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We theoretically study the profile of a supercurrent in two-dimensional Josephson junctions with Rashba-
Dresselhaus spin-orbit interaction (RDSOI) in the presence of a Zeeman field. Two types of RDSOIs are
considered that might be accessible in GaAs quantum wells and zinc-blende materials. Through investigating
self-biased supercurrent (so called ϕ0-Josephson state), we obtain explicit expressions for the functionality of the
ϕ0 state with respect to RDSOI parameters (α, β) and in-plane Zeeman field components (hx, hy). Our findings
reveal that when the chemical potential (μ) is high enough compared to the energy gap (�) in superconducting
electrodes, i.e., μ � �, RSOI and DSOI with equal strengths (|α| = |β|) cause vanishing ϕ0 states independent
of magnetization and the type of RDSOI. A Zeeman field with unequal components, i.e., |hx| �= |hy|, however,
can counteract and nullify the destructive impact of equal-strength RDSOIs (for one type only), where μ ∼ �,
although |hx| = |hy| can still eliminate the ϕ0 state. Remarkably, in the μ ∼ � limit, the ϕ0 state is proportional to
the multiplication of both components of an in-plane Zeeman field, i.e., hxhy, which is absent in the μ � � limit.
Furthermore, our results of critical supercurrents demonstrate that the persistent spin helices can be revealed in
a high enough chemical potential regime μ � �, while an opposite regime, i.e., μ ∼ �, introduces an adverse
effect. In ballistic regime, the “maximum” of the critical supercurrent occurs at |α| = |β| and the Zeeman field
can boost this feature. The presence of disorder and nonmagnetic impurities change this picture drastically so
the “minimum” of the critical supercurrent occurs at and around the symmetry lines |α| = |β|. We show that the
signature of persistent spin helices explored in disordered systems originate from the competition of short-range
spin-singlet and long-range spin-triplet supercurrent components. Our study uncovers delicate details of how the
interplay of RDSOI and a Zeeman field manifests in the ϕ0 state and critical supercurrent. Relying on the fact
that the ϕ0 state is accessible regardless of the amount of nonmagnetic impurities and disorder, our results can
provide guidelines for future experiments to confirm the presence of persistent spin helices, determine the type
of SOI, and reliably extract SOI parameters in a system, which might be helpful in devising spin-orbit-coupled
spintronics devices and ultrasensitive spin-transistor technologies.

DOI: 10.1103/PhysRevB.101.155123

I. INTRODUCTION

The quantum response of a system to motives can be highly
influenced by the electron spin and orbital degrees of freedom
as well as their interaction. This fact has triggered immense
interest to, first, shed light on various aspects of spin-orbital
interactions (SOIs) and, second, explore and propose practi-
cally feasible routes in utilizing SOI for spintronics devices
[1–4]. The spin-orbital-mediated interaction in a material can
be either extrinsic or intrinsic, which removes spin degen-
eracy in the absence of magnetic field. The spin-dependent
impurities can cause extrinsic SOI, providing only limited
tuneable experimental knobs for controlling SOI. The intrinsic
SOI can, however, originate from bulk inversion asymme-
try (known as Dresselhaus spin splitting [5]) or structure
inversion symmetry due to confining potentials (known as
[Bychkov-] Rashba spin splitting [6]). The intrinsic SOI can
facilitate an externally controlled SOI by efficiently respond-
ing to the application of mechanical strain, electric field, or
gate voltage, for instance [7–9].

The simultaneous existence of Rashba and Dresselhaus
spin-orbit coupling (RSOC and DSOC) can result in funda-
mentally important phenomena such as persistent spin he-
lix [7–16]. This phenomenon occurs in certain directions

of momentum space where spins oriented along these di-
rections become insensitive to orbital field, and therefore
the spin-splitting vanishes. In particular, the persistent spin
helix allows for extremely long spin relaxation time and
the generation of highly long-ranged spin-polarized currents
(propagating over a long distance of the order of 8-25 μm)
[14–19]. A practical route traveled in recent years to deter-
mine the parameters of SOI in a system is transport mea-
surements. This method has stimulated several theoretical
and experimental works to provide a more realistic overview
of Rashba-Dresselhaus spin-orbit interaction (RDSOI). The
experiments eventually achieved a stretchable persistent spin
helix, namely, a gate fine-tuned and continuously locked
RDSOI at |α| = |β|. The unidirectionality of RDSOI can be
limited by the presence of a cubic DSOI term. Nevertheless,
it has experimentally been found that the cubic Dresselhaus
field [20] should be highly small in GaAs quantum wells so
|α| = |β| allows for 8–25 μm long-distance communication.
Hence, the persistent spin helix can reduce detergent spin
dephasings and pave the way for designing diffusive spin
field effect transistors. The well-known platforms for RDSOI-
related phenomena are GaAs quantum wells and zinc-blende
materials [10,11]. In spite of continuous theoretical and exper-
imental endeavors so far, the reliable experimental extraction
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of spin-orbit coupling (SOC) parameters is still elusive. Gen-
erally, providing an ideal situation in an experiment as theory
assumes is highly challenging. There are several factors, such
as detrimental impurities and unwanted defects, that influence
adversely experimental results. Therefore, any experimentally
observable SOI-related quantity, which is accessible regard-
less of the amount of nonmagnetic impurities and disorder
(i.e., emerges in both ballistic and diffusive systems) is highly
desired for conclusively determining the parameters of SOI.

When a ferromagnet is placed next to a s-wave super-
conductor, long-range spin superconducting correlations may
arise due to the interplay of superconductivity and spa-
tially textured spin at a close vicinity to the ferromagnet-
superconductor interface [3,21–26]. This proximity-induced
phenomenon has stimulated numerous research works, rang-
ing from critical temperature [25,27–35] and density of states
[36–38] to transport [39–50] studies for characterizing and
affirming their existence. Also, it has been theoretically shown
that the interaction of SOI and s-wave superconducting can
generate long-range spin triplet superconducting correlations
[4,17–19,51–56] and the accumulation of spin supercurrent at
the edges of a finite-sized sample [17,18]. Nevertheless, an
experimentally clear-cut confirmation of these proximity spin
superconducting correlations is still not achieved.

The energy ground state of a conventional ferromagnetic
Josephson junction with a uniform magnetization can always
be found at two specific superconducting phase differences,
i.e., ϕ = 0 and π [57–67]. However, it is well understood
that the interplay of SOC and magnetization can invalidate
this picture. In this case, depending on parameter values and
magnetization direction, the junction ground state can occur at
any value of the phase difference, ϕ = ϕ0, other than the 0 and
π . This class of Josephson effect is the so-called ϕ0-Josephson
state (a traditional Josephson effect with an extra ϕ0 phase
shift) [68–80]. Due to the fundamentally important role that
a ϕ0 state can play in memory devices, recent theoretical and
experimental efforts caused striking progress in observing ϕ0

states using the surface of three-dimensional topological insu-
lators, hosting strong SOI [71–73,80]. It has also theoretically
been found that the ϕ0 state is accessible in both ballistic and
diffusive regimes independent of the presence of nonmagnetic
impurities and disorder [71,76]. Nevertheless, a comprehen-
sive study of how the ϕ0 state depends on the components
of a Zeeman field and RSOC-DSOC is still lacking in the
literature.

