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Bound states in two-dimensional Fermi systems with quadratic band touching
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The formation of bound states between mobile impurity particles and fermionic atoms has been demonstrated
in spin-polarized Fermi gases with attractive interspecies interaction. We investigate bound states of mobile
impurities immersed in a two-dimensional system with a symmetry-protected quadratic band touching. In
addition to the standard s-wave interaction, we consider an anisotropic dipolar exchange interaction that
locally breaks point group symmetries. Using a weak-coupling renormalization group approach and a ladder
approximation for the impurity-fermion propagator, we establish that the number of bound states can be
controlled by varying the anisotropy of the exchange interaction. Our results show that the degeneracy and
momentum dependence of the binding energies reflect some distinctive properties of the quadratic band touching.
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I. INTRODUCTION

Topological semimetals with quadratic band touching
(QBT) in two dimensions constitute examples of gapless band
structures protected by point group and time reversal sym-
metries [1,2]. Microscopic models exhibiting QBT have been
proposed and studied on the checkerboard and kagome lat-
tices [2–5]. Unlike Dirac points in graphene, two-dimensional
QBT points have a nonvanishing density of states, and their
effective action is scale invariant with a dynamical exponent
z = 2 [1]. This makes the QBT unstable against weak short-
range interactions and leads to phase transitions where at least
one symmetry is spontaneously broken. As a consequence,
anomalous quantum Hall and nematic semimetal phases were
predicted based on a perturbative renormalization group (RG)
approach and mean-field theory [2] and were recently inves-
tigated in numerical studies [6,7]. Experimental realizations
of QBT systems in optical lattices have also been discussed
[8–10].

In this work we consider a (pseudo-)spin-1/2 fermionic
model where a single spin-down fermion interacts with a QBT
system of majority, spin-up fermions. This limit of extreme
population imbalance has received considerable attention in
the context of cold atomic realizations of Fermi polarons
[11–16], where mobile impurity atoms are dressed by particle-
hole excitations of the Fermi gas in which they are immersed.
The quasiparticle properties of Fermi polarons have been mea-
sured using radio-frequency spectroscopy [17–20]. Beyond
the conventional polaron picture, mobile impurities can probe
some exotic properties of many-body systems such as topo-
logical phase transitions [21–24] and quasiparticle breakdown
associated with quantum criticality [25–28].

In Ref. [27], the fate of a polaron in a QBT system was
shown to depend on the particle-hole asymmetry of the band

structure. If the effective mass of the upper band (above the
QBT point) is larger than that of the lower band, a repulsive s-
wave impurity-fermion interaction decreases logarithmically
with decreasing energy scale, giving rise to a marginal Fermi
polaron. On the other hand, if the lower band has a larger
effective mass, the effective interaction increases at low en-
ergies, driving the quasiparticle weight to zero and bringing
about an emergent orthogonality catastrophe [27].

The purpose of this paper is twofold: First, we generalize
the model of Ref. [27] to include a long-range spin exchange
interaction between the mobile impurity and the majority
fermions. The motivation comes from dipolar quantum gases
[29], in which spin exchange has been demonstrated exper-
imentally [30,31]. In these systems, the spatial anisotropy
of the dipolar interaction can be controlled by varying the
direction of the molecular electric dipole moments. We show
that in the low-energy limit the anisotropic spin exchange
generates an impurity-fermion interaction that locally breaks
point group symmetries. This modifies the renormalization
group flow of the effective couplings in the quantum impurity
model. We find a regime in which a bare repulsive interaction
becomes effectively attractive at low energies. Second, we
study the formation of bound states in analogy with the
corresponding phenomenon in two-dimensional Fermi gases
with attractive interactions [12–16]. We find that the spectrum
of an impurity coupled to a QBT system can exhibit zero,
one, or two bound states depending on the relative strength
of the s-wave contact interaction and the symmetry-breaking
interaction due to anisotropic exchange. In particular, for an
attractive s-wave interaction and no anisotropic exchange,
there are two bound states which become degenerate for
vanishing total momentum. Turning on a small anisotropic
interaction, the degeneracy point can move to finite
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FIG. 1. Checkerboard lattice. Solid lines represent the nearest-
neighbor hopping t between sites in sublattices A (red) and B (green).
Dashed and dotted lines represent next-nearest-neighbor hoppings
t ′ and t ′′, respectively. The spin exchange interaction depends on
the direction of the dipolar moment d, parametrized by the polar
angle θ (with respect to the z axis, perpendicular to the lattice plane)
and the azimuthal angle φ (measured from the x axis). A vector ri j

connecting two lattice sites forms an angle ϕi j with the x axis.

momenta along specific directions determined by the QBT
Hamiltonian.

