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Magnetic fluctuations and superconducting pairing in ε-iron
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We study Coulomb correlation effects and their role in superconductivity of ε-iron under pressure from 12 to
33 GPa by using a combination of density functional and dynamical mean-field theory. Our results indicate a
persistence of the Fermi-liquid behavior below the temperature ∼1000 K. The Coulomb correlations are found
to substantially renormalize the density of states, reducing the distance from the peak to the Fermi level to
0.4 eV compared to 0.75 eV obtained in DFT calculations. We find significant antiferromagnetic correlations,
which are accompanied by the formation of short-lived local magnetic moments. We use the obtained results
as a starting point for construction of the multiband Bethe-Salpeter equation, which eigenvalues indicate that
antiferromagnetic spin fluctuations may result in the superconducting pairing in ε-Fe. Moreover, the tendency to
superconducting instability becomes weaker with the increase of pressure, which may explain the disappearance
of superconductivity at ∼30 GPa.
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I. INTRODUCTION

Since the discovery of the hexagonal close-packed (hcp)
iron (ε phase) in 1964 [1], its puzzling properties have at-
tracted significant interest. This phase appears at pressures
above 12 GPa and, as shown by static compression experi-
ments, is stable up to pressures and temperatures correspond-
ing to Earth’s core conditions [2]. It makes the investigation
of ε-Fe is particularly relevant for geophysics and Earth’s
magnetism [3,4].

One of the actively debated characteristics of ε-Fe is
its magnetic behavior. The Mössbauer effect measurements
found no hyperfine magnetic field at temperatures down to
30 mK [5–8], implying that hcp iron is nonmagnetic. The
static magnetic order was not also detected by x-ray mag-
netic circular dichroism (XMCD) [9] and neutron powder
diffraction [10]. The anomalous mode splitting in the Raman
spectra [11], interpreted initially as a hint of the presence
of magnetic order, was later shown to be inconsistent with
it [12]. At the same time, the x-ray emission spectroscopy
(XES) consistently detected remnant magnetism, decreasing
with pressure up to ∼35 GPa [10,13,14].

The presence of magnetic correlations in ε-Fe is supported
by density functional theory (DFT) studies. Most of early
calculations predicted the antiferromagnetic type-II (AFM-II)
ground state, which is stable up to ∼50 GPa [15–18], or the
spin-spiral ground state [19,20]. It is worth noting that AFM-II
structure leads to a better agreement of structural and elastic
properties with experiments, as compared to nonmagnetic
calculations [15,16]. Nevertheless, recent DFT study of Lebert
et al. revealed three intensity-modulated phases with a lower
energy than AFM-II state [10]. In this study, the ground state
at pressures 15–35 GPa was found to be formed by alternating
AFM and nonmagnetic bilayers.

At the same time, the paramagnetic state of ε-Fe was stud-
ied by a combination of DFT and dynamical mean-field theory

(DFT+DMFT) [21]. These studies showed the importance of
Coulomb correlations for description of the electronic [22,23]
and structural [23] properties at moderate pressures, as well
as phase stability [3], transport [24–26], and magnetic [3,27]
properties at Earth’s core conditions. In addition, a jump of
resistivity at the α→ε transition was qualitatively captured
by Pourovskii et al. [23], while quantitative difference was
attributed to nonlocal correlation effects (for a review, see
Ref. [28]).

The properties of ε-Fe have become even more intriguing
with the discovery of superconductivity in the pressure range
from 15 to 30 GPa, with the largest critical temperature
Tc = 2 K at about 21 GPa [29]. The superconducting prop-
erties are also unusual. In particular, the superconductivity
seems to occur in paramagnetic phase; the large slope of the
critical field curve at Tc demonstrates that heavy particles are
involved in the pairing (see Ref. [30] and review in Ref. [31]).
Moreover, the temperature dependence of resistivity shows a
T 5/3 power-law behavior below 30 K over the entire super-
conducting pressure region [30,32–36]. This non-Fermi-liquid
behavior (in contrast with the T 2 dependence for Fermi liquid)
was attributed to ferromagnetic (FM) fluctuations according
to Moriya’s theory of weak itinerant magnetism [37]. These
experimental results point to an unconventional superconduc-
tivity; the presence of FM fluctuations may be a signature of
triplet pairing symmetry. However, it is at odds with the DFT
calculations, predicting a proximity to antiferromagnetism,
which would likely yield singlet superconducting state.

A narrow pressure range of superconductivity also suggests
that it has a spin-fluctuation origin. This was confirmed by
calculations of the electron-phonon coupling within DFT,
which showed that the phonon mechanism can explain the
appearance of superconductivity in ε-Fe, but not its rapid
disappearance with pressure [38,39]. In particular, the calcu-
lated range of superconductivity was found to extend well

2469-9950/2020/101(15)/155126(9) 155126-1 ©2020 American Physical Society

https://orcid.org/0000-0001-9506-8718
https://orcid.org/0000-0003-1574-657X
https://orcid.org/0000-0002-5942-5885
https://orcid.org/0000-0002-1087-1956
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.155126&domain=pdf&date_stamp=2020-04-21
https://doi.org/10.1103/PhysRevB.101.155126


BELOZEROV, KATANIN, IRKHIN, AND ANISIMOV PHYSICAL REVIEW B 101, 155126 (2020)

above 100 GPa. To consider the magnetic pairing mecha-
nism, Jarlborg estimated the coupling constant within DFT
and concluded that superconductivity mediated by spin fluc-
tuations is more likely than that owing to electron-phonon
interaction [40].

