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Quantum entanglement in the t-J chain: From charge-spin separation to recombination
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In contrast to the conventional von Neumann bipartite entanglement entropy (bEE), we show that a more
appropriate description of the one-dimensional doped Mott insulator is a new kind of mutual entanglement
entropy (mEE) between the charge and spin degrees of freedom. Such a charge-spin mEE can clearly distinguish
the important and distinct features between the t-J model and the so-called σ · t-J model. In the latter, the phase
string sign structure is switched off such that a single doped hole always behaves like a Bloch wave in the whole
regime of J/t , whereas in the former it exhibits a series of level crossing with the total momentum jumps in
the single-hole ground state from spin-charge separation at J/t → 0 to spin-charge recombination at large J/t ,
which are failed to be detected by bEE. We further show that the distinctions between the two models persist
to finite energy density, which can be similarly well characterized by mEE but not by bEE. By studying the
dynamic time evolution of the states set out of equilibrium at the beginning, we show that mEE indeed always
increases with the time, satisfying the common characteristic of entropy.
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I. INTRODUCTION

Quantum entanglement is the correlation of quantum ver-
sion [1–3] and stands for the most intrinsic property of
quantum systems. The study of conventional bipartite entan-
glement entropy (bEE) and its corresponding spectrum has
achieved quite a lot in quantum matter physics during recent
years, especially for characterizing topological orders [4–8]
and laying a quantum foundation for statistical mechanics
[9–13]. A natural question is whether the quantum entangle-
ment can be effectively apply to describing the physics of a
quantum many-body system of strongly correlated electrons.

Such an issue has been recently addressed [14] in the
study of the one-dimensional (1D) t-J model. For physical
interests, the two-dimensional (2D) t-J model is considered
as a “standard model” closely related to the so-called doped
Mott insulator and high-temperature superconductivity in the
cuprate [15–18]. Nevertheless, how a doped hole interacts
with the surrounding spins even in the 1D t-J chain is one
of the simplest problem of strong correlation, which still
manifests some general physics of the doped Mott insulator.
An important discovery in Ref. [14] is that while the bEE
fails to capture the rich phase diagram of the one-hole ground
state as a function of J/t , a new kind of entanglement entropy
known as the charge-spin mutual entanglement entropy (mEE)
can be introduced to characterize the complex phase diagram
quite effectively.

In this paper, we shall further examine the physics of the
quantum entanglement in the doped Mott insulator by using
the simple one-hole-doped spin chain as a toy model. Here we
use both bEE and mEE to comparatively study the t-J chain
and the so-called σ · t-J chain, respectively. We find that the
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t-J chain will exhibit rich distinctive features as a function
of J/t , not only in the ground state but also at finite energy
density, which can be all well characterized by mEE. For
example, as illustrated in Fig. 1(a), at J/t = 0.3 we find a clear
signature of spin-charge separation with separately conserved
charge and neutral spin currents at opposite directions in the
ground state of a 1D t-J ring. Two degenerate ground states
correspond to the reversal of the current flows. By contrast, at
J/t = 40.3, the charge (hole) and spin are recombined into
a quasiparticle as shown in Fig. 1(b) without the ground-
state degeneracy. On the other hand, in the σ · t-J chain, the
charge and spin are always found to be recombined similar
to Fig. 1(b), in the whole regime of J/t . Such a drastically
different ground and excitation states can be also described
by mEE. However, the conventional bEE cannot capture all of
these distinctions.

This paper is organized as follows. In Sec. II, we introduce
our models and the phase string effect within them. We
compare the mutual entanglement and the conventional bi-
partite entanglement in these models, proving that the mutual
entanglement indeed can reveal more physical results not only
in the ground states but also in the excited states. In Sec. III,
we further study the time-evolution dynamics of these two
kinds of quantum entanglement. Finally in Sec. IV, we end
up with a brief summary and discussion.