The remainder of the paper is organized as follows: In
Sec. II, we present the microscopic model on the checker-
board lattice and the effective field theory in the continuum
limit. In Sec. III, we analyze the interacting model using a
perturbative RG approach, which reveals the existence of a
crossover regime where the effective coupling changes sign.
In Sec. IV, we calculate the two-particle propagator and the
associated pair spectral function in the ladder approximation
and discuss the different regimes for the formation of bound
states. Our concluding remarks can be found in Sec. V. The
Appendixes contain expressions for functions that appear in
the RG equations and some discussion about the two-body
problem with one particle near the QBT.

II. MODEL

We start with the model

H = −
∑
〈i j〉

ti j (c
†
i↑c j↑ + c†i↓c j↓) + U

∑
i

ni↑ni↓

+J⊥
4

∑
i �= j

Vi j (S
+
i S−

j + S−
i S+

j ). (1)

Here c†jα creates a fermion at site j in one of two internal

states, labeled by α =↑,↓, and n jα = c†jαc jα . The hopping
parameters ti j are defined on the checkerboard lattice. While
the nearest-neighbor hopping t is uniform, the next-nearest-
neighbor hopping is either t ′ or t ′′ depending on the sublattice
and the direction of the link, as illustrated in Fig. 1. For
two next-nearest-neighbor sites in the A (B) sublattice, the
hopping parameter is t ′ along the x (y) direction but t ′′
along the y (x) direction. In addition to the on-site Hubbard
repulsion U > 0, we consider a dipolar exchange interac-
tion [32,33] written in terms of spin operators S+

j = c†j↑c j↓

and S−
j = c†j↓c j↑. The geometrical factor

Vi j = 1 − 3(d̂ · r̂i j )2

|ri j |3 (2)

depends on the relative position ri j = ri − r j between sites.
Here d̂ is a unit vector parallel to the quantization axis,
set by the direction of the polarized dipole moments [32].
This type of exchange interaction was realized using two
rotational states of polar molecules in optical lattices [30]. In
terms of the angles shown in Fig. 1, we can write d̂ · r̂i j =
sin θ cos(φ − ϕi j ), where θ and φ are the angles of the d
vector and ϕi j is the angle between ri j and the x axis. Note that
for θ �= 0, π the strength of the dipolar exchange interaction
depends on the direction of ri j .

In the noninteracting case, U = J⊥ = 0, we can diagonal-
ize the Hamiltonian using the mode expansion

c jα =
{

1√
Ns

∑
k akαeik·R j , j ∈ A,

1√
Ns

∑
k bkαeik·(R j+δ), j ∈ B,

(3)

where R j are positions on the square lattice with lattice
spacing set equal to 1, Ns is the number of unit cells of the
checkerboard lattice, and δ = (x̂ + ŷ)/2 connects two sites in
the same unit cell. The noninteracting Hamiltonian has the
form H0 = ∑

k,α c†kα
H0(k)ckα

, with

H0(k) = −(t ′ + t ′′)(cos kx + cos ky)1

−(t ′ − t ′′)(cos kx − cos ky)σ z

−4t cos(kx/2) cos(ky/2)σ x. (4)

Here ckα = (akα, bkα ) is a two-component spinor, and
σ x, σ y, σ z are Pauli matrices acting in the sublattice space.
The noninteracting Hamiltonian has a C4 rotational symmetry
corresponding to σ yH0(kx, ky)σ y = H0(ky, 2π − kx ). In addi-
tion, H0 is invariant under complex conjugation, equivalent
to time reversal in sectors of the Fock space with fixed
N↑ = ∑

j c†j↑c j↑ and N↓ = ∑
j c†j↓c j↓. For |t ′ + t ′′| < |t | and

|t ′ + t ′′| < |t ′ − t ′′|, the band structure has a QBT point at the
corner of the Brillouin zone, Q = (π, π ) [2], as illustrated
in Fig. 2. This QBT point does not require fine tuning since
it carries Berry phase ±2π and is protected by C4 and time
reversal symmetries.