Here, we study the ϕ0 state driven by the interplay of
a Zeeman field with generic in-plane orientation (hx, hy, hz)
and two types of Rashba-Dresselhaus SOCs (RDSOCs) with
differing strengths [RSOC(α) �= DSOC(β )]. To this end, a
two-dimensional Josephson junction is considered and the
profile of supercurrent flow across the junction in both the
ballistic and diffusive regimes is determined when the junc-
tion is oriented along the x axis (depicted in Fig. 1) and
rotated by 90◦ around the z axis. The explicit expressions
obtained for the ϕ0 state illustrate that |α| = |β| eliminates the
self-biased current when chemical potential is high enough
compared to superconducting gap � inside superconductor
electrodes, i.e., μ � �. Decreasing μ to a low enough level,
e.g., μ ∼ �, the magnetization can retrieve the ϕ0 state
for one type of RDSOC although the ϕ0 state still vanishes
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FIG. 1. The two-dimensional Josephson junction setup with a
finite size width W and thickness d . The junction is placed in the xy
plane so the interfaces are located at x = 0, d along the y direction.
The system can host different types of spin-orbital coupling in the
presence of superconductivity and magnetization with an arbitrary
orientation: h = (hx, hy, hz ). To facilitate our discussion, we have
labeled the three regions by 1,2,3.

in a certain regime of the Zeeman field, i.e., |hx| = |hy|.
Interestingly, the ϕ0 state directly depends on hxhy terms, a
feature which is absent in the μ � � limit. Also, our study
reveals that a low chemical potential μ ∼ � adversely
impacts the signature of persistent spin helices on critical
supercurrents. In a ballistic and short junction limit, where the
spin-singlet supercurrent dominates, a large enough chemical
potential μ � � results in a tangible indication of persistent
spin helices so the maximum of critical supercurrent occurs
at and around |α| = |β| symmetry lines. Decomposing the
supercurrent into its constituting components (spin singlet,
spin triplets, and crossed terms), we demonstrate that in a long
enough and diffusive junction, the spin triplet components
significantly enhance the supercurrent away from |α| = |β|
symmetry lines. Therefore, in the diffusive regime, the pres-
ence of persistent spin helices suppresses the supercurrent at
and around |α| = |β|, providing an experimentally prominent
and detectable evidence for both the stretchable persistent spin
helix and spin-triplet supercurrent.

Considering the accessibility of the ϕ0 state in both the
ballistic and diffusive systems, the expressions obtained for
the ϕ0 phase shift can provide a unique opportunity for ex-
perimentally extracting reliable parameter values for RDSOI
parameters. Our theoretical findings can serve as guidance
for examining the persistent spin helices discussed earlier.
The distinctive influence of the spin-singlet and spin-triplet
correlation on critical supercurrents found in this paper can
serve as evidence for affirming the spin-triplet supercurrent.

The paper is organized as follows. In Sec. II, we sum-
marize theoretical frameworks employed for studying a two-
dimensional Josephson junction. The low-energy Hamilto-
nian, the Bogoliubov de Gennes approach, and charge current
are described. Section III presents the main findings of the
paper, divided into two subsections for the distinction between
the self-biased supercurrent and critical supercurrent for vari-
ous sets of parameters, considering the ballistic and diffusive
systems. We finally give concluding remarks in Sec. IV.

II. THEORETICAL APPROACH

A. Low-energy effective Hamiltonian

The low-energy electronic properties of a noncentrosym-
metric solid-state crystal, hosting spin-orbital-mediated
interaction, can be described by an effective single-particle
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Hamiltonian

H = 1

2

∫
dp ψ̂†(p)H (p)ψ̂ (p), (1)

where

H (p) =
[

p2

2m
+ σ · (ηso + h)

]
, (2)

in which p = (px, py, 0) is momentum, m is the effective
mass of a charged particle, ηso is the SOI, h = (hx, hy, hz ) is
the Zeeman energy corresponding to the magnetic field such
that |h| = gμBB, g is the g factor of a charged carrier, μB is
the Bohr magneton, and B is the magnitude of the magnetic
field. The field operator in spin space can be expressed by
ψ̂ = (ψ↑, ψ↓)T and σ = (σx, σy, σz ) is a vector comprised of
Pauli matrices. We use h̄ = kB = 1 units throughout the paper.

To simplify calculations, derive analytical expressions, and
facilitate analysis, we consider two types of linearized SOI,

ηa
so = (αpy + βpx,−αpx − βpy, 0), (3a)

ηb
so = ([α + β]py, [β − α]px, 0), (3b)

in which α and β are the Bychkov-Rashba and Dresselhaus
velocities, respectively. As mentioned in the Introduction, the
coefficients α and β can be controlled by the application
of electric field and mechanical strain. The two different
types of RSOC and DSOC considered in this paper might be
found in GaAs quantum wells and zinc-blende materials. The
difference between ηa

so and ηb
so can originate from different

crystallographic growth orientations.

B. Ballistic regime: Bogoliubov de Gennes formalism

Consider a situation where a system is able to develop su-
perconductivity through the traditional opposite-spin electron-
phonon BCS mechanism. To describe electronic characteris-
tics, one can use spin-Nambu field operators and introduce
phonon mediated electron-electron amplitudes:

�〈ψ†
↑ψ

†
↓〉 + H.c. (4)

The low-energy Hamiltonian, governing electron-hole behav-
ior in the BCS superconductivity, reads

H(p) =
(

H (p) − μ1̂ �̂

�̂† −H†(−p) + μ1̂

)
, (5)

in which μ is the chemical potential multiplied by 2 × 2 unity
matrix 1̂ and �̂ is a 2 × 2 superconducting gap matrix in
spin space. Here H (p) can be obtained by setting ηso = h = 0
in Eq. (2). The field operators in the rotated particle-hole
and spin basis are given by ψ̂ = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ )T. In

the actual calculation of supercurrent across the Josephson
configuration shown in Fig. 1, � is assumed nonzero in the
superconducting electrodes (regions 1 and 3) and zero other-
wise (region 2). Nonetheless, the superconductivity can leak
into the nonsuperconducting region by the virtue of proximity
effect and, consequently, a location-dependent minigap can
exist in the region 2 of Fig. 1.

One of the most important experimentally observable
quantities is the current due to moving charged particles.

To calculate the charge current, flowing through a two-
dimensional system in the presence of SOI, magnetization,
and superconductivity, we switch to real space: r ≡ (x, y, 0).
Also, a situation with no charge sink or source is considered.
In this case, the time variation of charge density vanishes,
∂tρc ≡ 0, in its quantum mechanical definition:

∂ρc

∂t
= lim

r→r′

∑
στσ ′τ ′

1

i
[ψ†

στ (r′)Hστσ ′τ ′ (r)ψσ ′τ ′ (r)

− ψ†
στ (r′)H†

στσ ′τ ′ (r′)ψσ ′τ ′ (r)]. (6)

Here Hστσ ′τ ′ is the component form of Eq. (5) and σ, τ

indices label the spin and particle-hole degrees of freedom,
respectively. Incorporating the current conservation law, the
charge current density reads

Jc =
∫

dr{ψ̂†(r)
−→H (r)ψ̂ (r) − ψ̂†(r)

←−H (r)ψ̂ (r)}, (7)

where H(r) is given by Eq. (5), after the substitution p ≡
−im−1(∂x, ∂y, 0). The arrow directions indicate the specific
wave functions that the Hamiltonian acts on. All the electronic
and geometrical properties of a system are indeed encoded
into the Hamiltonian H(r), its associated wave functions, and
boundary conditions.