II. QUANTUM ENTANGLEMENT IN THE t-J MODEL

A. Phase string effect and the models

As is well known, the Mottness could dramatically change
the Fermi-Dirac statistics, making the conventional Landau-
Fermi liquid theory failed in some specific strongly corre-
lated fermionic systems [18–20]. In particular, 1D interact-
ing fermions generally are described by the Luttinger liquid
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Jh = 0.27 Js = 1.56

(a) J/t = 0.3

Js = Jh = 0.0

(b) J/t = 40.3

FIG. 1. (a) The spin-charge separation is accompanied by
nonzero spin and charge currents Js,h in the 1D t-J ring of size L = 10
at small J/t . (b) The charge-spin recombination at larger J/t .

theory [21–23]. For spin-1/2 fermions in the half-filled Mott
antiferromagnet limit, once it is doped, it was proposed by
Anderson that it will induce a generic nonlocal and unrenor-
malizable quantum phase shift in the entire Hilbert space
[24,25] rather than like a quasiparticle’s coherent propagation
in an effective potential provided by the rest of the system.
This kind of quantum phase shift has been systematically
developed by the so-called phase string theory [26,27]. One
of our goals in this paper is to illustrate such a seemingly
abstract mechanism in a much more lucid way with the assis-
tance of quantum entanglement. Here we take consideration
of the simplest but highly nontrivial model for doped Mott
antiferromagnets, namely 1D t-J model injected with a single
hole within the subspace S = 1/2, Sz = +1/2. The 1D t-J
Hamiltonian reads H = Ht + HJ where

Ht = −t
∑
〈i j〉,σ

(c†iσ c jσ + H.c.),

HJ = J
∑
〈i j〉

(
Si · S j − 1

4
nin j

)
. (1)

It is important to emphasize that the above t-J model is
meaningful only in the Hilbert space with projecting out the
double-occupancy.

To understand the deep consequences of this phase string
sign structure, one may introduce a modified the t-J model
known as the σ · t-J model in which the phase string is pre-
cisely “switched off” [28] for a comparative study. It differs
from the t-J model only by the hopping term which is given
by

Hσ ·t = −t
∑
〈i j〉,σ

σ (c†iσ c jσ + H.c.), (2)

while the superexchange term is still HJ . We shall set the
hopping integral t = 1.0 and vary the ratio J/t with noting
that J/t � 0.3 is commonly regarded as close to the realistic
situation in the cuprate [17].

It has also been previously found [14] that in a finite-
size one-hole-doped t-J ring, there are a series of distinct
ground states characterized by different momenta as one tunes
the ratio J/t , in contrast to a single ground states of the
σ · t-J model in the whole regime of J/t . Figure 1 shows
that for the t-J case, the doped hole is charge-spin separated
at small J/t but recombined at larger J/t , corresponding to
these distinct ground states in two limits. In particular, in the
spin-charge separation regime, the holon gains a finite current
Jh, accompanied by a neutral spin backflow current Js. In other
words, the nontrivial total momenta of the ground states found

in Ref. [14] can be understood as generated by the nontrivial
spin and charge currents, which in turn are due to the phase
string effect [29] while absent in the σ · t-J model. Here the
definition of the currents are given in Ref. [29]. Note that
different total momenta will correspond to distinct spin and
charge currents flowing in opposite directions as a function of
J/t (not shown in Fig. 1).

Therefore, the mutual entanglement between the charge
and spin degrees of freedom should be crucial to characterize
the doped physics in the t-J model in contrast to the σ · t-J
model. In the following we discuss a new kind of mutual
entanglement scheme to describe such a doped Mott physics.

B. Entanglement entropy in the eigenstate spectrum

Basically, the idea [14] of charge-spin mutual entangle-
ment is based on an operator P(h) to map a one-hole t-J
configuration |α〉 ≡ |h; {s′}〉 into the direct product of hole
position |h〉 and a spin configuration |{s}〉 as P(h)|h; {s′}〉 =
|h〉 ⊗ |{s}〉. Note that s′ indicates the spin configuration in the
original Ising basis of length L in t-J model’s Hilbert space
while s indicates another spin configuration of length L − 1 in
which the hole site is “squeezed.” Then the wave function can
be written as

|ψ〉 =
∑

α

vα|α〉 =
∑
h,{s}

whs|h〉 ⊗ |{s}〉, (3)

that is, the original wave function vector V is reshaped to a
matrix W in the new representation. By partially tracing out
the spin configurations, we can obtain a L × L reduced density
matrix ρh for the hole

ρh = WW †. (4)