Let us focus on the single-impurity model with N↑ = Ns

and N↓ = 1 in the thermodynamic limit Ns → ∞. In this case,
the Fermi level of the spin-up (majority) fermions lies at the
QBT point. We can describe their low-energy excitations by
expanding around momentum Q. Hereafter we assume t ′′ < 0
and t = t ′ − t ′′ > 0, in which case the dispersion around the
QBT point becomes isotropic in the continuum limit [2,27].
By contrast, the low-energy limit for the impurity is obtained
by expanding around the bottom of the lower band, at k =
0. The noninteracting Hamiltonian in the continuum limit
becomes, up to a constant,

H0 =
∫

d2r

[
�†(r)h0(r)�(r) − d†(r)

∇2

2M
d (r)

]
, (5)

where �(r) = (ψA(r), ψB(r))t is the two-component spinor
associated with the majority fermions and d (r) is the mobile
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FIG. 2. Band structure for the noninteracting checkerboard lat-
tice model showing the quadratic band touching at Q = (π, π ). Here
we set t ′ = 0.6t and t ′′ = −0.4t .

impurity field with effective mass M = (2t ′)−1. The operator

h0(r) = m+ − m−
4m+m−

1∇2 + m+ + m−
4m+m−

[
σ z

(
∂2

x − ∂2
y

)+ 2σ x∂x∂y
]

(6)

involves the effective masses in the vicinity of the QBT point:
m+ = [2(t − t ′)]−1 and m− = (2t ′)−1 for the upper and lower
bands, respectively.

We now switch on the interactions in the weak-coupling
regime U, |J⊥| � t . The interacting Hamiltonian in the con-
tinuum limit has the form H = H0 + Hint , with H0 given in
Eq. (5) and the impurity-fermion interaction given by

Hint = 4π

m+

∫
d2r �†(r)(g1 + g⊥σ x )�(r)d†(r)d (r), (7)

where we define the dimensionless couplings

g = m+
8π

[
U − κJ⊥

(
3

2
sin2 θ − 1

)]
,

g⊥ = −3m+
4π

κ⊥J⊥ sin2 θ sin(2φ). (8)

The latter stem from the Fourier transform of the on-site and
dipolar exchange interactions and contain the constants

κ = 3

2
ζ (3) − 2

∞∑
m=1

∞∑
n=1

(−1)m+n

(m2 + n2)3/2
≈ 1.322,

(9)

κ⊥ =
∞∑

m=0

∞∑
n=0

(−1)m+n
(
m + 1

2

)(
n + 1

2

)
[(

m + 1
2

)2 + (
n + 1

2

)2]5/2 ≈ 1.312,

where ζ (s) is the Riemann zeta function.
We interpret g in Eq. (7) as the usual s-wave scattering

amplitude between the impurity and the majority fermions,
whereas the new interaction g⊥ scatters fermions between
different sublattice states. Note that g⊥ depends on the spatial
anisotropy of the exchange interaction, and it vanishes when
the dipolar moment is polarized along the z axis. In fact, the
g⊥ interaction breaks the C4 symmetry, which in the con-
tinuum limit becomes �(x, y) �→ σ y�(y,−x). Importantly,

both g and g⊥ are local interactions at the position of the
mobile impurity, and there are no interactions between ma-
jority fermions in the bulk. Thus, the single-impurity model
allows us to explore the effects of a local symmetry-breaking
interaction without destabilizing the QBT.

III. RENORMALIZATION GROUP ANALYSIS

Short-range interactions are known to be marginal pertur-
bations of two-dimensional semimetals with a QBT [2,27,34].
To treat the interactions within perturbation theory, we intro-
duce the impurity Green’s function

Gd (r, τ ) = −〈Tτ d (r, τ )d†(0, 0)〉, (10)

where d (r, τ ) = eHτ d (r)e−Hτ is the impurity field evolved
in imaginary time, Tτ denotes time ordering with respect to
τ , and the expectation value is calculated in the ground state
with N↓ = 0. To zeroth order in the interactions, we have the
noninteracting Green’s function in the momentum-frequency
domain:

G(0)
d (k, iν) = 1

iν − k2/(2M )
. (11)