Above discussed observations stress the importance of
studying correlation effects in ε-iron. In this paper, we
study the electronic and magnetic properties of paramagnetic
ε-Fe within superconducting pressure range by employing
DFT+DMFT approach. We find considerable local corre-
lations, leading to formation of short-lived local magnetic
moments, as well as pronounced incommensurate spin fluc-
tuations. To clarify whether these fluctuations can mediate the
electron pairing, we derive and solve the multiband Bethe-
Salpeter equation (BSE) in the particle-particle channel. The
obtained results indicate that the spin fluctuations in ε-Fe
may lead to superconducting instability in the experimental
pressure range.

The plan of the paper is the following. In Sec. II, we list
the computational details. In Sec. III, we present the results
on electronic, magnetic and superconducting properties, and
finally, in Sect. IV, the conclusions are given. In Appendix,
we derive the gap equation and pairing interaction.

II. COMPUTATIONAL DETAILS

We have performed DFT calculations of ε-iron using the
full-potential linearized augmented-plane wave method im-
plemented in the ELK code supplemented by the Wannier
function projection procedure. The Perdew-Burke-Ernzerhof
form of generalized gradient approximation (GGA) was con-
sidered. The calculations were carried out with the experimen-
tal lattice constants at the corresponding pressures [41]. The
convergence threshold for total energy was set to 10−6 Ry.
The integration in the reciprocal space was performed using
22 × 22 × 12 k-point mesh in all calculations except those
of the Fermi surface and momentum-dependent susceptibility,
where 42 × 42 × 22 mesh was employed. From converged
DFT results we have constructed effective Hamiltonians in the
basis of Wannier functions, which were built as a projection
of the original Kohn-Sham states to site-centered localized
functions as described in Ref. [42], considering 3d , 4s, and
4p states.

In DMFT calculations, we use for d states the Hub-
bard parameter U ≡ F 0 = 4.3 eV and Hund’s rule coupling
I = 1.0 eV, which were used in previous study of ε-Fe and
resulted in accurate descriptions of its structural properties
at the same pressures as in current work [23]. We note
that these values are in overall agreement with estimates
for α-iron [43]. Our calculations have been performed using
the AMULET code [44]. The double-counting correction has
been taken in the around mean-field form. We also verified
that the fully localized double-counting correction leads to
similar results, although providing a slightly larger (∼0.1)
filling of d states. The impurity problem has been solved by
the hybridization expansion continuous-time quantum Monte
Carlo method [45] with the density-density form of Coulomb
interaction. We consider the redistribution of charge density,
caused by the self-energy, only within DMFT self-consistency
loop. We checked this approximation at several pressures and

temperatures by performing DFT+DMFT calculations both
with and without full charge self-consistency, which led to
similar results.

We note that the DMFT takes into account local electronic
correlations, neglecting the momentum-dependence of self-
energy [46]. Although the nonlocal corrections to DMFT can
be obtained using cluster [47] or diagrammatic [48] methods,
these approaches are too computationally expensive to be
applied to real multiorbital compounds at the moment.

III. RESULTS AND DISCUSSION

A. Electronic properties

Within the DFT+DMFT we find the filling of various d
orbitals in the range n = 1.30–1.36, which is close to the
values in α- and γ -iron [49–51], but the peak of the density of
states is sufficiently far from the Fermi level (see below). We
first analyze possible deviations from the Fermi-liquid (FL)
regime by using several criteria employed earlier at Earth’s
core conditions [3,24]. For brevity, we present the results only
for degenerate xy and x2−y2 states, while similar results were
obtained for z2 and degenerate xz and yz states.

In a FL state, the imaginary part of self-energy de-
pends linearly on imaginary frequency iνn at small |νn| as
Im �(iνn) ≈ −� − (Z−1−1)νn, where � is the quasiparticle
damping (i.e., inverse quasiparticle lifetime), Z is the quasi-
particle residue. In Fig. 1(a), we show the obtained imaginary
part of �(iνn), which scales almost linearly for all consid-
ered pressures. To obtain a more quantitative estimate, we
compute the quasiparticle damping �, which in a FL depends
quadratically on temperature, implying �/T ∝ T . To this end,
we perform the analytical continuation of self-energies by
using the Padé approximants [52]. The obtained temperature
dependence of �/T , shown in the inset of Fig. 1(a), also
corresponds to the coherent FL regime.

To obtain an accurate estimate of the temperature T ∗,
below which the crossover to the FL regime occurs, avoiding
use of Padé approximants, we consider the “first Matsubara
frequency” rule [53], according to which in the local approx-
imation Im � at first Matsubara frequency ν1 = πT does not
contain any terms beyond O(T ) in the FL regime. As shown in
Fig. 1(b), Im �(iπT ) is proportional to temperature below T ∗
which is ∼1500 K at 12 GPa. A gradual increase of T ∗ with
pressure reflects the reduction of the Coulomb correlation
strength due to larger bandwidth. These results suggest a
possibility of suppression of coherence temperature T ∗ for
larger Hubbard U . However, our calculations with U = 6 eV
lead to only a weak change of T ∗, which is ∼1000 K at
pressure of 12 GPa [see inset in Fig. 1(b)]. The value of T ∗
can be also affected by using the full rotationally invariant
Coulomb interaction, while the density-density approxima-
tion was shown to underestimate the magnitude of scattering
|Im �(iνn)| in ε-Fe [28]. The FL behavior of ε-Fe was also
predicted by Pourovskii et al. at Earth’s core conditions [3,24],
even at the relatively high temperature of ∼6000 K, while a
contrary conclusion was obtained by Zhang et al. [26].

