excited system, and thus we determine the
binding energies from the energies of the quasimultiplicative
states. In the second approach, we take the true ground states
as the relevant levels. Interestingly, these two approaches
yield quite different pictures. However, we stress that, for an
understanding of optical phenomena, only the first approach
seems justified due to the large oscillator strength of the quasi-
multiplicative states. Explicitly we show that photolumines-
cence spectra are dominated by energy differences between
quasimultiplicative levels.

Following the first approach, setting d = 0, and applying
the LLL approximation, we obtain equal binding energies Ey,
given by Eq. (6) for the first and the second multiplicative
excitons. Moreover, as demanded by the hidden symmetry,
the binding energy is also independent from the number of
electrons in the system, see Fig. 2(b). However, at finite d,
the binding energy is lowered due to the spatial separation
between electron and hole. Since the exciton’s finite dipole
moment now allows for an effective interaction with the
liquid, the binding energy becomes dependent on the filling
factor (i.e., the density of the liquid). This interaction is found
to be attractive, and thus leads to a monotonic increase of the
binding energy with the density. We can quantify this exciton-
liquid interaction by considering the difference to the binding
energy of an exciton in the vacuum, as done in Fig. 2(c).
This plot also shows that the exciton-liquid interaction is
independent from the system size. In both Figs. 2(b) and 2(c),

we observe a mismatch of the binding energy for the first
and the second exciton. This is a measure for an effective
exciton-exciton interaction. This interaction is found to be
repulsive, which naturally leads to a decay of interaction
shifts with increasing system size, see Fig. 2(c). On the other
hand we note that the energy attributed to the exciton-exciton
interaction is independent from the filling factor.

Following the second approach, where binding energies
are calculated based on the energy difference between the
ground states (with 0,1,2 electron-hole pairs), quite a different
picture is obtained. Specifically, the binding energy difference
between the first and second pairs then depends of the filling
factor, and it can even change its sign. While most filling
fractions still yield repulsive exciton-exciton interactions, an
energy shift corresponding to attractive interactions is found
at v =2/5. This can be understood in the following way:
From the spectral rank of the multiplicative states, plotted in
Fig. 1(a), we know that the ground state with one pair is a
multiplicative state, whereas the second electron-hole pair is
able to break the incompressibility of the liquid. This results
in a lowering of energy, as compared to the energy of a
second multiplicative exciton. If this lowering of energy is
accounted for as an effective increase of the binding energy for
the second pair, the second pair appears to be more strongly
bound than the first one.

Finally, we demonstrate that the energy differences be-
tween multiplicative states are the relevant ones in the context
of optical experiments. To that aim, we calculated the photolu-
minescence signal in small systems. Our quantitative photolu-
minescence model, which is further described in Appendix B,
assumes the decay from a thermal distribution over all states
(including those at finite momentum), but with the number
of optical excitations in the system being fixed. From this,
we then obtain the frequency-resolved photoluminescence
intensity shown in Fig. 2(d) at different values for v. In our
calculation, we independently consider two decay processes:
One decay happens from a thermal state with one electron-
hole pair, while the other process assumes a decay from a
thermal state with two pairs. The decay from the second pair is
broadened, particularly at small filling factors where multiple
peaks are exhibited. However, in all shown cases the strongest
peak corresponds to transitions between (quasi)multiplicative
states. The relative shift between the peaks for the first and
the second decay processes quantifies the interactions of
bright excitons. This shift yields exactly the same results
for exciton-exciton interactions as obtained in Figs. 2(c) and
2(d), where only the energy of the multiplicative states was
considered.

We note that the system sizes considered in Fig. 2(d) are
rather small (liquids made of between four to seven electrons
at fixed number of fluxes, No = 15). This may result in sig-
nificant finite-size effects, in particular for the smallest filling
fraction, and the multiple peaks seen at v = 4/15 might, in
fact, be a consequence of the limited system size. Atv = 1/3,
we were able to obtain data for various system sizes (Np = 18
and Ny = 21), and all of this data exhibit very similar peak
structure.

As a side remark, we notice that, at d = 0.5 and v = 1/3,
almost no fine structure appears in the photoluminescence
spectrum of a single decay channel. However, the combined
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measurement of different decay channels should exhibit some
fine structure due to excitonic nonlinearities. Indeed, a split-
ting of the photoluminescence line was observed in Ref. [10],
and has been attributed to fractionally charged excitons. We
note that the observed doublet splitting of about 0.4 meV is
of the same order of magnitude as the excitonic nonlinearity
within our theoretical model.