For the majority fermions, we define the matrix Green’s
function

G =
(
GAA GAB

GBA GBB

)
, (12)

with components

Gll ′ (r, τ ) = −〈Tτψl (r, τ )ψ†
l ′ (0, 0)〉, (13)

where l = A, B is the sublattice index. The Fourier-
transformed noninteracting Green’s function reads

G (0)
ll ′ (p, iν) = {[iω1 − H0(Q + p)]−1}ll ′

=
∑
λ=±

Ulλ(p)Ul ′λ(p)

iν − λp2/(2mλ)
. (14)

Here Ulλ(p), with λ = ± being the band index, are the ma-
trix elements of the unitary transformation that diagonalizes
h0(p) = H0(Q + p), with |p| � 1. Due to the Berry phase
associated with the QBT, U (p) depends on the angle ϕp =
arctan(py/px ) in the form

U (p) = U (ϕp) =
(

sin ϕp cos ϕp
− cos ϕp sin ϕp

)
. (15)

We analyze the effects of the impurity-fermion interaction
using a weak-coupling Wilsonian RG approach [35,36]. We
derive the RG equations for the coupling constants at the
one-loop level and for the impurity effective mass and quasi-
particle weight at the two-loop level by integrating out high-
energy fermion states in the momentum shell �(1 − d�) <

p2/(2m+) < �, where � is the ultraviolet cutoff and d� � 1
is the infinitesimal parameter in the RG step. For instance,
the diagrams that contribute to the renormalization of the
interaction vertex are shown in Fig. 3. We obtain the set of
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FIG. 3. Effective interaction vertex at tree level (�(1)) and at
the one-loop level (�(2)). Solid lines represent the bare propagator
for majority fermions, while dashed lines represent the impurity
propagator. The matrices in the interaction vertex act on the fermion
sublattice degree of freedom.

coupled RG equations

dg

d�
= (μ− − μ+)Zd

m+
(g2 + g2

⊥),

dg⊥
d�

= 2(μ− − μ+)Zd

m+
gg⊥, (16)

dZd

d�
= −2μ−μ+Zd

m+
[g2F1(r+, r−) + g2

⊥F2(r+, r−)],

dM

d�
= 2(μ−μ+)3/2

m+
[g2F3(r+, r−) + g2

⊥F4(r+, r−)],

where Zd is the impurity quasiparticle weight, μ± =
m±M/(M + m±) are reduced masses, and r± = m±/M are
mass ratios. The functions Fi(r+, r−), with i = 1, . . . , 4,
are given in terms of integrals in Appendix A and return
positive values of order 1. Note that bulk properties, such as
the effective masses m+ and m− for the majority fermions, are
not renormalized in the single-impurity problem.

The case g > 0 and g⊥ = 0 was studied in Ref. [27]. In
this case, g can be marginally relevant or irrelevant depending
on the difference between the effective masses m+ and m−.
The reason is that the two one-loop diagrams in the vertex
renormalization (see Fig. 3) have opposite signs. For m− >

m+, the diagram with a hole propagator in the loop dominates,
and the repulsive impurity-fermion interaction flows to strong
coupling. Ultimately, the quasiparticle weight Zd vanishes,
and the effective impurity mass M diverges logarithmically
in the low-energy limit [27].

Here we are interested in the case m− < m+, in which
the diagram with a fermionic particle propagator in the loop
dominates the vertex renormalization. The RG flow diagram
for the couplings g and g⊥ in Fig. 4 reveals three regions
with qualitatively different behaviors. For |g⊥| < g (blue re-
gion in Fig. 4), the interaction is marginally irrelevant. As a
result, in the low-energy limit the impurity decouples from
the fermionic bath, and one recovers Fermi polaron behavior
with logarithmic corrections [27]. When we start off with an
attractive interaction in the regime g < −|g⊥| (green region
in Fig. 4), the system exhibits monotonic flow to strong
coupling. Finally and most remarkably, for |g| < |g⊥| (orange
region in Fig. 4), we observe a crossover from weak repulsive
interaction to strong attractive interaction, g < 0. Our goal in

�0.4 �0.2 0.0 0.2 0.4
�0.4

�0.2

0.0

0.2

0.4

FIG. 4. Renormalization group flow of the couplings in the
single-impurity model with m− < m+. In the crossover region |g| <

|g⊥| (orange), an initially repulsive s-wave scattering amplitude g >

0 can change sign and become attractive.

the following will be to analyze the fate of the impurity in the
latter two regions.