C. Josephson junction setup

Figure 1 displays the two-dimensional Josephson junction
considered in this paper. The two-dimensional junction re-
sides in the xy plane and has finite-sized width W and thick-
ness d . The interface of superconductor-nonsuperconductor
junctions extends along the y direction at x = 0, d . The mag-
netization possesses an arbitrary orientation and can be de-
scribed by three components h = (hx, hy, hz ). The supercon-
ductor leads, regions 1,3, support an externally controllable
macroscopic phase difference ϕ = ϕ1 − ϕ3. The phase differ-
ence can be tuned by for instance passing a magnetic field
through an exterior SQUID-like geometry interconnected via
junction Fig. 1.

III. RESULTS AND DISCUSSIONS

This section is divided into two subsections. In Sec. III A,
we present our study of the current-phase relation (CPR), the
ϕ0 state, and in Sec. III B the critical supercurrent.

A. Current-phase relations

In Secs. III A 1 and III A 2, the results of numerical analysis
for the profile of CPRs and self-biased current shall be given,
considering two differing SOIs Eqs. (3) and two perpendicular
directions to the orientation of Josephson junctions in the xy
plane.

1. Current-phase relation in ηa
so-junction

We now proceed to study the supercurrent in the ballistic
regime of a two-dimensional magnetized Josephson junction
with RDSOI depicted in Fig. 1. Our numerical approach in
the ballistic regime is able to simulate a situation where
the superconductivity, magnetism, and SOI coexist simulta-
neously with different parameter sets in the three regions
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FIG. 2. Supercurrent as a function of superconducting phase difference, I (ϕ), when the Josephson junction is oriented along the x direction
and spin-orbit interaction is ηa

so. The supercurrent is plotted for various values of magnetization direction/intensity and the strength of spin-orbit
interaction. In (a1) and (a2), we set α = 1, β = 0, whereas in (b1) and (b2) α = 0, β = 1. The spin-orbit parameters are set α = 1, β = 1 in
(c1) and (c2), while in (d1) and (d2) α = 1, β = −1. In the first and third columns, magnetization is oriented along the x direction, i.e.,
hy = hz = 0, hx �= 0 and in the second and fourth columns the orientation is aligned with the y direction, i.e., hx = hz = 0, hy �= 0.

1,2,3 of Fig. 1 [76–79]. Also, it accommodates cubic and
higher order SOI terms, e.g., γ (px p2

yσx − py p2
xσy) that might

be relevant in some materials due to bulk inversion asymme-
try. Nevertheless, in this paper, we focus on the linearized
SOI models, given by Eqs. (3), and restrict the presence of
magnetization and SOI to the region 2 of Fig. 1. To obtain the
supercurrent, we compute the current density perpendicular
to the interfaces, e.g., Jx, and integrate over the junction cross
section in the y direction: I (ϕ) = J0

∫ +W/2
−W/2 dyJx (x, y, ϕ) with

J0 = 2|e||�|/h̄, in which |e| is the electric charge unit.
Diagonalizing H(p), Eq. (5), we obtain electronic wave

functions ψ̂1,2,3(p) within the regions 1,2,3 independently.
Next, the wave functions are matched at the left ψ̂1 = ψ̂2|x=0

and the right boundaries ψ̂2 = ψ̂3|x=d , and also the conti-
nuity condition (∂pH1)rψ̂1 = (∂pH2)rψ̂2|x=0, (∂pH2)rψ̂2 =
(∂pH3)rψ̂3|x=d is applied at these intersections. The index r
indicates that we switch to real space after taking the deriva-
tives in momentum space. It is worth mentioning that we shall
apply no simplifying assumptions and approximations to the
wave functions in actual numerical calculations. This, how-
ever, results in highly complicated and lengthy expressions
for the wave functions and supercurrent. Thus, we are able
to evaluate them numerically only and omit giving explicit
expressions. In the numerics, we consider a rather thin and
wide junction W/d � 1 to avoid any finite size effect induced
by the edges at y = ±W/2.

To explore different aspects of how the interplay of RD-
SOI and magnetization orientation influences supercurrent,
we conduct a systematic numerical study. Our extensive
investigation demonstrated that supercurrent responds rela-
tively weak to the interplay of hz magnetization and RDSOIs

Eqs. (3) (hz induces supercurrent reversal only). In addition,
the interaction of hz with ηa,b

so is unable to induce ϕ0 self-biased
supercurrent. Therefore, in the following, we concentrate on
supercurrent response to the interplay of in-plane magnetiza-
tion h = (hx, hy, 0) with RDSOC. In the numerics that follow,
we consider representative values 0,±1 for the coefficients
of RDSOIs α and β, a low value to the chemical poten-
tial μ = �, and hx, hy = 0,±0.75� for the magnetization
components unless otherwise stated. The junction thickness
and width are normalized to the superconducting coherence
length ξS = h̄vF /� and fixed values d = ξS and W = 10ξS are
considered in the numerics. Nevertheless, we emphasize that
our conclusions made are independent of these representative
parameter values.

In what follows, we visualize a few samples of the compre-
hensive investigation of CPR performed to make the flow of
discussions smoother, illustrate how CPRs are systematically
obtained, and how ϕ0-state is analyzed. Figures 2 and 3
show the supercurrent flow through the Josephson junction
shown in Fig. 1, where the coupling of spin and orbital
degrees of freedom is modeled by Eq. (3a). In Figs. 2(a1)
and 2(a2), we consider α = 1, β = 0. As seen, hx = 0, hy �=
0 induces a nonzero supercurrent at zero phase difference
ϕ = 0, Fig. 2(a2). Changing the magnetization direction to
hy = 0, hx �= 0 as in Fig. 2(a1), the ϕ0 state disappears and
by increasing the strength of magnetization, the supercurrent
experiences 0-π transition and thus reverses direction. If we
consider α = 0, β = 1, shown in Figs. 2(b1) and 2(b2), the
magnetization in the y direction, hy, is unable to generate the
ϕ0 state anymore. Rather, a magnetization in the x direction,
hx, produces ϕ0-state. In Figs. 2(c1)–2(d2), both components
of RDSOI are nonzero: α = ±β = 1. In this case, a nonzero
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FIG. 3. Supercurrent as a function of superconducting phase difference when magnetization possesses two components in the plane of
Josephson junction, i.e., hx �= 0 and hy �= 0. The junction is oriented along the x direction and the spin-orbit interaction is described by ηa

so.
The spin-orbit coupling parameter values are varied in different panels. In (a1), we set α = 1, β = 1, (a2) α = 1, β = −1, (b1) α = 1, β = 1,
(b2) α = 1, β = −1, and in (b3) α = 1, β = 0.5 is considered.