The Coulomb correlations in ε-Fe result in substantial
mass enhancement m∗/m = Z−1, which, averaged over all d
orbitals, is equal to 1.8 at 12 GPa and gradually decreases to
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FIG. 1. (a) Imaginary part of self-energy for degenerate xy and
x2−y2 states as a function of imaginary frequency iν obtained by
DFT+DMFT method at β = 100 eV−1. (Inset) Temperature depen-
dence of the ratio of quasiparticle damping � to temperature T .
(b) Imaginary part of the above mentioned self-energy at the first
Matsubara frequency as a function of temperature. (Inset) The same
for U = 6 eV. The straight lines depict the fit to linear dependence.

1.55 at 33 GPa in agreement with earlier studies [23]. The
enhancement of the quasiparticle mass is accompanied by the
renormalization of the density of states (DOS) near the Fermi
level as displayed in Fig. 2. As a result, the distance from
the peak lying above the Fermi level is decreased to 0.4 eV
compared to 0.75 eV obtained in DFT calculations at 12 GPa.
The DOS at the Fermi level decreases with pressure, but not
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FIG. 2. Density of states of ε-Fe obtained within DFT and
DFT+DMFT at T = 290 K for different pressures. The Fermi level
is at zero energy.
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FIG. 3. Local spin-spin correlation functions in the imaginary-
time (a) and real-energy (b) domains calculated by DFT+DMFT
method at β = 40 eV−1. In the bottom panel, the obtained correlation
functions are compared with that for α-Fe [54]. (Inset) Instantaneous
average 〈S2

z 〉 for ε-Fe as a function of pressure.

rapidly enough to explain the disappearance of superconduc-
tivity, as was also noted previously [38].

B. Magnetic properties

In Fig. 3(a), we present the local spin-spin correlation
functions 〈Sz(τ )Sz(0)〉 at T = 290 K, which have a signifi-
cant instantaneous average 〈S2

z 〉 
 1, and decay rapidly with
imaginary time τ . This τ dependence corresponds to fast
quantum fluctuations of instantaneous magnetic moments on
lattice sites. To estimate the degree of spin localization, we
Fourier transform the spin correlator to imaginary bosonic
frequencies, χloc(iωn) = ∫ β

0 exp(iωnτ )〈Sz(τ )Sz(0)〉, and then
analytically continue it to real frequency ω. The real part of
the obtained χloc(ω) is shown in Fig. 3(b) in comparison with
that of α-iron [54] (see also Refs. [49–51]), being a system
with well-defined local moments. The half width of the peak
in Reχloc(ω) at half of its height yields approximately inverse
lifetime of local magnetic moments [50]. For ε-iron, we
therefore obtain the inverse lifetime in energy units ranging
from 0.3 eV at p = 12 GPa to 0.5 eV at p = 33 GPa, which
corresponds to the lifetime of local moments ranging from 14
to 8 fs, respectively. This is comparable to the lifetime of local
moments, discussed previously in pnictides [55]. Thus the
obtained results show a presence of short-lived local magnetic
moments, which lifetime decreases with increasing pressure
in agreement with XES measurements [10,13,14].

To get further insight into the formation of local moments,
we calculate the uniform magnetic susceptibility as a response
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FIG. 4. Temperature dependence of uniform magnetic suscepti-
bility (a) and inverse local susceptibility (b) for ε-Fe obtained within
DFT+DMFT method.

to a small external magnetic field introduced in the DMFT part
[see Fig. 4(a)]. In particular, we have used the magnetic field
corresponding to splitting of the single-electron energies by
0.02 eV, which was checked to provide a linear response. The
calculated uniform susceptibility, shown in Fig. 4(a), increases
almost linearly with temperature at low temperatures and
decrease above a certain temperature ∼3000 K, determined by
the distance from the peak of the density of states to the Fermi
level, similarly to other systems with a peak of the density of
states shifted off the Fermi level [50,56]. Increasing value of
U leads to increase of uniform susceptibility.

The static local spin susceptibility χloc = 4μ2
Bχloc(0)

shows a Pauli-like behavior below the temperature T ∗ of
a crossover to the Fermi liquid regime and a Curie-Weiss
behavior χloc ∝ (T − Tloc)−1 above T ∗ due to presence of
the unscreened local moments [see Fig. 4(b)]. The “Weiss”
temperature Tloc is negative and determines the Kondo temper-
ature TK ∼ −Tloc below which the local moments are screened
by conduction electrons, similarly to the single-impurity
Kondo model [57–59], for which TK ≈ −Tloc/

√
2. We find

Tloc ∼ −T ∗ and therefore rather large Kondo temperatures
TK ∼ T ∗. Similarly to T ∗, the Kondo temperature is somewhat
suppressed at U = 6 eV.