IV. PAIR SPECTRAL FUNCTION

The flow of the effective couplings to strong attraction
signals the formation of bound states between the impurity
and a majority fermion. In two dimensions, at least one bound
state exists in the two-body problem for an arbitrarily weak
attractive interaction [13–16]. To investigate the presence of
bound states, we consider the pair creation operator

P†(r j ) = c†j↑c†j↓. (17)

We then define the two-particle propagator as a matrix in
sublattice space, with components

�ll ′ (R, τ ) = −(−1)sl +sl′ 2〈Tτ P(R + slδ, τ )P†(sl ′δ, 0)〉,
(18)

where R is a position vector in sublattice A and sA = 0,
sB = 1. At low energies, we can work with the two-particle
propagator in the continuum limit:

�ll ′ (r, τ ) = −〈Tτψl (r, τ )d (r, τ )d†(0, 0)ψ†
l ′ (0, 0)〉, (19)

where the factor of (−1)sl +sl′ 2 in Eq. (18) gets canceled in the
projection of c j↓ onto the impurity field. Taking the Fourier
transform,

�ll ′ (q, iω) =
∫

d2rdτ eiωτ e−iq·r �ll ′ (r, τ ), (20)

and the analytic continuation iω → ω + i0+, we define the
pair spectral function

Apair(q, ω) = −2Im{Tr[�(q, ω + i0+)]}. (21)

When interpreting the result for Apair(q, ω) in the continuum
limit in terms of the original lattice model, we must recall that
zero energy corresponds to the impurity at the bottom of the
lower band and the spin-up fermion at the QBT point.

We calculate the two-particle propagator in the ladder ap-
proximation [11,37]. This approximation is justified because,
according to the RG analysis in Sec. III, for m− < m+ the
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+ + + ...

FIG. 5. Feynman diagrams included in the ladder approximation
for the two-particle propagator. The convention for the interaction
vertex and for impurity and fermion propagators is the same as in
Fig. 3.

perturbative expansion is dominated by diagrams with a par-
ticle propagator in the loops. The ladder series is illustrated in
Fig. 5. The diagrams involve the bare two-particle propagator

�0(q, iω) =
∫

d2 pdν

(2π )3
G(0)(p + q, iω + iν)G(0)

d (−p,−iν)

= μ+
4π

{
Log

(
W − iω

�(q) − iω

)
1

−
[

1 + Mq2 − 2iM2ω

μ+q2
Log

(
iω − �(q)

iω − q2

2M

)]

×[cos (2ϕq)σ z + sin (2ϕq)σ x]

}
, (22)

where W is a high-energy cutoff and �(q) = q2

2(M+m+ ) is the
lower threshold of the two-particle continuum in the absence
of interactions, corresponding to the minimum energy for
one fermion and the impurity carrying total momentum q.
Note that �0(q, iω) contains “d-wave” terms with nontrivial
dependence on the angle ϕq.

The two-particle propagator is determined by the Bethe-
Salpeter equation in the ladder approximation

�(q, iω) = �0(q, iω)[1 + (g1 + g⊥σ x )�(q, iω)], (23)

which we solve by summing up a geometric series of ma-
trices. We can identify bound states by searching for poles
of �(q, ω) below the two-particle continuum. We find two
possible bound state dispersion relations E±

bs (q), given by the
solutions to

E±
bs = �(q)

1 − eX±(q,E±
bs )

+ W

1 − e−X±(q,E±
bs )

, (24)

where

X±(q, E±
bs ) = (1 + r+)g

g2 − g2
⊥

± 1 + r+
g2 − g2

⊥

×
{[

|g⊥| − (g2 − g2
⊥)

1 + r+
C

(
q2/(2M )

−E±
bs

)]2

+2|g⊥|(g2 − g2
⊥)

1 + r+
C

(
q2/(2M )

−E±
bs

)

×[1 − sgn(g⊥) sin(2ϕq)]

}1/2

. (25)

The function C(x) appearing in Eq. (25) is given by

C(x) = −1 + (1 + r+)(1 + x)

r+x
ln

(
1 + x

1 + x
1+r+

)
(26)

and is such that C(x) � 0 ∀ x � 0.