in-plane magnetization suffices to generate a supercurrent at
zero phase difference. As seen, this is more pronounced at
h = 0.75�, and �. Another interesting parameter set includes
a magnetization with nonzero hx, hy. Figure 3 exhibits the
profile of CPR, I (ϕ), when the in-plane magnetization is
described by two components hx and hy. In Figs. 3(a1) and
3(a2), the coefficients of RDSOC have equal and opposite
signs: β = α = 1 and α = −β = 1, respectively, and hx =
hy is considered. Comparing with Figs. 2, the supercurrent
at zero phase difference, i.e., the ϕ0 state, vanishes for all
values of the magnetization strength. The only difference
between Figs. 3(a1) and 3(a2) is the 0-π transition response
of supercurrent to the magnetization strength, which is absent
when β = α = 1. The supercurrent monotonically decreases
with increasing the magnetization strength, similarly to the
supercurrent response to the junction thickness in a conven-
tional SNS junction or a magnetic SFS junction where F is
sandwiched between two ferromagnetic layers with a conical

magnetization pattern [50]. In Figs. 3(b1)–3(b3), we examine
the influence of unequal orientation and strength in hx and
hy. Figure 3(b1) illustrates that a sign change in hy, when
β = α = 1, causes supercurrent reversal, still with no ϕ0-
state. The same phenomenon occurs in α = −β = 1 regime
by changing the sign of either hx or hy. Introducing inequality
in the magnitude of SOCs (|α| �= |β|) or magnetization com-
ponents (|hx| �= |hy|) generates the self-biased supercurrent.
This is apparent in Figs. 3(b1)–3(b3). We have performed
an exhaustive numerical study by plotting the CPR, similar
to those presented in Figs. 2 and 3, for numerous sets of
parameter values (not shown here). The resultant conclusions
for the CPR are summarized in Eqs. (8)–(12). We have shown
the status of the ϕ0 state in front of each set. The phase shift
carries a,b labels for the spin-orbit interaction type, Eqs. (3a)
and (3b), and x, y labels for the orientation of Josephson
junction:

I (±α, 0, 0,∓hy ) = I (0,±β,±hx, 0); ϕa,x
0 > 0, (8a)

I (±α, 0, 0,±hy ) = I (0,±β,∓hx, 0); ϕa,x
0 < 0, (8b)

I (±α, 0,±hx, 0) = I (±α, 0,∓hx, 0) = I (0,±β, 0,±hy ) = I (0,±β, 0,∓hy ); ϕa,x
0 = 0, (9)

I (±α,±β,±hx, 0) = I (±α,∓β,∓hx, 0) = I (±α,∓β, 0,∓hy ) = I (±α,±β, 0,∓hy ); ϕa,x
0 > 0, (10a)

I (±α,±β,∓hx, 0) = I (±α,∓β,±hx, 0) = I (±α,±β, 0,±hy ) = I (±α,∓β, 0,±hy ); ϕa,x
0 < 0, (10b)
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I (±α,±β,±hx,±hy) = I (±α,±β,∓hx,∓hy ) = I (±α,∓β,±hx,∓hy ) = I (±α,∓β,∓hx,±hy); ϕa,x
0 = 0, (11a)

I (±α,∓β,±hx,±hy) = I (±α,∓β,∓hx,∓hy ) = I (±α,±β,±hx,∓hy ) = I (±α,±β,∓hx,±hy); ϕa,x
0 = 0, (11b)

I (±α, 0,+hx,∓hy ) = I (±α, 0,−hx,∓hy) = I (0,±β,∓hx,+hy ) = I (0,±β,∓hx,−hy); ϕa,x
0 > 0, (12a)

I (±α, 0,+hx,∓hy ) = I (±α, 0,−hx,∓hy) = I (0,±β,±hx,+hy ) = I (0,±β,±hx,−hy); ϕa,x
0 < 0. (12b)

To analyze the CPRs obtained, Eqs. (8)–(12), we denote
odd functions of a variable X by O(±X ) = ±O(X ). Note
that none of the odd functions O(X ) in the analysis below
are equal. We also consider the first-order terms for the odd
functions and define an auxiliary function

�(X ) = θ (+X ) + θ (−X ) =
{

0 X = 0

1 X �= 0,
(13)

in which θ (X ) is the conventional step function. The re-
lations Eqs. (8) imply that the phase shift should have a
form of ϕa,x

0 (0, β, hx, 0) ∝ O(hx )O(β ) and ϕa,x
0 (α, 0, 0, hy ) ∝

−O(hy)O(α). Considering Eqs. (9), we reaffirm that the
phase shift in the absence of hx and hy is insensitive to
the signs of β and α, respectively. One possible conclu-
sion is therefore ϕa,x

0 (α, β, hx, hy) ∝ O(hx )β − O(hy)α. This
conclusion above was made when either RSOC or DSOC
is available and only one component of magnetization is
nonzero, i.e., Eqs. (8) and (9). Next, we keep both com-
ponents of SOC nonzero and examine the influence of
magnetization components separately. We have found rela-
tions Eqs. (10), illustrating that the above conclusion for
ϕa,x

0 (α, β, hx, hy) is applicable to this parameter set as well.
The relations given in Eqs. (11) are obtained when all compo-

nents of magnetization (hx, hy) and SOC (α, β) are nonzero.
In all cases, the phase shift vanishes. Thus, one can con-
clude a phase shift of type ϕa,x

0 (α, β, hx, hy) ∝ (�(hx )β2 −
�(hy)α2)(hyα + hxβ ). However, Eqs. (11) illustrate that at
least a term dependent on hxhy should be included. Hence,
we examine the CPR by setting one component of SOC
zero and both components of the magnetization nonzero. The
results are summarized in Eqs. (12). Our analysis of Eqs. (12)
together with those discussed above through Eqs. (8)–(11)
suggests a phase shift ϕa,x

0 (α, β, hx, hy) of the following form
when spin orbital coupling ηa

so interacts with an in-plane
magnetization:

ϕa,x
0 ∝ +(�xhyα + �yhxβ )(�(hy)α2 − �(hx )β2). (14)

Here, we have defined �x,y = γ�(hx,y) − 1 with γ > 1. Note
that Eq. (14) can be considered as an effective phase shift to
a sinusoidal CPR, namely, sin(ϕ + ϕa,x

0 ). The numerical study
only allows for obtaining the functionality of phase shift with
respect to different parameters. However, as is clear, the phase
shift has to be a dimensionless variable and the numerical
analysis is unable to provide an exact coefficient. Therefore,
we keep the proportional sign (∝) in the presentation of our
results.
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FIG. 4. Supercurrent vs superconducting phase difference in a Josephson junction along the x direction with ηb
so spin-orbit coupling. The

coefficients of spin-orbit interaction are: in (a1) and (a2) α = 1, β = 0, (b1) and (b2) α = 0, β = 1, (c1) and (c2) α = 1, β = 1, and (d1)
and (d2) α = 1, β = −1. The magnetization is oriented along the x direction, i.e., hy = hz = 0, hx �= 0, in the first and third columns, while
hx = hz = 0, hy �= 0 is set in the second and fourth columns.
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FIG. 5. Supercurrent vs superconducting phase difference in a ηb
so spin-orbit-coupled Josephson junction oriented along the x direction. The

magnetization has nonzero in-plane components: hx �= 0, hy �= 0, hz = 0. The coefficients of spin-orbit interaction vary in different panels: (a1)
α = 1, β = 1, (a2) α = 1, β = −1, (a3) α = −1, β = 1, (b1) α = 1, β = 1, (b2) α = 1, β = −1, (c1) α = 1, β = 1, (c2) α = 1, β = −1, and
(c3) α = 1, β = 0.5.