Next we calculate the particle-hole bubble

χ0
q = −(

2μ2
B/β

) ∑
k,νn

Tr[Gk(iνn)Gk+q(iνn)], (1)

where Gk(iνn) is the one-particle Green function, which is
a matrix in the d-orbital space, obtained using the Wannier-
projected Hamiltonian and νn are the Matsubara frequen-
cies. In Fig. 5, we show the momentum dependence of
χ0

q calculated using noninteracting (DFT) and interacting
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FIG. 5. Momentum-dependence of the particle-hole bubble ob-
tained within DFT and DFT+DMFT at β = 100 eV−1.

(DFT+DMFT) propagators. In both cases, χ0
q has a similar

shape with a maximum at incommensurate wave vector, lying
near K and M points of the Brillouin zone. These preferable
wave vectors are in agreement with previous DFT analysis
[18–20]. The particle-hole bubble increases with decreasing
pressure due to decrease of the bandwidth. Therefore both
uniform and nonuniform spin fluctuations become stronger
with decreasing pressure.

C. Superconducting pairing

To study possible symmetries of electron pairing, we con-
sider simplified approach, using pairing interaction vertex
V s,t

kk′,αβ
(α, β are band indices and k, k′ are the respective

momenta) in the singlet (s) and triplet (t) channels, obtained
in the second order of perturbation theory, similarly to the
original Kohn and Luttinger paper [60], see also Refs. [61,62]
and Appendix. Although the Coulomb interaction in ε-iron is
not small, we expect that this approach correctly reproduces
the symmetry of the gap function, in view of the Fermi-liquid
behavior of electronic self-energies at low temperatures, ob-
tained in Sec. III A. For more sophisticated approaches, ac-
counting for higher-order diagrams, e.g., in a ladder series
[63–65], in the presence of strong electronic correlations, it
is preferable considering dynamic vertices [48] instead of
static ones, which requires introducing Moriyaesque lambda
correction [66] and/or treating nonlocal self-energy feedback
[64] to avoid unphysical divergences of the series. Such
generalizations previously were explored for the single-band
models only (see, e.g., Refs. [64,65]). For the considering
multiband models, they are rather tedious and not performed
here.

To determine pairing symmetry, we consider eigenvalues
λs,t and eigenfunctions f s,t

k,α
of the Bethe-Salpeter equation

λs,t f s,t
k,α

= −
∑

k′,iνn,β

V s,t
kk′,αβ

f s,t
k′βGk′β (iνn)Gk′β (−iνn), (2)

where Gkα (iνn) is the Green function for the band α, ob-
tained by the diagonalization of the Green functions matrices
Gk(iνn) with respect to orbital indexes. We parametrize the
gap functions fk,α for momenta lying on the Fermi surface
and assume them to be independent on the radial direction
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FIG. 6. Fermi surface sheets of ε-Fe obtained by DFT+DMFT at 12 GPa [(a)–(d)]. Plots (e) and (f) show cuts of the Fermi surface sheets
by the planes passing through points M, �, K and M, �, A, respectively. The line width has no meaning.

of k, since the summation in Eq. (2) is anyhow dominated
by the vicinity of the Fermi surface. Among many sheets
of the Fermi surface (see Fig. 6), we choose the two most
important [Figs. 6(a) and 6(b)], which parts are connected by
nesting vectors. We parametrize points of these Fermi surface
sheets by the polar and azimuthal angles (θ, φ), where φ = 0
corresponds to point M of the Brillouin zone, θ = 0, π to the
“north” and “south” poles.

The largest (leading) eigenvalue determines the preferred
momentum dependence of the pairing gap, given by the corre-
sponding eigenfunction [67,68]. Calculated leading eigenval-
ues of singlet and triplet pairing are shown in Fig. 7. For the
considered range of pressures, singlet and triplet eigenvalues
are close to each other. Interestingly, we obtain crossing of
eigenvalues of singlet and triplet pairing near the pressure
pc = 22 GPa, close to that, at which maximum value of super-
conducting Tc is obtained. Yet, both eigenvalues increase with
decreasing pressure, so that the obtained pressure dependence
agrees with the experimental data for p > pc. For p < pc,
the considered theory does not describe the suppression of
superconductivity with decreasing pressure. The increase of
the eigenvalues with decreasing pressure, however, goes along
with the increase of the nonuniform susceptibility, see Fig. 5

10 15 20 25 30 35
Pressure (GPa)

0.7

0.8

0.9

Le
ad

in
g 

ei
ge

nv
al

ue
 λ

Singlet
Triplet

FIG. 7. Leading eigenvalue of the Bethe-Salpeter equation for
singlet and triplet pairing in ε-Fe calculated at β = 100 eV−1.

and shows the spin-fluctuation origin of the obtained super-
conducting order parameters. We note that the obtained close
competition of singlet and triplet pairing is similar to that
discussed previously for Sr2RuO4 (see, e.g., Refs. [62,69])
and may be lifted by going beyond second-order perturbation
theory, including nearest-neighbor Coulomb repulsion, spin-
orbit coupling etc.

Obtained momentum dependence of the gap functions for
singlet order parameters [Figs. 8(a) and 8(b)] take the values
≈0,±� at the subsequent vertical faces of the considered
Fermi surface sheets. This momentum dependence allows
one to achieve a change of the sign of gap function on the
opposite sides of the Fermi surface, connected by the wave
vector of preferred incommensurate fluctuations in the K-M
direction. On the contrary, the triplet pairing gap is almost
φ-independent and changes sign at θ = π/2, having a single
line of the nodes.