For q → 0, the result simplifies as C(x) ∼ x → 0, and
the angle-dependent terms in Eq. (25) vanish. In this case,
X±(q = 0, E±

bs ) = (1 + r+)/(g ∓ |g⊥|) become constant. The
bound state solutions at q = 0, with energies

E±
bs (q = 0) = W

1 − exp

(
− 1+r+

g∓|g⊥|

) < 0, (27)

exist as long as g ± g⊥ < 0. Therefore, the criterion for the
number of bound states at q = 0 matches the three regions
depicted in Fig. 4. For g > |g⊥|, corresponding to the regime
of marginally irrelevant interactions, there are no bound states.
We find one bound state with energy E+

bs in the crossover
regime |g| < |g⊥| and two bound states in the attraction-
dominated regime g < −|g⊥|. For g < 0 and g⊥ = 0, the
bound states are degenerate at q = 0. Note also that at
weak coupling, |g|, |g⊥| � 1, the binding energies E±

bs (0) ≈
−W exp ( 1+r+

g∓|g⊥| ) are exponentially small, as expected for
marginal interactions.

For g⊥ �= 0 and g < −|g⊥|, the bound states may become
degenerate at nonzero momenta q0 such that X+(q0, Ebs) =
X−(q0, Ebs). From Eqs. (24) and (25), we see that the degen-
eracy point happens along the directions where sin(2ϕq0 ) =
sgn(g⊥), i.e., for angles ϕq0 = π

4 , 5π
4 for g⊥ > 0 and ϕq0 =

3π
4 , 7π

4 for g⊥ < 0. The value of q0 is determined by the
conditions

Ebs(q0) = �(q0)

1 − e
(1+r+ )g

g2−g2⊥

+ W

1 − e
− (1+r+ )g

g2−g2⊥

, (28)

C

(
q2

0/(2M )

−Ebs(q0)

)
= (1 + r+)|g⊥|

g2 − g2
⊥

. (29)

Figures 6 and 7 show results for the pair spectral function
in the ladder approximation. The intensities are plotted in
logarithmic scale and arbitrary units proportional to ln[1 +
Apair(q, ω)/(ηm+)], with a small broadening factor η ∼ 10−4.
Figure 6 is representative of the crossover regime with |g| <

|g⊥|. Although the s-wave scattering amplitude g > 0 is re-
pulsive in this example, we do find a bound state below
the two-particle continuum. This bound state originates from
the effects of anisotropic exchange interaction encoded in
g⊥. On the other hand, in the attraction-dominated regime
g < −|g⊥| illustrated by Fig. 7, we find two bound states
at q = 0. These bound states become degenerate at a finite
value of q in the direction ϕq = π/4 [see the anticrossing in
Fig. 7(a)]. This dependence on ϕq is a manifestation of the
unitary transformation in Eq. (15), which is responsible for
the nontrivial Berry phase of the QBT point. Note that the
bound state dispersions exhibit only a C2 rotational symmetry,
consistent with the anisotropy of the dipolar exchange inter-
action in the lattice model. This contrasts with the isotropic
single-fermion and impurity dispersions, which account for
the rotational invariance of the edge of two-particle continuum
seen in Figs. 6 and 7.

Finally, consider the case g < 0 and g⊥ = 0, which holds
for the standard attractive Fermi Hubbard model without the
dipolar exchange interaction. In this case, we are left with the
rotationally invariant g interaction. Nevertheless, the bound
states can still show signatures of the d-wave character of the
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FIG. 6. Pair spectral function Apair(q, ω) for g = 0.1, g⊥ =
−0.5, and r+ = 1.2. In this case, |g| < |g⊥|, and only one bound state
appears below the two-particle continuum. (a) shows Apair(q, ω) as
a function of q and ω at fixed angle ϕq = π/4. (b) and (c) show
Apair(q, ω) as a function of momentum at fixed ω = 0 and ω =
0.03W , respectively.

QBT. Figure 8 displays the A-sublattice component of the pair
spectral function, defined as AA

pair(q, ω) = −2Im{�AA(q, ω +
i0+)}. In Fig. 8(a), we see that the two bound states are
degenerate at q = 0, but the degeneracy is lifted as q in-
creases and the second bound state eventually merges with the

FIG. 7. The same as Fig. 6 for g = −0.5, g⊥ = 0.1, and r+ =
1.2. In this case, g < −|g⊥|, and there are two bound states below
the continuum at q = 0. Note the touching of curves in (a), which
is due to the degeneracy of the bound states with momentum q0 �= 0
along the direction ϕq = π/4.