Then the corresponding von Neumann entanglement entropy
S = −tr(ρh ln ρh), which is called mEE here, and its entangle-
ment spectrum is also straightforward. Furthermore, we can
also take consideration of the entanglement Hamiltonian [30]
Hh defined as

ρh = e−Hh . (5)

In Fig. 2, we computed both bEE and mEE as well as the
entanglement Hamiltonian for the t-J chain and σ · t-J chain
in the single-hole ground states as a function of J/t on a
L = 10 lattice. Note that all the numerical results in this paper
are obtained by the exact diagonalization method utilizing
ARPACKPP [31]. We find that the lowest eigenvalues of the cor-
responding mutual entanglement Hamiltonians essentially can
capture the main feature of the corresponding entanglement
entropy, as shown in Figs. 2(a) and 2(b). However, bEE and
the corresponding lowest eigenvalue fails to distinguish these
different phases, which are also presented in Figs. 2(a) and
2(b) for comparison.

In Fig. 3, we further compute both bEE and mEE at highly
excited eigenstates for both the t-J model and σ · t-J model.
At J/t = 40.3, where the spin and charge is recombined as
shown in Fig. 1(b), both bEE and mEE do not show qualitative
difference between the two models as illustrated in Figs. 3(c)
and 3(d). However, at J/t = 0.3, where the spin-charge sep-
aration has been clearly seen in Fig. 1(a), we see that mEE
clearly indicates the difference between two models not only
exhibiting in ground state [14], but also persisting over to the
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FIG. 2. (a) bEE vs. mEE for the single-hole ground states of
the t-J chain and σ · t-J chain, respectively. While bEE does not
distinguish two models, mEE clearly indicates the critical points of
J/t at which the ground state of the t-J chain shows a momentum
jump (marked by the vertical lines), in contrast to a smooth mEE for
the σ · t-J chain which exhibits an increase at small J/t rather than
vanishing in the t-J case due to spin-charge separation. (b) The low-
est eigenvalues E0’s of the corresponding entanglement Hamiltonians
show similar behaviors as in (a).

finite-energy density. From Fig. 3(b), however, it shows that
bEE cannot tell the sharp distinction between the ground states
of the two models, one with the spin-charge separation and the
other not.

We further examine the scaling behavior of the bEE/mEE
in these systems at different bipartite cuts/sample length L.
First, by utilizing the important insight by Wigner [11] that
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t-J

σ · t-J

FIG. 3. Entanglement entropy for highly excited states of the
single-hole-doped t-J and σ · t-J chains at L = 10. The horizontal
axis denotes the eigenvalue energy density. Here mEE clearly dis-
tinguishes the states of two models at (a) J/t = 0.3. But two states
become indistinguishable at (c) J/t = 40.3, where they essentially
become the same phase in the ground state. By contrast, bEE cannot
distinguish any significant distinctions shown by mEE in (b) at
J/t = 0.3 and (c) at J/t = 40.3.
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FIG. 4. The bEE at different bipartite choices on a L = 10
lattice, which does not show the distinction between the t-J and
σ · t-J chains. The horizontal axis is in a logarithmic plot. Here,
for example, we choose E as the energy of N = 300 excited state.
(a) J/t = 0.3, δE = 0.01. (b) J/t = 40.3, δE = 1.0 (�E � 5%E ).

one should focus on the statistical properties of the spectrum
of a many-body system rather than a specific eigenstate,
one may introduce the micro-canonical ensemble (MCE) by
averaging an operator Oα within a relatively narrow energy
window (E − δE , E + δE ) [32]

Ōmce = 1

NE ,δE

∑
α,|E−Eα |<δE

Oα, (6)

where NE ,δE denotes the number of eigenstates within such
an energy window. Then we calculate the bEE based on the
MCE rather than in an eigenstate. In Fig. 4, the bEE thus
calculated roughly obeys a logarithmic behavior, which agrees
with the prediction in the fermionic systems [33]. The small
deviation is attributed to the finite-size effect and the size of
the subsystem approaching half of the total system size. In
this sense, the bipartite quantum entanglement in the eigen-
states have already widely spread and the so-called eigenstate
thermalization hypothesis (ETH) [10,11,34] is valid. Namely,
the bEE can be indeed viewed as the thermal entropy of the
subsystem. There is no seemingly difference for the all four
cases shown in Fig. 4 no matter with or without the phase
string and at small or large J/t .