C. Optical excitation with Landau level mixing

The accuracy of the Landau level approximation made so
far in this paper is controlled by the Landau level mixing
parameter «*, the ratio of Coulomb energy versus Landau
level spacing

2

+ e
= , 8
“ T hotels ®

with + distinguishing between the valence and conduction
bands. Since Iz ~ B~'/2, and } ~ B, Landau level mixing
tends to zero for large B, kT ~ B~1/2_ However, even under
an extremely strong magnetic field, e.g., B =50 T, the LLL
approximation turns out to be not well justified for holes in
GaAs, k™ = 2.4 due to the holes’ large effective mass m_y; ~
0.45 my. In contrast, the light effective mass of conduction
band electrons, m_ = 0.067 mg, makes the LLL approxi-
mation quite a safe approximation for electrons x~ = 0.35.
As a function of the magnetic field, we get k=~ = 2.5//B[T]
and k™ = 16.7/+/B[T], where B[T] denotes the magnetic field
strength in Tesla.

In the present section we will go beyond the LLL ap-
proximation. Quantitative improvements to a single Landau
level approximation are possible by taking into account other
Landau levels only virtually within a perturbative expansion
[39,40]. However, this approach usually involves a decompo-
sition of the Coulomb potential into pseudopotentials, which
strongly affects the eigenvalues (in contrast to the rather weak
effect of pseudopotential decomposition onto eigenstates).
Alternatively, it is possible to go beyond the single Landau
level approximation by considering a Hilbert space which
is increased by a finite amount of Landau level excitations
[41]. This strategy is particularly well suited for our system
of interest, as we may assume that Landau level mixing is
restricted to the minority carriers (i.e., the holes). Accordingly,
we will consider the case of N, electrons within the LLL, and
a single hole N, = 1, for which a finite number >1 of Landau
levels is admitted. Then the Hilbert space dimension scales
linearly with the number of Landau levels in the valence band,
which allows us to take into account as many levels as needed
for convergence.

Qualitatively, the main effect of Landau level mixing is
to destroy the hidden symmetry [V, X (O, 0)f1 = ExX (0, 0)T.
It is not surprising that also the quantitative consequences
of Landau level mixing are similar to the ones of a finite
electron-hole separation, which breaks the hidden symmetry
as well. Specifically, from the energy spectrum at v =1/3
plotted in Fig. 3(a), we see that the ground state is shifted
to K = 0, in contrast to the finite-momentum ground state of
the particle-hole symmetric system in Fig. 1(a). As shown in
Fig. 3(b), the transition from the K = 0 ground state into the
finite-K ground state occurs for 1/« > 7 (i.e., for a gigantic
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FIG. 3. Landau level mixing. (a) Energy spectrum at v = 1/3 in
the presence of one electron-hole pair, taking into account Landau
level mixing within the valence band. The chosen mixing parameter
xt = 2.5 corresponds roughly to B = 50 T in GaAs, a field strength
at which Landau level mixing in the conduction band can safely
be neglected. (b) Energy difference between the lowest state at
(K:, Ky) = (1,0) and (K, K,) = (0, 0) as a function of the mixing
parameter k. For 1/k* <7 (or B < 13 kT in GaAs), the system
enters in a phase with E(K = 1) — E(K = 0) < 0, i.e., the effective
mass ms becomes negative. (c) Convergence of the two lowest
eigenvalues at K =0 and K =1 as a function of the number of
valence band Landau levels which are taken into account. For the
chosen mixing parameter k™ = 2.5, the energy values change by less
than 1% when increasing the number of Landau levels from four to
seven. For the results in (a) and (b) we considered six Landau levels.

field strength of B > 13kT in GaAs). Thus, the scenario of
an exciton negative effective masses is irrelevant from the
experimental point of view.

The lowering of energy due to Landau level mixing in the
valence band can be interpreted as an effective interaction
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between the exciton and the electron liquid. In fact, in the
absence of a liquid, i.e., for an exciton on top of the vacuum,
the ground-state energy is not affected by Landau level mixing
in the valence band. Even for k¥ — oo, no Landau level
mixing occurs in the excitonic ground state, as long as k~ = 0
is kept at zero.

Figure 3(c) allows to estimate the amount of Landau levels
which need to be taken into account to accurately describe the
system at the given mixing parameter k* = 2.5. It is seen that
the relative error in the eigenenergies is kept below 0.01 when
at least four Landau levels are taken into account.