FIG. 8. A-sublattice component AA
pair(q, ω) of the pair spectral

function for g = −0.5, g⊥ = 0, and r+ = 1.2. (a) shows the result
as a function of q and ω at fixed ϕq = π/4. The two bound states
become degenerate as q → 0. (b) and (c), taken at fixed ω = 0
and ω = 0.02W , respectively, show that the first (second) bound
state has vanishing weight in the A sublattice for ϕq = 0, π (ϕq =
π/2, 3π/2). The angle dependence of the B-sublattice component
can be obtained by a C4 rotation of (b) and (c).

continuum. Moreover, Figs. 8(b) and 8(c) show that the bound
state contributions to AA

pair(q, ω) have nodes as a function of
ϕq. The weight of the first bound state in the A sublattice
vanishes for ϕq = 0, π , while for the second bound state it
vanishes for ϕq = π/2, 3π/2. Along these four directions,
AA

pair(q, ω) shows only one bound state below the continuum
at small q. The location of the nodes is reversed for the B-
sublattice component of the pair spectral function. If we add A
and B components, we find that the full pair spectral function
is symmetric under C4 rotations, with two bound states in
any direction for small q. To gain more intuition about the
symmetry properties of the bound states, in Appendix B we
study the two-body problem of an impurity interacting with a
single particle near the QBT point, without the constraint of a
completely filled lower band.

V. CONCLUSION

We studied the interaction between a mobile quantum
impurity and a bath of majority fermions whose Fermi level
is tuned to a quadratic band touching point. The low-energy
effective model contains an s-wave contact interaction g and
a rotational-symmetry-breaking interaction g⊥ which can be
generated by dipolar spin exchange. A renormalization group
approach showed a regime in which a repulsive impurity-
fermion interaction becomes effectively attractive at low ener-
gies. This happens because the dipolar spin exchange switches
the fermion and the impurity positions, lowering the ground
state energy. The amplitude of this process decreases with
distance. This situation leads to the formation of bound states.
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The anisotropic momentum dependence of the bound states
stems from the combined effects of the g⊥ interaction and
the d-wave terms in the two-particle propagator. In the ladder
approximation, we find a single bound state for |g| < |g⊥|
and two bound states for g < −|g⊥|, in agreement with the
existence of different regimes in the renormalization group
flow diagram. At weak coupling, the binding energies are
exponentially small in the coupling constants.

Higher-body bound states, such as trimers or tetramers,
are not expected to have an important contribution to the
spectral functions discussed in this work, unless one considers
the impurity to be substantially lighter than the fermions
and considers the regime of strong interactions, where p-
wave interactions between the fermions could develop. In
addition, the presence of a Fermi sea usually tends to suppress
the formation of higher-body bound states due to the Pauli
exclusion principle, requiring the impurity to be even lighter
to allow those bound states [38]. Our model could be realized
with dipolar molecules in an optical checkerboard lattice. It
should be interesting to extend our results to a low but finite
density of minority fermions, with potential implications for
unconventional superconductivity in quadratic band touching
systems [39].
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APPENDIX A: FUNCTIONS

In this Appendix we write down the expression for the
functions Fi(r+, r−), with i = 1, . . . , 4, that appear in the RG
equations (16). These are given by

F1 =
∫ π/2

0
dα

(1 + r−1
+ )(1 + r−1

− )

sin α cos α

×
[

− 1 + L

(L2 − sin2(2α))1/2

]
, (A1)

F2 = 1

4

∫ π/2

0
dα (1 + r−1

+ )(1 + r−1
− ) sin(2α)

×
[

− 1 + 4L

(L2 − sin2(2α))3/2

]
, (A2)

F3 = 2
∫ π/2

0
dα

[(1 + r−1
+ )(1 + r−1

− )]3/2

[L2 − sin2 (2α)]3/2

×
{

(1 − 3L) sin (2α)

+2{[L2 − sin2 (2α)]3/2 − L3}
sin (2α)

}
, (A3)

F4 =
∫ π/2

0
dα

[(1 + r−1
+ )(1 + r−1

− )]3/2

[L2 − sin2 (2α)]5/2
sin (2α)

× [(1 − 3L) sin2 (2α) + 2L2], (A4)

where

L(α) = (1 + r−1
− ) cos2 α + (1 + r−1

+ ) sin2 α. (A5)