IV. CONCLUSIONS

We have studied electronic and magnetic properties of ε-Fe
at pressures up to 33 GPa by employing the DFT+DMFT
approach and using its results as a starting point for the
multiband Bethe-Salpeter equation. Our main results are as
follows.

(i) We have not found a significant deviation from the FL
behavior below 1000 K even with relatively large U = 6 eV.
This points to the importance of nonlocal correlations effects,
neglected in DMFT.

(ii) At the same time, the Coulomb correlations lead to
substantial electron mass enhancement up to m∗/m ∼ 1.8,
which is accompanied by renormalization of the density of
states. As a result, the distance from the peak lying above
the Fermi level is decreased to 0.4 eV compared to 0.75 eV
obtained in DFT calculations.

(iii) We have found short-lived magnetic moments with
the lifetime ∼10 fs, comparable to that estimated previ-
ously in pnictides. This may explain the discrepancy of
XES experiments with the Mössbauer spectroscopy be-
cause of the longer time scales of the latter. Namely, the
lifetime of local magnetic moments or spin fluctuations
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FIG. 8. Eigenfunction of the Bethe-Salpeter equation for singlet [(a) and (b)] and triplet [(c) and (d)] pairing as a function of polar θ and
azimuthal φ angles calculated at pressure of 21 GPa and β = 100 eV−1. (a), (c) and (b), (d) correspond to sheets of Fermi surface depicted in
Figs. 6(a) and 6(b), respectively. Angle φ = 0 corresponds to point M of the Brillouin zone.

can be small enough to be undetected by the Mössbauer
measurements.

(iv) We find that the antiferromagnetic spin fluctuations
are the dominant ones. At the same time, we do not find
substantial ferromagnetic correlations responsible for the T 5/3

dependence of the resistivity. This indicates that the nonlocal
correlation effects beyond DMFT may play a significant role
in ε-Fe. In particular, nonlocal correlation effects correspond-
ing to virtual transitions into a peak lying near the Fermi level
may give a contribution [70]. For this contribution, the peak
needs not to lie directly at EF ; moreover, its distance from EF

needs not to be too small.
(v) The antiferromagnetic spin fluctuations in ε-Fe can

result in the superconducting instability. The obtained re-
sults allow us to explain the appearance of superconduct-
ing instability in the considered temperature range and its
disappearance with pressure, but not a gradual grow of the
superconducting critical temperature Tc from 15 to 21 GPa.
The growth of Tc with pressure in the low-pressure range may
be explained by earlier suggested [40] presence of magnetic
clusters of α phase within ε phase, which both are metastable
in a wide pressure range. These magnetic clusters, more com-
mon at low pressures, or, alternatively, other lattice defects
can affect the electron pairing, leading to suppression of the
critical temperature. The latter explanation is supported by the
experimental fact that α→ε martensitic transition is sluggish,
and pressures higher than 20 GPa are needed for a complete
transformation [32,71].

As it follows from the above discussion, further study of
the nonlocal correlations in ε-iron seems to be important. This
would allow studying in more detail mechanism of super-
conductivity and its pressure dependence, and may allow to
explain observed T 5/3 behavior of resistivity, accompanied by

a quantum phase transition at the pressure p = 21 GPa [36].
On the other hand, further experimental studies are required to
clarify the magnetic and superconducting properties of ε-Fe,
that may also have significant implications for geophysics and
Earth’s core magnetism.
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APPENDIX: SUPERCONDUCTING PAIRING

1. General formalism and the gap equation

We consider the general form of the noninteracting Hamil-
tonian

Ĥ0 =
∑
kσ

∑
mm′

εmm′
k c†k,mσ

ck,mσ (A1)

and 4-fermion interaction

Ĥint = −1

4

∑
σσ ′σ ′′σ ′′′

∑
mm′m′′m′′′

∑
k1k2k3k4

�σσ ′σ ′′σ ′′′,mm′m′′m′′′
k1,k2;k3,k4

c†k1,mσ

× c†k2,m′σ ′ck3,m′′σ ′′ck4,m′′′σ ′′′δ(k1 + k2 − k3 − k4), (A2)

where m, m′, m′′, m′′′ are the orbital indexes,
σ, σ ′, σ ′′, σ ′′′ =↑,↓ are the spin indexes, ckmσ are the
fermionic operators. Due to the Pauli principle, the interaction
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vertex � is antisymmetric:

�σσ ′σ ′′σ ′′′,mm′m′′m′′′
k1,k2;k3,k4

=V mm′m′′m′′′
k1,k2;k3,k4

δσσ ′′δσ ′σ ′′′−V mm′m′′′m′′
k1,k2;k4,k3

δσσ ′′′δσ ′σ ′′ (A3a)

V mm′m′′m′′′
k1,k2;k3,k4

= V m′m,m′′′m′′
k2,k1;k4,k3

= (
V m′′m′′′,mm′

k3,k4;k1,k2

)∗
, (A3b)

where for SU(2) symmetric interaction the vertices V do not depend on spin indexes.
To discuss superconducting pairing, we perform the mean-field decoupling

Ĥint → ĤBCS
int = −1

4

∑
kp,mm′,m′′m′′′

∑
σσ ′σ ′′σ ′′′

[
�σσ ′σ ′′σ ′′′,mm′m′′m′′′

k,−k;p,−p c†k,mσ
c†−k,m′σ ′ 〈cp,m′′σ ′′c−p,m′′′σ ′′′ 〉 + h.c.