IV. SUMMARY

We studied two-dimensional electron liquids in the quan-
tum Hall regime in the presence of electron-hole pairs.
Electron-hole pairs can be generated optically, and can be
used as a tool to probe the system, or to engineer photonic
nonlinearities through the formation of exciton-polaritons.
However, as our numerical work shows, multiplicative exciton
states in which the electron-hole pair does not modify the
correlations of the electronic liquid are not the energetically
most favorable configurations at generic Landau filling fac-
tors, in particular those which correspond to compressible
phases. Nevertheless, due to their large oscillator strength,
these multiplicative exciton states are the most relevant states
for optical experiments, and we explicitly showed that the
decay of these multiplicative states dominates the lumines-
cence spectra. We also note that, if the system is embedded
in an optical cavity, the large oscillator strength of these states
causes a large AC Stark shift, which will make the exciton-
polariton described by these states the ground state of the
system.

From these perspectives, it seems justified to determine the
strength of excitonic nonlinearities from the energy difference
between quasimultiplicative states with one and two excitons.
In this way, we find a repulsive interaction between excitons,
but the strength of these interactions shows no dependence
on the filling factor. This result disagrees with recent experi-
mental observations [20] where some incompressible phases
exhibit enhanced nonlinearities. This discrepancy may be
due to the idealizations of our theoretical model in which
we assume full spin polarization and disregard Landau level
mixing. To be justified these assumptions would require a very
strong magnetic field.

In this context, let us also emphasize the qualitative dif-
ferences which we obtained at zero layer separation (d = 0)
within and beyond the LLL approximation at filling v = 1/3:
Within the lowest Landau level approximation, the system
exhibits a ground state at finite momentum, but Landau level
mixing of the valence band hole leads to a zero momentum
ground state. The finite-momentum ground state corresponds
to an exciton with a negative effective mass. Finally, we note
that excitonic nonlinearities might also be the cause for the
broadening and/or splitting of luminescence line. In fact, the
strength of the nonlinearity between quasimultiplicative states
(obtained within the LLL approximation, but assuming a finite
layer separation on the order of a few nm), is of the same order
of magnitude as the splitting of the photoluminescence line
seen experimentally [10].
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APPENDIX A: EXACT DIAGONALIZATION STUDY

In the following, we append some details regarding our
description of the system and its numerical treatment. We
considered a truly two-dimensional electron-hole system in
the Landau gauge with periodic boundary conditions. Here
we provide explicit expressions for the single-particle wave
functions and the corresponding interaction matrix elements.
Moreover, we discuss symmetries of the system.

1. Single-particle wave functions

In a gauge potential A ~ (0, x), the single-particle wave
functions are plane waves along the y-direction, and eigen-
states of a harmonic oscillator along x. The ground-state level
of the harmonic oscillator, given by a Gaussian exp (—%xz),
defines the LLL, while excited oscillator levels, obtained by
multiplying the Gaussian with Hermite polynomials H,(x),
yield the nth Landau level. The levels are equidistantly sep-
arated by a Landau level gap an)ﬁ = erB/m;:ff, with meiff
being the effective masses of the positively and the negatively
charged carriers. In each Landau level, there are Ng choices
of a guiding center of the harmonic oscillator, X; = {*, with
j€1{0,..., Ny — 1}. As the gauge potentials couples the x-
coordinate to the momentum in y-direction, the guiding center
also fixes the wave number of the plane wave. Periodicity
in the x-direction is obtained by summing over a periodic
arrangement of guiding centers X; + ka, with the summation
in k running from —oo to co. It is convenient to normalize
lengthscales through the magnetic length, and account for the
geometry of the system by a parameter § = a/b. With this,
X; = /27 Ng NL = aiq), and the normalized wave functions

N.
can be written as [42]

&\ S (1
@ j(x,y) = (2n2N¢> k:z exp [tya(N—q) +k>}

—00

ool (9]
cnfea( L +4)]

(A)
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This wave function describes an electron in the nth Landau
level. The quantum number j quantifies its momentum in the

y-direction ky, = j % (in units [, h.

2. Interaction matrix elements

Coulombic interactions occur between electrons and holes,
but also with the nuclei, and, due to our choice of periodic
boundaries, with mirror charges of each carrier. These last
can be neglected since they only lead to a constant shift of
all energy levels at a given torus ratio and given filling factor.
The presence of nuclei make the system charge-neutral, and
provide a homogeneous background potential given by N, —
M, positive charges. For convenience, we consider N, positive
background charges in the electronic layer, and N, negative
background charges in the hole layer, such that interactions
with the background cancel the q = 0 contribution of the
carriers’ Coulomb potential, which would lead to divergent
terms in the Fourier sums. As mentioned in the main text, this
model does not take into account the fact that charge neutrality
is only present in the system as a whole, and thus, for electrons
and holes, we need to consider an additional charging energy.
This energy contribution is given by Eq. (2).