On the other hand, the scaling behavior of the mEE defined
on the MCE as illustrated in Fig. 5 clearly indicates the differ-
ence between the t-J and σ · t-J models at J/t = 0.3, while it
displays no obvious distinction at J/t = 40.3 where the spin-
charge recombination is restored. Figure 5(a) suggests that the
charge and spin degrees of freedom are minimally entangled
for the t-J case with the mEE saturating to a constant at large
L because the charge only affects the surrounding spins due
to spin-charge separation. But they are maximally entangled
in the σ · t-J case at J/t = 0.3, where the mEE has a similar
logarithmic scaling behavior like the bEE, as expected.

III. TIME EVOLUTION AND THE ENTANGLEMENT
DYNAMICS

A. Quantum chaos scrambling

In the first place, here we would like to compute the time-
dependent square of the operator commutator

C(T ) = 〈[V,W (T )]2〉β ∼ eλLT (7)
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FIG. 5. The scaling behavior of the mEE with different lat-
tice sizes L = 10, 12, 14, 16, which clearly indicates the significant
distinction between the t-J and σ · t-J chains at J/t = 0.3, and
essentially the same behavior at J/t = 40.3. Here, for example, we
choose E as the energy of N = 300 excited state. (a) J/t = 0.3,
δE = 0.01. (b) J/t = 40.3, δE = 1.0 (�E � 5%E ).

in t-J model and σ · t-J model. It is regarded as the diagnostic
of spreading of spatial quantum entanglement and quantum
chaos [35–37]. 〈·〉β denotes the thermal expectation value and
λL is the quantum Lyapunov exponent which reflects how fast
chaos develops in a quantum system. V and W can be chosen
as any Hermitian operators which commute at T = 0. where

 is the diagonalized Hamiltonian matrix and P is the unitary
rotation matrix to diagonalize the Hamiltonian in the original
basis. From Fig. 6 we can see that the Lyapunov exponents
for t-J model and σ · t-J model are almost identical. That is,
there is no difference between these two models in terms of
the chaos scrambling, which actually is in consistent with our
results when it comes to the bEE of these two models since
quantum thermalization and chaos scrambling of an isolated
quantum system are indeed achieved through the dynamics of
bipartite quantum entanglement [10,13,38].

B. Time evolution of the entanglement entropy

Furthermore, one may investigate the time evolution (TE)
of the entanglement entropy. We shake the system out of
equilibrium by a sudden global quench [39] from J/t =

0.0 0.5 1.0 1.5 2.0
T

0.00

0.01

0.02

t-J

σ · t-J

FIG. 6. Commutator square C(T ) in the early exponential incre-
ment period. Here we use J/t = 0.3. V and W are chosen as the hole
density operator Vi = nh

i = 1 − ∑
σ c†iσ ciσ and Wj = Sz

j . It turns out
that there is no difference if we choose different V and W .
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(b) t-J , J/t = 0.3 −→ 40.3 mEE
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FIG. 7. Time evolution of the entanglement entropy (bEE and
mEE) of the t-J model after a sudden quench of the coupling J/t
at time T = 0: (a) from J/t = 40.3 to 0.3; (b) from J/t = 0.3 to
40.3. The dash-dotted lines denote the micro-canonical ensemble
measurements of the corresponding bEE or mEE. The initial states at
T < 0 are chosen as some arbitrary highly excited eigenstates before
quenching.

40.3 → 0.3 or from J/t = 0.3 → 40.3 at time T = 0. Then
we follow the time evolution of the entanglement entropy
(bEE and mEE) at T > 0. The dimensionless number T t will
be taken up to 100.0 for J/t = 0.3 and to 2.5 for J/t = 40.3,
respectively, to reach the saturation of the entropy due to the
difference in J/t (cf. Fig. 7).