]
. (A4)

We suppose that the quadratic part Ĥ0 of the Hamiltonian is diagonalized by the transformation cp,mσ = ∑
α U mα

p ep,ασ , where
ek,ασ are the fermionic operators for the band α and spin projection σ , such that

Ĥ0 =
∑
kασ

εkαe†k,ασ
ek,ασ , (A5)

where Ekα = ∑
mm′ εmm′

k (U mα
k )∗U m′α

k ,
∑

mm′ εmm′
k (U mα

k )∗U m′β
k = 0 (α �= β). Then we obtain

ĤBCS
int = −1

4

∑
kp

∑
σσ ′σ ′′σ ′′′,αβ

[
�

σσ ′σ ′′σ ′′′,αβ

k,p e†k,ασ
e†−k,ασ ′ 〈ep,βσ ′′e−p,βσ ′′′ 〉 + H.c.

]

= 1

2

∑
kα,σσ ′

[
�σσ ′

k,α e†k,ασ e†−k,ασ ′ + H.c.
]
, (A6)

where

�σ,σ ′
k,α

= −1

2

∑
p,σ ′′σ ′′′,β

�
σσ ′σ ′′σ ′′′,αβ

k,p 〈ep,βσ ′′e−p,βσ ′′′ 〉 (A7)

and

�
σσ ′σ ′′σ ′′′,αβ

k,p =
∑

mm′,m′′m′′′
�σσ ′σ ′′σ ′′′,mm′m′′m′′′

k,−k;p,−p

(
U mα

k

)∗(
U m′α

−k

)∗
U m′′β

p U m′′′β
−p . (A8)

As usually, we separate singlet and triplet terms:

�σ,σ ′
k,α = −�σ ′,σ

−k,α = (
�σ,σ ′

k,α

)
s + (

�σ,σ ′
k,α

)
t ,(

�σ,σ ′
k,α

)
s = (

�σ,σ ′
−k,α

)
s = −(

�σ ′,σ
k,α

)
s = iσσσ ′

y ψk,μ =
(

0 ψk,α

−ψk,α 0

)
σσ ′

;

(
�σ,σ ′

k,α

)
t = −(

�σ,σ ′
−k,α

)
t = (

�σ ′,σ
k,α

)
t = i(dk,μσσσ ′′

)σσ ′′σ ′
y =

( −dx
k,α + idy

k,α
dz

k,α

dz
k,α

dx
k,α + idy

k,α

)
σσ ′

. (A9)

where σ are the Pauli matrices. From these relations, we find(
�σ,σ ′

k,α

)
s(t ) = 1

2

(
�σ,σ ′

k,α
∓ �σ ′,σ

k,α

) = −1

2

∑
p,σ ′′σ ′′′,β

�
σσ ′σ ′′σ ′′′,αβ

s(t ),k,p 〈ep,βσ ′′e−p,βσ ′′′ 〉

= −
∑
p,β

V s(t )
kp,αβ〈ep,βσ e−p,βσ ′ 〉, (A10)

where

�
σσ ′σ ′′σ ′′′,αβ

s(t ),k,p = 1
2

(
�

σσ ′σ ′′σ ′′′,αβ

k,p ∓ �
σ ′σσ ′′σ ′′′,αβ

k,p

)
, (A11)

V s(t )
k,p,αβ

= 1

2

∑
mm′,m′′m′′′

(
V mm′m′′m′′′

k,−k;p,−p ± V mm′m′′′m′′
k,−k;−p,p

)(
U mα

k

)∗(
U m′α

−k

)∗
U m′′β

p U m′′′β
−p . (A12)

From Eq. (A10), we obtain gap equations:

ψk,α = −
∑

k′,iν ′
n,β

V s
kk′,αβF s

k′β (iν ′
n), (A13a)

dk,α = −
∑

k′,iν ′
n,β

V t
k,k′,αβFt

k′β (iν ′
n), (A13b)
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where F s
kα (iνn) = (iσσσ ′

y /2)〈ekασ (τ )ekασ ′ (0)〉iνn and Ft
kα (iνn) = (i/2)(σσy)σσ ′ 〈ekασ (τ )ekασ ′ (0)〉iνn are the anomalous Green

functions of the Hamiltonian Ĥ0 + ĤBCS
int , the index iνn denotes the Fourier transform. The corresponding Bethe-Salpeter

equations are obtained by linearizing the gap equations and considering the eigenvalues and eigenfunctions of the operators
in the right-hand side of Eq. (A13), see Eq. (2) of the main text.

2. Bare and second-order vertex

To determine the vertex V, we use the second-order perturbation theory. To preserve spin-rotational symmetry, we consider
the following orbital-dependent interactions:

Hint = U
∑
im

nim↑nim↓ +
∑

i,m>m′,σ

U mm′
1 nimσ nim′σ +

∑
i,m>m′,σ

U mm′
2 nimσ nim′,−σ

+
∑

i,m>m′,σσ ′
(U mm′

2 − U mm′
1 )c+

imσ cim,−σ c+
im′,−σ cim′,σ +

∑
i,m �=m′

Jmm′
c+

im↑c+
im,↓cim′,↓cim′,↑ (A14)

(for the standard Kanamori parametrization with Hund exchange I , interorbital exchange U ′ − I/2, and pair hopping J we have
U mm′