In the following, we will evaluate the interaction matrix
elements for the interactions between the carriers. The Fourier
transform of the Coulomb potential reads

2 iq-r
Vi(r) = j:2_ne_ ieflqld
Ae &=l

)

where q is the in-plane wave vector. For d = 0 and with
the positive sign, the potential describes electron-electron
interactions or hole-hole interactions, i.e., repulsive interac-
tions within a layer. For finite d and with negative sign,
the expression describes the electron-hole interactions, i.e.,
attractive interactions of opposite charge carriers confined to
two layers separated by d.

The interaction matrix is given in Eq. (3), with interaction
matrix elements defined as

2
vy =225 L e, i)

Ji.J2373:Ja A €
o ldl

X (12, jole |3, j)e M. (A2)

The position operator r = R + §r can be decomposed into a
guiding center R and a Landau orbit dr, cf. Ref. [43]. The
guiding center is independent from the Landau level, and the
corresponding matrix element can be evaluated in the LLL:
(n1, j11e" R |ny, ja) = (0, jileR(0, ja):
o0
(0, j1|eiq'R|O, ja) = Z o~ 1@+ pimsGitjstNoA)

A=—00

X 814 ji—js NoA - (A3)

Here s and  parametrize the quantized wave vector (g, g,) =

2 2k
S\ 7pz oy g )
The contribution from the Landau orbits is C,, ,,, (gx, ¢y) =

(n;]€'@=%+2%) |p,) . To evaluate this, we note that the Landau
orbits are related to the dynamical momentum P; = ihd; +

EAJ'Z
1 1
8x=——P, and dy= —P,.
eB eB

These operators directly yield the Landau level raising and
lowering operators:

7 —il
af = 5 (P, +iP,) and a= %(Px —iP)).

V2h V2

Thus, with ¢g=g¢g,—ig,, we can
qy0y = %(q& + g*at). Therefore,

(ny€'9/V2ei0"a /N2 )y For ny > na, we get

oty = [ ()" o (8 2V
ny,ng qxv qy - nl! ﬁ Ny 2 .

(A4)

write  ¢,0x +
Cnl,m(‘hv Qy) =

For n; <n4, we use the relation

Cm,nl (_qx’ _Qy)*
The interaction matrix elements are given by

Cnl.'u (q)m CI}') =

2 —lqld

yrmmn gy 2 L Cg g
J1,J23J3,J4 Na € Jitj2.J3+ja | |
) a2 4

X Cnl,m (Qx’ Q)’)an,m(_q;ﬁ _Qx)

) L2y 2
x & . e2Tis(Ui=J3) o= 2 (@i +dy)
Ji—Jast

(A5)

The primed Kronecker symbols § are to be taken modulo Ng.

Within the LLL approximation, all Landau level indices
n; can be set to zero, and the interaction matrix elements
reduce to

2 —lqld
y/0.0:0,0 d) = 1 6—8’ e
Jisd2d3sJa _N<1> € Ntingtis z : Iq|
q#0
col _1.2 2
% 5}17]'4.&27”3('“ 73 =2 +a) (A6)

3. Many-body basis and symmetries

In finite-size studies, the full Hilbert space is characterized
by N, Vi, and Ng. It becomes of finite dimension by assum-
ing that only a finite number of Landau levels is relevant,
and often, we even assume that the Landau level degrees of
freedom are completely frozen (lowest Landau level approxi-
mation). A many-body state is described by identifying the oc-
cupied single-particle states, i.e., by (jf, ..., jy i j,}\l,h)
under the LLL assumption.

To diagonalize the Hamiltonian, we can greatly benefit
from symmetries of the system. In the Landau gauge, the
Hamiltonian is symmetric under (magnetic) translations. As
seen already for the single-particle solutions, choosing the
vector potential to be in the Landau gauge immediately leads
to a conserved y-momentum. The Fock states are eigenstates
of translation along y, and their y-momentum is obtained by
summing the quantum numbers j of occupied single-particle
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orbitals

N Na
K, = mod (Z Ji = Zjlh, Nq>). (A7)
i=1 i=1
The finite size of the system leads to equivalence between
values K, differing by No, so here we choose K, € [0, No —
1]. We note that K, is defined as an integer-valued quantum
number, which corresponds to momentum K‘ = Ky%”.