In Fig. 7(a), the dash-dotted lines indicate the bEE and
mEE in the equilibrium at J/t = 0.3 measured by MCE. There
is a strong deviation of the TE mEE even after a long-time
evolution, but the TE bEE remains rather close to the equi-
librium line. Here the corresponding initial states at T < 0
are chosen from some arbitrary highly excited eigenstates.
Table I further shows three examples of different initial states

TABLE I. The mEE and bEE measured by the TE and MCE after
quenching from J = 40.3 → 0.3 for the t-J and σ · t-J models at
three different initial excited eigenstates.

t-J σ · t-J

mEE bEE mEE bEE

(a) TE 1.98(9) 3.52(1) 2.11(1) 3.53(7)
MCE 0.66(3) 3.02(7) 2.11(5) 3.01(5)

(b) TE 2.01(5) 3.51(1) 2.10(4) 3.47(0)
MCE 0.67(7) 3.07(8) 2.10(7) 3.09(0)

(c) TE 1.94(9) 3.77(3) 2.22(2) 3.65(2)
MCE 0.68(1) 3.08(5) 2.09(6) 3.04(5)
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TABLE II. The mEE and bEE measured by the TE and MCE
after quenching from J = 0.3 → 40.3 for the t-J and σ · t-J models
at three different initial excited eigenstates.

t-J σ · t-J

mEE bEE mEE bEE

(a) TE 1.99(9) 3.57(5) 2.03(2) 3.00(6)
MCE 1.70(7) 3.24(0) 1.74(6) 3.26(4)

(b) TE 1.88(5) 3.54(0) 2.22(1) 3.54(5)
MCE 1.72(9) 3.29(1) 1.77(8) 3.30(6)

(c) TE 1.62(9) 2.88(9) 2.21(3) 3.49(6)
MCE 1.61(1) 3.20(4) 1.69(8) 3.20(9)

chosen arbitrarily from the eigenstates before quenching, with
comparing the saturated TE measurement and MCE measure-
ment of the bEE and mEE for both t-J and σ · t-J models.

Thus, for the t-J system to evolve from the spin-charge
recombined phase at J/t = 40.3 to the spin-charge separation
phase at J/t = 0.3, the TE of the mEE shows a large deviation
from the final equilibrium state but bEE does not. As for the
σ · t-J model, both mEE and bEE show convergence of the TE
to the MCE. All of these are consistent with the notion of an
entropy, for both bEE and mEE, that monotonically increases
with the time (after a coarse-grain average) and saturates in an
equilibrium state. The large deviation of the TE of the mEE
is simply due to the fact that the MCE value at J/t = 0.3 is
much smaller than that at J/t = 40.3 and the TE of the mEE
can never be reduced to the latter in the large T .

For comparison, we also present the TE of the mEE and
bEE for the t-J case from J/t = 0.3 → 40.3 at time T = 0
in Fig. 7(b). In this case, both bEE and mEE in TE saturate
to the values of the MCE in the large T . Similarly both TE
values in large T have been shown in Table II at three different
eigenstates before quenching for both t-J and σ · t-J models.
Note that for the σ · t-J model, the TE of the mEE has shown
a discrepancy from the MCE at large T due to the fact that
the MCE value is smaller at J/t = 40.3 than at 0.3. Again, the
nondecreasing property of the TE of the mEE is at working.

IV. CONCLUSION AND DISCUSSION

In this work, we explored the quantum entanglement
description of strong correlation in the one-hole-doped t-J
chain by using ED. We examined two kinds of entanglement
entropy, namely, the conventional von Neumann bipartite en-
tanglement called bEE and the mutual entanglement between
the charge and spin degrees of freedom called mEE introduced
in Ref. [14]. Our results clearly showed that whereas bEE
fails to detect the distinct phases as a function of the ratio
J/t , including the spin-charge separation as the hallmark of
strong correlation in the small J/t regime of the t-J model,
mEE can effectively identify all of them, not only in the
ground state, but also in highly excited states of finite energy
density. In particular, we made a comparative study of the t-J
model with the so-called σ · t-J model, in which the phase
string is turned off to result in a more conventional (Bloch-
wave-like with the spin-charge recombination) behavior of the
doped hole. As expected, mEE clearly distinguishes the two

models but bEE cannot. Furthermore, the time-evolution of
the out-of-equilibrium states behaves differently in different
regimes, which can be still well characterized by mEE due to
its entropy-like property, whereas bEE is not sensitive at all.