2 = U ′, U mm′
1 = U ′ − I , Jmm′ = J). For the bare local vertex V mm′m′′m′′′

0 defined by putting the Hamiltonian (A14) into the
form of Eqs. (A2) and (A3a), we have

V mm′,m′′m′′′
0 = Uδmm′′δm′m′′′δmm′ + U mm′

2 δmm′′δm′m′′′ (1 − δmm′ )

+ (
U mm′

2 − U mm′
1

)
δmm′′′δm′m′′ (1 − δmm′ ) + Jmm′′

δmm′δm′′m′′′ (1 − δmm′′ ). (A15)

In the second order in V0, the effective interaction is given by V mm′m′′m′′′
0 + V mm′m′′m′′′

2,k,−k;p,−p, where

V mm′m′′m′′′
2,k,−k;p,−p = Lm̃′′m̃′′′,m̃′m̃

ph (k − k)
[ − 2V mm̃,m′′m̃′′

0 V m̃′m′,m̃′′′m′′′
0 + V mm̃,m̃′′m′′

0 V m̃′m′,m̃′′′m′′′
0

+ V mm̃,m′′m̃′′
0 V m̃′m′,m′′′m̃′′′

0

] + Lm̃m̃′,m̃′′m̃′′′
ph (k + p)V mm̃′′′,m̃m′′′

0 V m̃′′m′,m′′m̃′
0 , (A16)

where we assume summation over repeating orbital indices and

Lmm′,m′′m′′′
ph (q) = −T

∑
k,iνn

Gmm′′
k (iνn)Gm′m′′′

k+q (iνn) (A17)

is the particle-hole bubble.
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A. Katanin, A. Toschi, and G. Sangiovanni, Nat. Commun. 8,
16062 (2017).

[5] G. Cort, R. D. Taylor, and J. O. Willis, J. Appl. Phys. 53, 2064
(1982).

[6] R. D. Taylor, G. Cort, and J. O. Willis, J. Appl. Phys. 53, 8199
(1982).

[7] S. Nasu, T. Sasaki, T. Kawakami, T. Tsutsui, and S. Endo, Phys.
Condens. Matter 14, 11167 (2002).

[8] A. B. Papandrew, M. S. Lucas, R. Stevens, I. Halevy, B. Fultz,
M. Y. Hu, P. Chow, R. E. Cohen, and M. Somayazulu, Phys.
Rev. Lett. 97, 087202 (2006).

[9] O. Mathon, F. Baudelet, J. P. Itié, A. Polian, M. d’Astuto, J. C.
Chervin, and S. Pascarelli, Phys. Rev. Lett. 93, 255503 (2004).

[10] B. W. Lebert, T. Gorni, M. Casula, S. Klotz, F. Baudelet, J. M.
Ablett, T. C. Hansen, A. Juhin, A. Polian, P. Munsch et al., Proc.
Natl. Acad. Sci. USA 116, 20280 (2019).

[11] S. Merkel, A. Goncharov, H. Mao, P. Gillet, and R. Hemley,
Science 288, 1626 (2000).

[12] A. F. Goncharov and V. V. Struzhkin, J. Raman Spectrosc. 34,
532 (2003).

[13] J.-P. Rueff, M. Mezouar, and M. Acet, Phys. Rev. B 78,
100405(R) (2008).

[14] A. Monza, A. Meffre, F. Baudelet, J.-P. Rueff, M. d’Astuto, P.
Munsch, S. Huotari, S. Lachaize, B. Chaudret, and A. Shukla,
Phys. Rev. Lett. 106, 247201 (2011).

[15] G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Phys. Rev.
B 60, 791 (1999).

[16] G. Steinle-Neumann, R. E. Cohen, and L. Stixrude, J. Phys.:
Condens. Matter 16, S1109 (2004).

[17] M. Friák, and M. Šob, Phys. Rev. B 77, 174117
(2008).

[18] G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Proc. Natl.
Acad. Sci. USA 101, 33 (2004).

[19] V. Thakor, J. B. Staunton, J. Poulter, S. Ostanin, B. Ginatempo,
and E. Bruno, Phys. Rev. B 67, 180405(R) (2003).

[20] R. Lizárraga, L. Nordström, O. Eriksson, and J. Wills, Phys.
Rev. B 78, 064410 (2008).

[21] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,
and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997);