For completeness, we have performed the same numerical
study as described above for a Josephson junction oriented
along the y axis. According to Fig. 1, we now solely rotate
the coordinate axes by the amount of 90◦ either clockwise or
counterclockwise around the z axis. The resultant CPRs are
presented in Appendix A, namely, Eqs. (A1)–(A5). Analyzing
the functionality of Eqs. (A1)–(A5) with respect to α, β,
hx, hy, we have obtained the following expression for the
anomalous phase shift ϕ

a,y
0 (α, β, hx, hy):

ϕ
a,y
0 ∝ −(�xhyβ + �yhxα)(�(hy)α2 − �(hx )β2). (15)

Comparing phase shift ϕa,x
0 , Eq. (14), to ϕ

a,y
0 , Eq. (15), we find

that ϕ
a,y
0 (α, β, hx, hy) = ϕa,x

0 (β, α, hx, hy). This finding can be
directly confirmed by the actual RDSOIs, Eqs. (3a) and (3b),
considered in the numerics.

Another limit of interest emerges when the chemical poten-
tial is larger enough than all energies available in the system
(i.e., μ � h, �). To evaluate this limit in the ballistic regime,
we have set μ = 10� and repeated the above numerical study.
The resultant CPRs are similar to Eqs. (9), (11), and (12)
except now ϕa,x

0 reverses sign in Eqs. (8) and vanishes in
Eqs. (10). By performing the analysis, the same as what
is described above, for this new set of numerical CPRs we
find

ϕa,x
0 ∝ +(hyα + hxβ )(α2 − β2), (16)

and

ϕ
a,y
0 ∝ −(hyβ + hxα)(α2 − β2). (17)

As seen, the phase-shift functionalities now reduce to rela-
tively simpler expressions in this limit.

2. Current-phase relation in ηb
so junctions

Next, we consider a Josephson junction oriented along the
x axis, hosting RDSOI of type ηb

so, Eq. (3b). Some repre-
sentative cases are shown in Figs. 4 and 5. In Figs. 4(a1)
and 4(a2), α = 1, β = 0 are set as the coefficients of SOC,
whereas α = 0, β = 1 are considered in Figs. 4(b1) and
4(b2). The magnetization in the first/third and second/fourth
columns is oriented along the x and y axis, respectively. It
is apparent that for both parameter sets of SOC, the self-
biased supercurrent appears only when the magnetization
is directed along the y axis. Increasing the strength of the
magnetization oriented along the x axis, the supercurrent
experiences reversal and the contribution of higher order
harmonics, such as sin 2ϕ, sin 3ϕ, ..., into the supercurrent
becomes more pronounced. In Figs. 4(c1), 4(c2), 4(d1), and
4(d2), the coefficients of SOC are α = β = 1 and α = −β =
1, respectively. As seen, the phase shift vanishes independent
of the magnetization orientation. The prominent difference
appears in the supercurrent reversal that occurs when only
hx (hy) is nonzero in former (latter) set of SOC coefficients.
In Fig. 5, we switch both magnetization components on.
Figures 5(a1)–5(a3) show the supercurrent-phase profile when
the magnetization components are identical hx = hy and the
SOC coefficients are α = β = 1, α = −β = 1, and −α =
β = 1, respectively. When α and β are positive, Fig. 5(a1)
illustrates a zero self-biased current. Tuning them to obtain
opposite signs in Figs. 5(a1) and 5(a2), the self-biased cur-
rent across the junction switches direction. In Figs. 5(b1)
and 5(b2), we set α = β = 1 and α = −β = 1, respectively,
and opposite signs for the magnetization components hx =
−hy. The figures demonstrate that the phase shift remains
zero when α = β = 1, independent of the magnetization

155123-7



MOHAMMAD ALIDOUST PHYSICAL REVIEW B 101, 155123 (2020)

orientation. Finally, in Figs. 5(c1)–5(c3), we set unequal
values for both the magnetization and SOC components.
The results imply that the phase shift is insensitive to the
magnetization component along the x axis. To shed light on

the functionality and dependency of the self-biased current
on α, β, hx, and hy, we have performed the same systematic
numerical study on the current-phase profile as described in
Sec. III A 1. The results are summarized in Eqs. (18)–(22):

I (±α, 0, 0,∓hy ) = I (0,±β, 0,±hy ); ϕb,x
0 > 0, (18a)

I (±α, 0, 0,±hy ) = I (0,±β, 0,∓hy ); ϕb,x
0 < 0, (18b)

I (±α,±β, 0,+hy ) = I (±α,±β, 0,−hy ); ϕb,x
0 = 0, (19a)

I (±α,∓β, 0,+hy ) = I (±α,∓β, 0,−hy ); ϕb,x
0 = 0, (19b)

I (±α,∓β,+hx, 0) = I (±α,∓β, 0,−hy ); ϕb,x
0 = 0, (19c)

I (±α,±β,+hx, 0) = I (±α,±β,−hx, 0); ϕb,x
0 = 0, (19d)

I (±α,∓β,±hx,∓hy ) = I (±α,∓β,∓hx,∓hy); ϕb,x
0 > 0, (20a)

I (±α,∓β,±hx,±hy ) = I (±α,∓β,∓hx,±hy); ϕb,x
0 < 0, (20b)

I (±α,±β,±hx,±hy) = I (±α,±β,∓hx,∓hy ) = I (±α,±β,±hx,∓hy ) = I (±α,∓β,∓hx,±hy ); ϕb,x
0 = 0, (21)

I (±α, 0,±hx,±hy) = I (±α, 0,∓hx,±hy ) = I (0,±β,±hx,∓hy) = I (0,±β,∓hx,∓hy ); ϕb,x
0 > 0, (22a)

I (±α, 0,±hx,∓hy) = I (±α, 0,∓hx,∓hy ) = I (0,±β,±hx,±hy) = I (0,±β,∓hx,±hy ); ϕb,x
0 < 0. (22b)

Considering Eqs. (18), we deduce that ϕb,x
0 (α, β, hx, hy)

can be expressed by ϕb,x
0 (α, 0, 0, hy ) ∝ −O(hy)O(α) and

ϕb,x
0 (0, β, 0, hy ) ∝ O(hy)O(β ). However, in the presence of

both α and β with arbitrary signs, the relations Eqs. (19) illus-
trate that ϕb,x