Based on the mEE description presented above, the one-
hole-doped t-J and σ · t-J models are most distinct at small
J/t limit, where mEE vanishes for the first while it reaches the
maximum for the second [cf. Fig. 2(a)]. Namely, the charge
and spin are indeed separated in the t-J model but are most
strongly entangled in the σ · t-J model at J/t 
 1. In the un-
doped Heisenberg chain, spins are long-range correlated such
that each spin has a maximal amount of mutual entanglement
with the other spins, which would remain the same if the
spin is replaced by a hole which follows a similar dynamics
as the original spin. This should be the case for the σ · t-J
model or the t-J model at J/t � 1. We call these charge-spin
recombined states. In the spin-charge separation regime of
the first model at the small J/t , however, the holon as the
dressed hole will carry a momentum (charge current) while
generate a neutral backflow spin current (cf. Fig. 1) due to
the phase string effect, whose magnitudes are dependent on
J/t and such a mutual influence between the two degrees of
freedom is well captured by mEE. Therefore, the mEE can
provide a precise and effective description of a doped hole
strongly correlated with the background spins in a 1D closed
loop system. How to generalize the present approach to the
ladder or two-dimensional case, or to finite doping will be
highly interesting to explore in the future.

To identify the generic and intrinsic property of a doped
Mott insulator, strange metal regime seems to be the optimal
candidate rather than, say, pseudogap or superconductivity
regimes because there always exists some other competing or-
ders which may mislead our understanding route. The fact that
strange metal is regarded as an ideal realization of quantum
matter without quasiparticles has been widely accepted and
studied [40,41] for a long time. From Fig. 3 we can see that
the disentangled feature of the two degrees of freedom in t-J
model are robust and always persist in highly excited states
corresponding to a high-temperature strange metal regime,
which can provide a good route towards understanding strange
metals.

The idea of mutual entanglement can also be generalized
to other situations, for instance, the Hubbard model. Suppose
there are M sites comprised of the lattice and Nσ (σ = ↑,↓)
electrons (N↑ + N↓ � 2M). The dimension of its Hilbert
space is d = ∏

σ CNσ

M . It is convenient to use the tensor product
of spin-up and -down electrons’ Hilbert space to fuse the
Hilbert space of Hubbard model. Therefore the wave function
can be written as a matrix [42] |ψ〉=

∑
αβ Wαβ |α〉↑ ⊗ |β〉↓.

The mutual entanglement between spin-up and pin-down
electrons can be defined naturally and discussed as the route
above. Its physical interpretation is left in the future.
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APPENDIX: TIME EVOLUTION APPROXIMATION

Generally speaking, a Hamiltonian matrix in a specific
representation can be diagonalized in the form as

P†HP = D, (A1)

where D is the diagonal matrix and P is the unitary transfor-
mation consisting of all the eigenvectors of H . In another way,
with HP = PD explicitly written as

H (p0, . . . , pN−1) = (λ0p0, . . . , λN−1pN−1), (A2)

where P is written as a column vector array and λs are the
eigenvalues of H . That is, Hpi = λipi, i = 0, . . . , N − 1. N is
the dimension of the Hilbert space. Then the time-evolution
operator can be written as

U (T ) = e−iHT = e−iPDP†T = Ue−iDT U † (A3)

for the sake of P is unitary. A practical issue here is that the
exact P matrix requires the full spectrum while the ARPACKPP

[31] package which uses the kind of iteration algorithm is
much more time consuming when it comes to requiring
higher and higher eigenvalues as well as the corresponding
eigenvectors. A possible kind of method is to keep only the
lowest M(M < N ) eigenvalues to approach an approximation
as good as possible if we just involve with a relatively low-
energy ensemble or pure states

H = PDP† �
M−1∑
i=0

λipip
†
i . (A4)

Therefore, time-evolution operator can be approximated as

U (T ) = e−iHT �
M−1∑
i=0

e−iλiT pip
†
i . (A5)
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FIG. 8. Approximated time evolution test with bEE.

Choosing M states may depend on the thermodynamic ensem-
ble temperature β and other related factors. In Fig. 8 we did a
simple test in terms of the time evolution of bEE. It shows that
if we kept more and more eigenvectors to construct the time
evolution operator, it indeed keeps its dynamical track better
and better. It also shows that higher excited states entering
into the time-evolution operator can detect higher frequency
as well as more sensitive time evolutionary dynamics.
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