155126-8

https://doi.org/10.1126/science.145.3631.483
https://doi.org/10.1126/science.145.3631.483
https://doi.org/10.1126/science.145.3631.483
https://doi.org/10.1126/science.145.3631.483
https://doi.org/10.1126/science.1194662
https://doi.org/10.1126/science.1194662
https://doi.org/10.1126/science.1194662
https://doi.org/10.1126/science.1194662
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1103/PhysRevB.87.115130
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1038/ncomms16062
https://doi.org/10.1063/1.330745
https://doi.org/10.1063/1.330745
https://doi.org/10.1063/1.330745
https://doi.org/10.1063/1.330745
https://doi.org/10.1063/1.330289
https://doi.org/10.1063/1.330289
https://doi.org/10.1063/1.330289
https://doi.org/10.1063/1.330289
https://doi.org/10.1088/0953-8984/14/44/446
https://doi.org/10.1088/0953-8984/14/44/446
https://doi.org/10.1088/0953-8984/14/44/446
https://doi.org/10.1088/0953-8984/14/44/446
https://doi.org/10.1103/PhysRevLett.97.087202
https://doi.org/10.1103/PhysRevLett.97.087202
https://doi.org/10.1103/PhysRevLett.97.087202
https://doi.org/10.1103/PhysRevLett.97.087202
https://doi.org/10.1103/PhysRevLett.93.255503
https://doi.org/10.1103/PhysRevLett.93.255503
https://doi.org/10.1103/PhysRevLett.93.255503
https://doi.org/10.1103/PhysRevLett.93.255503
https://doi.org/10.1073/pnas.1904575116
https://doi.org/10.1073/pnas.1904575116
https://doi.org/10.1073/pnas.1904575116
https://doi.org/10.1073/pnas.1904575116
https://doi.org/10.1126/science.288.5471.1626
https://doi.org/10.1126/science.288.5471.1626
https://doi.org/10.1126/science.288.5471.1626
https://doi.org/10.1126/science.288.5471.1626
https://doi.org/10.1002/jrs.1030
https://doi.org/10.1002/jrs.1030
https://doi.org/10.1002/jrs.1030
https://doi.org/10.1002/jrs.1030
https://doi.org/10.1103/PhysRevB.78.100405
https://doi.org/10.1103/PhysRevB.78.100405
https://doi.org/10.1103/PhysRevB.78.100405
https://doi.org/10.1103/PhysRevB.78.100405
https://doi.org/10.1103/PhysRevLett.106.247201
https://doi.org/10.1103/PhysRevLett.106.247201
https://doi.org/10.1103/PhysRevLett.106.247201
https://doi.org/10.1103/PhysRevLett.106.247201
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1103/PhysRevB.60.791
https://doi.org/10.1088/0953-8984/16/14/020
https://doi.org/10.1088/0953-8984/16/14/020
https://doi.org/10.1088/0953-8984/16/14/020
https://doi.org/10.1088/0953-8984/16/14/020
https://doi.org/10.1103/PhysRevB.77.174117
https://doi.org/10.1103/PhysRevB.77.174117
https://doi.org/10.1103/PhysRevB.77.174117
https://doi.org/10.1103/PhysRevB.77.174117
https://doi.org/10.1073/pnas.2237239100
https://doi.org/10.1073/pnas.2237239100
https://doi.org/10.1073/pnas.2237239100
https://doi.org/10.1073/pnas.2237239100
https://doi.org/10.1103/PhysRevB.67.180405
https://doi.org/10.1103/PhysRevB.67.180405
https://doi.org/10.1103/PhysRevB.67.180405
https://doi.org/10.1103/PhysRevB.67.180405
https://doi.org/10.1103/PhysRevB.78.064410
https://doi.org/10.1103/PhysRevB.78.064410
https://doi.org/10.1103/PhysRevB.78.064410
https://doi.org/10.1103/PhysRevB.78.064410
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1088/0953-8984/9/35/010


MAGNETIC FLUCTUATIONS AND SUPERCONDUCTING … PHYSICAL REVIEW B 101, 155126 (2020)

A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884
(1998).

[22] K. Glazyrin, L. V. Pourovskii, L. Dubrovinsky, O. Narygina,
C. McCammon, B. Hewener, V. Schünemann, J. Wolny, K.
Muffler, A. I. Chumakov et al., Phys. Rev. Lett. 110, 117206
(2013).

[23] L. V. Pourovskii, J. Mravlje, M. Ferrero, O. Parcollet, and I. A.
Abrikosov, Phys. Rev. B 90, 155120 (2014).

[24] L. V. Pourovskii, J. Mravlje, A. Georges, S. I. Simak, and I. A.
Abrikosov, New J. Phys. 19, 073022 (2017).

[25] J. Xu, P. Zhang, K. Haule, J. Minar, S. Wimmer, H. Ebert, and
R. E. Cohen, Phys. Rev. Lett. 121, 096601 (2018).

[26] P. Zhang, R. E. Cohen, and K. Haule, Nature 517, 605 (2015);
536, 112 (2016).

[27] O. Yu. Vekilova, L. V. Pourovskii, I. A. Abrikosov, and S. I.
Simak, Phys. Rev. B 91, 245116 (2015).

[28] L. V. Pourovskii, J. Phys.: Condens. Matter 31, 373001 (2019).
[29] K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani,

Y. Onuki, and K. Amaya, Nature (London) 412, 316 (2000).
[30] A. T. Holmes, D. Jaccard, G. Behr, Y. Inada, and Y. Onuki,

J. Phys.: Condens. Matter 16, S1121 (2004).
[31] J. Flouquet, in Progress in Low Temperature Physics, edited by

W. P. Halperin (Elsevier, Amsterdam, 2005), p. 139.
[32] D. Jaccard, A. T. Holmes, G. Behr, Y. Inada, and Y. Onuki,

Phys. Lett. A 299, 282 (2002).
[33] D. Jaccard and A. T. Holmes, Physica B 359-361, 333 (2005).
[34] P. Pedrazzini, D. Jaccard, G. Lapertot, J. Flouquet, Y. Inada,

H. Kohara, and Y. Onuki, Physica B 378-380, 165 (2006).
[35] K. Sengupta, P. Pedrazzini, and D. Jaccard, J. Phys: Conf. Ser.

200, 012180 (2010).
[36] C. S. Yadav, G. Seyfarth, P. Pedrazzini, H. Wilhelm, R. Černý,
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