To exploit the full translational symmetry [32], we need to
construct a basis of eigenstates under magnetic translations
also along the x-axis. For a filling factor v = p/q, with
p,q co-prime integers, we may consider the following

set of Fock states: |fo) = (J§..... 5 it -2 Jh s 1f1) =
(0 FOY A 7 i 7MUY (R ) If2) = (i +

2, ..., jy, +2q:j8 +2q.....j% +2¢)..., all of which
are at the same momentum K. Invariant magnetic translations
along x are those which transform each member of this set
into another member of the same set. Thus eigenstates of
these x-translations are constructed as a superposition of the
|f;), given by > exp(i[27w/(No/q)IK.r)|f;). The integer
K. €[0,No/q — 1] is recognized as a quantum number
corresponding to pseudomomentum along x, K, = K, 27”
Using this construction, we divide the Hilbert space into
blocks characterized by (K, K). Additional symmetries leads
to the equivalence between certain blocks: Obviously, the
system is invariant under center-of-mass (COM) translations.
A COM translation along x shifts the orbital of each carrier
by some integer value A: j — j+ A. This transformation
changes the momentum K, of a many-body state to K, +
A(N. — My) = K, + ANg/q. Thus each Fock state at K, is
related to g — 1 other Fock states at K, + ANo/g, with
A=1,...,q9— 1. Due to this equivalence between certain
K,-sectors, we can restrict our study to a reduced Brillouin
zone, where both K, and K, are restricted to [0, Ng/q — 1].
The Brillouin zone can further be reduced due to reflection
symmetry and, for a square system, C; symmetry. Reflection
symmetries lead to degenerate spectra at K, and —K, =
Ne — My — K, =No/q — K, and K, and —K, = No/q — K,..
The C;-symmetry leads to degeneracies between (K, Kj)
and (K,, K;). For completeness, let us note that, if Ne/q is
even, there are two points (K, K;) = (0, 0) and (K,, K,) =
(No/2q, No/2g) which are mapped onto themselves under
reflection. We choose the origin of the Brillouin zone [i.e.,

the point (K, K;) = (0, 0)] in the sector of lower ground-state
energy, and, if needed, accordingly shift all pseudomomenta.

APPENDIX B: PHOTOLUMINESCENCE

The recombination of a |} ({}) heavy hole and a 1 (] ) elec-
tron leads to emission of o ~-polarized (o *-polarized) light.
Within the dipole approximation, the envelope function of
the electron/hole remains unchanged during a transition [33],
and the luminescence operator is given by L = Y e,hy,, cf.
Refs. [22,24,29]. If an electron and a hole recombine in a
system of N, electrons and N, holes, the resulting emission
spectrum is given by

Iy, (Aw) = Z 8(hAw + E[E/{—I,Nh—l - EIE;Z,N},)
if
, s
x Py BNEN v ILIEQ ) B1)

The argument of this function, Aw, is the difference of
the photon frequency wy, to the band-gap frequency wpg:
wph = wpg + Aw. The sum on the right-hand side of Eq. (B1)
is over all states i in the initial Hilbert space (i.e., before
recombination), and all states f in the final Hilbert space (i.e.,
after recombination). By Plf,’e{ ~, (B), we denote the thermal
occupation of the initial states at an inverse temperature
B: Py (B) = exp (—BE \ )/ Zn.m,(B) With Zy n () =
> exp(—,BEZ(\,"e)! w,)- We note that, by assuming translational
invariance or, equivalently, by neglecting disorder, transition
matrix elements |(E1£,{ )—1.Nh—1|L|E1E/2Nh>| are zero, if the ini-
tial and final states have different pseudomomenta. That is,
by neglecting disorder we only account for direct interband
transitions.

The photoluminescence spectrum is trivial if the model
is particle-hole symmetric, that is for zero distance between
electrons and holes, d = 0, and within LLL approximation
[21,22]. In this limit, [H,L] = ExL, and only the multi-
plicative states contribute to the emission spectrum with a
resonance energy given by Ex < 0, independent from the
electronic correlations. The photoemission spectrum reduces
to a single line. A nontrivial structure may only emerge when
the hidden symmetry is broken (finite d or Landau level
mixing). As a technical remark, we note that we artificially
smoothened the spectral intensity in Fig. 2(d) by replacing
the Kronecker-§ in Eq. (B1) by a Gaussian of width o =
5x 10732
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