APPENDIX B: TWO-BODY PROBLEM

In this Appendix we consider the two-body problem de-
scribed by the Schrödinger equation

E�(r1, r2) =
[

h0(r1) − 1

2M
∇2

r2

]
�(r1, r2)

+δ(r1 − r2)(g1 + g⊥σ x )�(r1, r2), (B1)

where �(r1, r2) is the wave function with the first particle
representing the fermion near the QBT and the second particle
representing the impurity. In addition to the dependence on
the coordinates r1 and r2, the wave function contains a spinor
in sublattice space for the first particle. Taking the Fourier
transform of Eq. (B1), we obtain

E�̃(p1, p2) =
[

h0(p1) + 1
p2

2

2M

]
�̃(p1, p2)

+
∫

d2q

(2π )2
(g1 + g⊥σ x )�̃(p1 + q, p2 − q).

(B2)

Let us focus on the case P = p1 + p2 = 0, corresponding
to the vanishing center-of-mass momentum. We then define

�(p) =
[(

E − p2

2M

)
1 − h0(p)

]
�̃(p,−p) (B3)

and obtain

�(p) =
∫

d2q

(2π )2
(g1 + g⊥σ x )

×
[(

E − q2

2M

)
1 − h0(q)

]−1

�(q). (B4)

Since the right-hand side of Eq. (B4) does not depend on p,
we have that �(p) = �0 is a constant spinor. Thus, Eq. (B4)
reduces to the eigenvalue equation

R�0 = �0, (B5)

where

R =
∫

d2q

(2π )2
(g1 + g⊥σ x )

×
[(

E − q2

2M

)
1 − h0(q)

]−1

. (B6)

To solve Eq. (B6), we use the unitary transformation that
diagonalizes h0(q) and perform the integral in the disk 0 <

q < (2m+W )1/2 with high-energy cutoff W . We find that
bound state solutions with E = Ebs < 0 exist only if m− > M.
This condition is not satisfied for the lattice model discussed
in Sec. II, but more generally, one could modify the band
structure by adding further hopping processes or make the
impurity out of another atomic species with a different mass.
At weak coupling, the binding energies scale as

E±
bs ∼ −W exp

[
m+

(μ̄+ + μ̄−)(g ± g⊥)

]
, (B7)
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where μ̄+ = μ+ and μ̄− = m−M/(m− − M ). The bound
states are degenerate for g⊥ = 0. If g⊥ �= 0, there is no bound
state for g > |g⊥|, one bound state for |g| < |g⊥|, and two
bound states for g < −|g⊥|. This result is equivalent to the
criterion for bound states in the many-body problem.

We obtain the bound state wave functions for P = 0 by
substituting the eigenvectors �0 from Eq. (B5) into Eq. (B3).
In the regime where the bound states exist, we have

�̃±(p,−p) = N
{

fs(p, E±
bs )1 + fd (p, E±

bs )[cos(2ϕp)σ z

+ sin(2ϕp)σ x]

}(
1

±1

)
, (B8)

where N is a normalization factor. The functions

fs(p, E ) =
(

p2

2μ̄+
− E

)−1

+
(

p2

2μ̄−
− E

)−1

,

fd (p, E ) =
(

p2

2μ̄+
− E

)−1

−
(

p2

2μ̄−
− E

)−1

(B9)

represent the amplitudes of the s- and d-wave components of
the bound state wave function, respectively. Note that fd (p, E )

vanishes for p → 0. At nonzero p, we can write �̃±(p,−p) =
χ±(p, ϕp), with the symmetry properties

χ±

(
p, ϕp + π

4

)
= ±σ xχ±

(
p,−ϕp + π

4

)
,

χ±

(
p, ϕp − π

4

)
= ±σ xχ±

(
p,−ϕp − π

4

)
. (B10)

For g⊥ = 0, the bound states become degenerate, E+
bs = E−

bs ,
and we have

iσ yχ±

(
p, ϕp + π

2

)
= ±χ∓(p, ϕp). (B11)

In this case we can take linear combinations of χ+(p, ϕp) and
χ−(p, ϕp) to form eigenstates of the C4 rotation.

Both s- and d-wave components in Eq. (B9) have a
Lorentzian dependence on p. This implies an exponential
decay as a function of the relative distance r = |r1 − r2| in
real space, with length scales ∼ (μ̄±|Ebs|)−1/2.
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