0 = 0. Thus, we can conclude ϕb,x
0 (α, β, 0, hy ) ∝

O(hy)(β2 − α2)(β + α). Equations (20) and (21) illustrate
that a term dependent on hxhy is missing. By considering Eqs.
(18), (19), (21), (22) together with Eqs. (20), the numerical
analysis offers the following form for the anomalous phase
shift:

ϕb,x
0 ∝ +�xhy(α + β )(α2 − β2). (23)

We have also conducted this systematic study when the
Josephson junction is oriented along the y axis, supporting the
ηb

so type of SOC. We have summarized the resultant CPRs and
the status of the corresponding phase shift in Appendix A;
Eqs. (A6)–(A10). The same analysis as the above yields the
following relation for the phase shift in this case:

ϕ
b,y
0 ∝ −�yhx(α − β )(α2 − β2). (24)

Comparing ϕb,x
0 , Eq. (23), to ϕ

b,y
0 , Eq. (24), we find

ϕ
b,y
0 (α, β, hy ) = ϕb,x

0 (−α, β, hx ), which is in full agreement
with Eq. (3b).

By setting a large value to the chemical potential, i.e.,
μ = 10�, and numerically reproducing CPRs, we find that
ϕb,x

0 reverses sign in Eqs. (18) and vanishes in Eqs. (20).
The rest of the CPRs given by Eqs. (19), (21), and (22)
remain unchanged. The analysis of these new CPRs yields the
following expressions for the anomalous phase shifts, when

the Josephson junction is oriented along the x axis:

ϕb,x
0 ∝ +hy(α + β )(α2 − β2), (25)

and when the junction is rotated and the total supercurrent
flows along the y axis:

ϕ
b,y
0 ∝ −hx(α − β )(α2 − β2). (26)

Having obtained the explicit functionalities for the anoma-
lous phase shift as a function of magnetization and SOC com-
ponents, we now present the results for critical supercurrent.

B. Critical supercurrent

We adopt the same assumptions made in the previous
section. Namely, the superconductor leads are made of con-
ventional superconductors, RDSOI and Zeeman field are re-
stricted within the nonsuperconducting region, and the inverse
proximity effect is negligible. For both ballistic and diffusive
regimes, W � d (W = 10d) is considered to avoid edge-
dictated effects and the Zeeman field considered is in plane,
i.e., h = (hx, hy, 0). The energies and lengths are normalized
by the superconducting energy gap � and superconducting
coherence length ξS , respectively. The superconducting coher-
ence length in the diffusive regime is given by ξS = √

D/�

in which D is the diffusion constant [17,18]. The thickness
of ballistic junction is set fixed at d = ξS throughout the
numerics. By varying the superconducting phase difference
ϕ = ϕl − ϕr within [0, 2π ] interval, we compute the super-
current phase relation I (ϕ) and determine critical supercurrent
by Imax = max(|I (ϕ; α, β, h)|).
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FIG. 6. Normalized critical supercurrent as a function of α and β parameters of RDSOI, flowing in a ballistic Josephson junction. In the
top row, we set hx = hy = 0 while in the bottom row hx = hy = 0.75�. The chemical potential varies columnwise: (a) μ = �, (b) μ = 5�,
(c) μ = 10�, and (d) μ = 20�. The type of RDSOI is ηa

so.

Figure 6 exhibits the critical supercurrent as a function of
RDSOI parameters, i.e., α and β. The supercurrent in each
panel is normalized by its maximum value. Here, RDSOI is
described by Eq. (3a), and the Zeeman field is zero in top row
while hx = hy = 0.75� is set in bottom row. The chemical
potential increases from column (a) to (d); μ = �, μ = 5�,
μ = 10�, and μ = 20�, respectively. In Fig. 6(a), a low
chemical potential has washed out any prominent impacts that
the persistent spin helices may have on the critical supercur-
rent. The addition of the Zeeman field is also unable to recover
any fingerprints of the persistent spin helices. Increasing the
chemical potential, the signature of the persistent spin helices
appears. As seen, maximal critical supercurrent tends to occur
at and around |α| = |β|. This is more pronounced in the top
panel of Fig. 6(d) where μ = 20�. The application of an
in-plane Zeeman field hx = hy = 0.75� in the lower panels of
Figs. 6(b)–6(d) eliminates the extra features away from |α| =
|β|, appearing when hx = hy = 0, and clearly illustrates how
the persistent spin helices enhance the critical supercurrent.

Next, we perform the same study except we now consider
ηb

so as RDSOI. Figure 7 shows the critical supercurrent vs
α and β parameters of RDSOI. Similar to ηa

so RDSOI, a
low chemical potential causes insignificant indication of the
persistent spin helices. The increase of chemical potential re-
sults in a notable trace of persistent spin helices. Specifically,
when the Zeeman field is absent in the top row of Fig. 7,
the maximal supercurrent is localized around |α| = −|β|. In
the presence of the in-plane Zeeman field hx = hy = 0.75�,
shown in the bottom row of Fig. 7, the maximal supercurrent
passing through the junction occurs when |α| = |β| akin to
ηa

so RDSOI.
To illustrate how a Zeeman field also can weaken the

indication of the persistent spin helices through critical su-
percurrent, we plot the critical supercurrent vs the α and β

parameters of ηa
so and ηb

so RDSOI in Figs. 10 and 11 of the
Appendix, the two components of Zeeman field are different

in magnitude (hx �= hy). As seen, a unidirectional Zeeman
field (hx = 0, hy = 0.75�) in the presence of ηa

so (top row of
Fig. 10) or ηb

so (bottom row of Fig. 11) introduces a detrimen-
tal effect on the signature of the persistent spin helices, while
(hx = �, hy = 0.75�) can still reveal a prominent indication
of the persistent spin helices. Figure 11 shows the critical
current when ηb

so is present. Here, in the top and bottom
rows, hx = 0.75�, hy = 0 and hx = 0, hy = 0.75� are set,
respectively. Comparing to Fig. 7, hx = 0.75�, hy = 0 has
eliminated the indication of the persistent spin helices stronger
than hx = 0, hy = 0.75� case. As is well understood, the
Andreev subgap states in the ballistic regime play a pivotal
role in carrying supercurrent from one superconductor to an-
other and Zeeman field strongly alters these subgap channels.
Hence, various combinations of hx and hy components may be
beneficial or detrimental when studying SOIs through critical
supercurrent in ballistic junctions.

For completeness, we turn our attention to the diffusive
regime of the same Josephson configuration described earlier.
Following Ref. [50], one can decompose the current into
components, in the presence of ηa

so and ηb
so RDSOI, so the cur-

rent components contain specific components of the Green’s
function ( f0, fx, fy, fz ):

J =
∑

i, j=0,x,y,z

Ji j . (27)

By the above decomposition, one is able to isolate the
contribution of spin singlet f0, spin triplet fx, fy, fz su-
perconducting correlations, and the multiplication of spin-
singlet and spin-triplet terms into a critical supercurrent flow.
For example, J0(≡ J00) and Jx,y,z(≡ Jxx,yy,zz ) can provide a
rich overview for pure the spin-singlet and spin-triplet su-
percurrents, respectively, whereas J0x, J0y, Jxz, Jyz contain
crossed terms, involving both the spin-singlet and spin-triplet
Green’s functions. To determine the critical supercurrent ac-
curately, we solve the coupled Usadel equations together with
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FIG. 7. The color-map profile of normalized maximum supercurrent in a ballistic system as a function of RDSOI parameters, α and β,
where RDSOI is described by ηb

so. From left to right, the chemical potential increases: (a) μ = �, (b) μ = 5�, (c) μ = 10�, (d) μ = 20�.
In the top row, the Zeeman field is switched off, hx = hy = 0, and in the bottom row the Zeeman field components are equal and nonzero
hx = hy = 0.75�.

boundary conditions numerically, following Refs. [17,18].
Substituting the numerical solutions into the current definition
of Refs. [17,18], we obtain the supercurrent as a function
of phase difference ϕ, i.e., I (ϕ), and determine the critical
current: |Itot| = max(|I (ϕ; α, β, h)|). The current is normal-
ized by πσ/e� throughout the supercurrent calculation in
the diffusive regime. Next, we find the specific phase dif-
ference that causes maximum supercurrent ϕmax and obtain
the current components at ϕmax. The numerical results are
summarized in Figs. 8 and 9 where RDSOI is described
by ηa

so and ηb
so, respectively. The absolute value of total

supercurrent is shown in the leftmost column, labeled by
|Itot|, and the associated components described above are
given in the rest of the columns. The junction thickness
in the diffusive regime is set fixed at d = 2ξS . The critical
supercurrent is plotted as a function of α and β parameters
for four sets of Zeeman field components from top to bot-
tom; first row: hx = 0, hy = 0, second row: hx = 1.5�, hy =
1.5�, third row: hx = 1.5�, hy = 0, and fourth row: hx =
0, hy = 1.5�. Comparing to the ballistic Josephson junction,
the signature of the persistent spin helices is drastically
changed. In both cases of RDSOI, the critical supercurrent is

FIG. 8. Modulus of critical supercurrent (|Itot|) and its components as a function of RDSOI parameters, α and β, in a diffusive system. The
RDSOI is described by ηa

so. From top to bottom: first row: hx = 0.0, hy = 0.0; second row: hx = 1.5�, hy = 1.5�; third row: hx = 1.5�, hy =
0.0; and fourth row: hx = 0.0, hy = 1.5�.
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FIG. 9. Color-map profile of critical supercurrent modulus (|Itot|) and its components vs α and β, the parameters of ηb
so RDSOI in a diffusive

Josephson junction. The parameters in each row is set as follows: (a) hx = 0.0, hy = 0.0, (b) hx = 1.5�, hy = 1.5�, (c) hx = 1.5�, hy = 0.0,
and (d) hx = 0.0, hy = 1.5�.

diminished when |α| = |β| and yields a significant indication
of the persistent spin helices by suppressing the critical super-
current. The current component plots illustrate that the main
contributing components of supercurrent are the spin-singlet
component I0 (associated with f0), spin-triplet components
Ix, Iy, and crossed terms I0,x and I0,y. The results reveal that
the pure spin-singlet component I0 reaches maximal values at
and around |α| = |β|, similar to the ballistic case. However,
the presence of the spin-triplet components, and consequently
crossed terms, dominates and enhances the supercurrent away
from |α| = |β| in all cases. This phenomenon is more promi-
nent when the junction thickness increases. Note that the
presence of the Zeeman field causes weak modifications to the
modulus the supercurrent |Itot|, although it can induce nonzero
spin triplet supercurrent in the case of ηb

so (compare panels Ix

in Fig. 9). In the diffusive regime, due to strong scattering
resources (disorder and nonmagnetic impurities), the spin-
singlet component of supercurrent highly suppresses by in-
creasing the junction thickness [50]. However, the spin-triplet
components, involving fx and fy, are long range, weakly
sensitive to the scattering resources, and propagate over the
entire nonsuperconducting region with a large decaying length
scale. Therefore, in a thick enough junction, the variation
of the critical supercurrent is governed by the spin-triplet
components.

IV. CONCLUSIONS

In summary, we have theoretically studied self-biased su-
percurrent (so called ϕ0-Josephson state) in a two-dimensional
Josephson junction driven by the interplay of Zeeman
field with in-plane components (hx, hy, 0) and two differ-
ing types of Rashba(α)-Dresselhaus(β) spin-orbit couplings

(RDSOCs). In ballistic regime, we solve the Bogoliubov de
Gennes numerically without incorporating simplifying as-
sumptions to its associated wave functions and study current-
phase profile by employing numerous sets of parameter val-
ues. Analyzing numerical results, we obtain explicit function-
alities for the ϕ0 phase shift with respect to the components of
magnetization and RDSOC parameters. The findings illustrate
that |α|=|β| removes the ϕ0 phase shift independent of mag-
netization direction and strength, the density of nonmagnetic
impurities, and junction direction, when μ is high enough
compared to the energy gap (�) in the superconductor leads;
μ � �. In the μ ∼ � limit, however, except a certain case
where |hx| = |hy|, the magnetization retrieves the ϕ0 phase
shift. In striking contrast to the μ � � limit, the ϕ0 phase
shift in the μ ∼ � limit is directly proportional to hxhy terms.
Also, we find that a low chemical potential compared to
the superconducting gap μ ∼ � is unfavorable for detecting
the persistent spin helices whereas, in a ballistic and short
junction with μ � �, the maximum of critical supercurrent
is localized at and around |α| = |β| symmetry lines. We
find that a proper fine-tuning of the in-plane Zeeman field
can cause more pronounced indications for the persistent
spin helices in the ballistic regime. In diffusive regime, we
employ a quasiclassical technique that allows for isolating the
spin-singlet and spin-triplet components of supercurrent. We
show that due to the contribution of long-range spin-triplet
supercurrent away from |α| = |β| symmetry lines, the critical
supercurrent suppresses at and around |α| = |β|. Considering
the accessibility of the ϕ0 phase shift in both the ballistic
and diffusive systems and the tuneability of RDSOC, the
uncovered ϕ0 expressions and the behavior of critical su-
percurrent can be utilized as a tool for characterizing the
type of SOI, confirming controllable persistent spin helices,
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FIG. 10. Normalized critical current passing through a ballistic Josephson junction as a function of RDSOI parameters describing ηa
so. In

each column, a fixed value for the chemical potential is set: (a) μ = �, (b) μ = 5�, (c) μ = 10�, and (d) μ = 20�. In the top row, the
components of Zeeman field are hx = 0, hy = 0.75�, while in the bottom row hx = �, hy = 0.75�.

experimentally extracting reliable values for the parameters of
SOI in a system, and corroborating the existence of long-range
spin-triplet superconducting correlations. Our results can be
confirmed by GaAs quantum wells and zinc-blende materials.
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APPENDIX A: SUPERCURRENT IN BALLISTIC REGIME

The supercurrent-phase relation in the presence of ηa
so SOC, Eq. (3a) where the Josephson junction is oriented by 90◦ around

the z axis so the supercurrent flows along the y direction:

I (+α, 0,+hx, 0) = I (−α, 0,−hx, 0) = I (0,−β, 0,+hy ) = I (0,+β, 0,−hy ); ϕ
a,y
0 > 0, (A1a)

I (−α, 0,+hx, 0) = I (+α, 0,−hx, 0) = I (0,+β, 0,+hy ) = I (0,−β, 0,−hy ); ϕ
a,y
0 < 0, (A1b)

I (+α, 0, 0,+hy ) = I (−α, 0, 0,+hy ) = I (+α, 0, 0,−hy ) = I (−α, 0, 0,−hy )

= I (0,+β,+hx, 0) = I (0,−β,+hx, 0) = I (0,+β,−hx, 0) = I (0,−β,−hx, 0); ϕ
a,y
0 = 0, (A2)

I (+α,+β,+hx, 0) = I (+α,−β,+hx, 0) = I (−α,+β,−hx, 0) = I (−α,−β,−hx, 0) = I (+α,−β, 0,+hy )

= I (−α,−β, 0,+hy ) = I (+α,+β, 0,−hy ) = I (−α,+β, 0,−hy ), ϕ
a,y
0 > 0, (A3a)

I (−α,+β,+hx, 0) = I (−α,−β,+hx, 0) = I (+α,+β,−hx, 0) = I (+α,−β,−hx, 0) = I (+α,+β, 0,+hy )

= I (−α,+β, 0,+hy ) = I (+α,−β, 0,−hy ) = I (−α,−β, 0,−hy ), ϕ
a,y
0 < 0, (A3b)

I (+α,+β,+hx,+hy) = I (−α,−β,+hx,+hy ) = I (+α,+β,−hx,−hy) = I (−α,−β,−hx,−hy) = I (+α,−β,+hx,−hy)

= I (−α,+β,+hx,−hy ) = I (+α,−β,−hx,+hy) = I (−α,+β,−hx,+hy), ϕ
a,y
0 = 0, (A4a)

I (+α,−β,+hx,+hy) = I (−α,+β,+hx,+hy ) = I (+α,−β,−hx,−hy) = I (−α,+β,−hx,−hy) = I (+α,+β,+hx,−hy)

= I (−α,−β,+hx,−hy ) = I (+α,+β,−hx,+hy) = I (−α,−β,−hx,+hy), ϕ
a,y
0 = 0, (A4b)

I (+α, 0,−hx,+hy ) = I (+α, 0,−hx,−hy) = I (0,+β,+hx,+hy ) = I (0,+β,−hx,+hy) = I (0,−β,+hx,−hy )

= I (0,−β,−hx,−hy ) = I (−α, 0,+hx,+hy ) = I (−α, 0,+hx,−hy ), ϕ
a,y
0 > 0, (A5a)

I (+α, 0,+hx,+hy ) = I (+α, 0,+hx,−hy) = I (0,+β,+hx,−hy ) = I (0,+β,−hx,−hy) = I (0,−β,+hx,+hy )

= I (0,−β,−hx,+hy ) = I (−α, 0,−hx,+hy ) = I (−α, 0,−hx,−hy ). ϕ
a,y
0 < 0, (A5b)
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The supercurrent-phase relation in the presence of ηb
so SOC, Eq. (3b), when the junction is oriented along the y direction:

I (+α, 0,+hx, 0) = I (0,+β,+hx, 0) = I (−α, 0,−hx, 0) = I (0,−β,−hx, 0); ϕ
b,y
0 > 0, (A6a)

I (−α, 0,+hx, 0) = I (0,−β,+hx, 0) = I (+α, 0,−hx, 0) = I (0,+β,−hx, 0); ϕ
b,y
0 < 0, (A6b)

I (+α,+β, 0,+hy ) = I (−α,−β, 0,+hy ) = I (+α,+β, 0,−hy ) = I (−α,−β, 0,−hy ); ϕ
b,y
0 = 0, (A7a)

I (+α,−β, 0,+hy ) = I (−α,+β, 0,+hy ) = I (+α,−β, 0,−hy ) = I (−α,+β, 0,−hy ); ϕ
b,y
0 = 0, (A7b)

I (+α,−β,+hx, 0) = I (−α,+β,+hx, 0) = I (+α,−β,−hx, 0) = I (−α,+β,−hx, 0); ϕ
b,y
0 = 0, (A7c)

I (+α,+β,+hx, 0) = I (−α,−β,+hx, 0) = I (+α,+β,−hx, 0) = I (−α,−β,−hx, 0); ϕ
b,y
0 = 0, (A7d)

I (+α,+β,+hx,+hy) = I (−α,−β,−hx,−hy ) = I (−α,−β,−hx,+hy ) = I (+α,+β,+hx,−hy); ϕ
b,y
0 > 0, (A8a)

I (−α,−β,+hx,+hy) = I (+α,+β,−hx,−hy ) = I (+α,+β,−hx,+hy ) = I (−α,−β,+hx,−hy); ϕ
b,y
0 < 0, (A8b)

I (+α,−β,+hx,+hy) = I (−α,+β,+hx,+hy) = I (+α,−β,−hx,−hy) = I (−α,+β,−hx,−hy ) = I (+α,−β,−hx,+hy )

= I (−α,+β,−hx,+hy) = I (+α,−β,+hx,−hy) = I (−α,+β,+hx,−hy ); ϕ
b,y
0 = 0, (A9)

I (+α, 0,−hx,+hy ) = I (+α, 0,−hx,−hy) = I (0,+β,−hx,+hy ) = I (0,+β,−hx,−hy) = I (0,−β,+hx,+hy )

= I (0,−β,+hx,−hy ) = I (−α, 0,+hx,+hy ) = I (−α, 0,+hx,−hy ); ϕ
b,y
0 > 0, (A10a)

I (+α, 0,+hx,+hy ) = I (+α, 0,+hx,−hy) = I (0,+β,+hx,+hy ) = I (0,+β,+hx,−hy) = I (0,−β,−hx,+hy )

= I (0,−β,−hx,−hy ) = I (−α, 0,−hx,+hy ) = I (−α, 0,−hx,−hy ); ϕ
b,y
0 < 0. (A10b)

APPENDIX B: CRITICAL SUPERCURRENT IN
BALLISTIC REGIME

In this Appendix, we present the color-map profile of a
critical supercurrent in a ballistic Josephson junction where
a Zeeman field may introduce detrimental effect. In Figs. 10

and 11, the SOI is ηa
so and ηb

so, respectively. In the top row of
Fig. 10 and bottom row of Fig. 11, hx = 0, hy = 0.75� is set.
Comparing with counterparts in Figs. 6 and 7, it is apparent
how an improper Zeeman field can remove the signature of
persistent spin helices on critical supercurrents.

FIG. 11. Normalized maximum supercurrent in a ballistic Josephson junction vs the parameters of ηb
so RDSOI, α and β. The chemical

potential increases from the left to the right column: (a) μ = �, (b) μ = 5�, (c) μ = 10�, and (d) μ = 20�. In the top row, hx = 0.75�, hy =
0 and bottom row hx = 0, hy = 0.75�.
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