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Quantum magnets with spin J = 2, which arise in spin-orbit coupled Mott insulators, can potentially display
multipolar orders. Motivated by gaining a better microscopic understanding of the local physics of such d-orbital
quantum magnets, we carry out an exact diagonalization study of a simple octahedral crystal field Hamiltonian
for two electrons, incorporating spin-orbit coupling (SOC) and interactions. While the rotationally invariant
Kanamori interaction in the t2g sector leads to a fivefold degenerate J = 2 manifold, we find that either explicitly
including the eg orbitals, or going beyond the rotationally invariant Coulomb interaction within the t2g sector,
causes a degeneracy breaking of the J = 2 levels. This can lead to a low-lying non-Kramers doublet carrying
quadrupolar and octupolar moments and an excited triplet which supports magnetic dipole moments, bolstering
our previous phenomenological proposal for the stabilization of ferro-octupolar order in heavy transition metal
oxides. We show that the spontaneous time-reversal symmetry breaking due to ferro-octupolar ordering within
the non-Kramers doublet leads to electronic orbital loop currents. The resulting internal magnetic fields can
potentially explain the small fields inferred from muon-spin relaxation (μSR) experiments on cubic 5d2 osmate
double perovskites Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6, which were previously attributed to weak
dipolar magnetism. We make further predictions for oxygen NMR experiments on these materials. We also
study the reversed level scheme, where the J = 2 multiplet splits into a low-lying magnetic triplet and excited
non-Kramers doublet, presenting single-ion results for the magnetic susceptibility in this case, and pointing
out its possible relevance for the rhenate Ba2YReO6. Our work highlights the intimate connection between the
physics of heavy transition metal oxides and that of f -electron based heavy fermion compounds.
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Multipolar orders have been proposed and discussed exten-
sively in f -orbital based heavy fermion compounds [1–14].
Such multipolar orders have also been proposed to occur in
d-orbital metals with large spin-orbit coupling (SOC), such
as LiOsO3 and Cd2Re2O7, via Pomeranchuk instabilities of
the Fermi liquid [15]. Optical second-harmonic generation
experiments on Cd2Re2O7 have found evidence for such an
inversion broken quadrupolar ordered state below Tc ∼ 200 K
[16]. Other candidates for multipolar orders include proposed
quadrupolar order in A2OsO4 (with A = K, Rb, Cs) [17].

In recent work we have studied d-orbital Mott insulators
with large SOC and a d2 configuration in a local octahedral
environment, and proposed these systems as candidates for
realizing ferro-octupolar order [18,19]. Previous studies of
such d2 quantum magnets [20–22] have argued that the com-
bination of crystal field and interaction effects leads to the
stabilization of a state with total L = 1 and S = 1, which are
locked by SOC into a J = 2 spin. Motivated by experiments
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[18,23–26] on certain cubic double perovskite (DP) Mott in-
sulators, Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6, which
host a 5d2 configuration on Os, we have instead proposed
[19] that their observed nontrivial phenomenology, such as
entropy and a spin gap, could be captured by assuming that the
fivefold J = 2 multiplet is weakly split, resulting in a ground
state non-Kramers doublet carrying quadrupolar and octupo-
lar moments. The lack of any observed crystal distortions
in x-ray and neutron diffraction experiments appears to rule
out quadrupolar order [18]. Uniform ferro-octupolar ordering
in the low lying doublet manifold then provides the most
viable route to further reconciling the cubic symmetry, the
observation of time-reversal symmetry breaking seen via μSR
oscillations [23], the apparent lack of any magnetic Bragg
peaks in elastic neutron diffraction experiments [18], and the
spin gap observed in inelastic neutron scattering experiments
[18,19].

In this paper we provide further theoretical calculations
in favor of the above scenario. We first present exact diago-
nalization results on a simple local crystal field Hamiltonian
keeping the t2g and eg levels in an octahedral environment,
showing that the combination of SOC and interactions does
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favor a non-Kramers ground state doublet. We show how the
splitting between this doublet and the excited magnetic triplet
depends on SOC and the Hund’s coupling and results from
perturbative t2g-eg mixing. Such t2g-eg mixing was discussed
previously but its importance for the low energy physics
appears not to have been properly recognized [21,27]. We
also examine a model of just t2g electronic states, and show
that deviations of the Coulomb interaction from spherical
symmetry, perhaps engendered by hybridization with oxygen
orbitals [28], can lead to a similar non-Kramers doublet state.
This doublet-triplet splitting may be too small to be resolved
using resonant inelastic x-ray scattering experiments [29,30],
but it is crucial for the low energy symmetry-breaking orders.
We study the impact of ferro-octupolar order within this low
energy non-Kramers doublet, and show that this leads to
orbital electronic currents, generating internal magnetic fields
and semiquantitatively explain the μSR oscillations seen in
Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6. The nonspher-
ical Coulomb interaction mechanism for splitting the J = 2
multiplet discussed above also permits for the possibility for
the level ordering to be reversed, with a magnetic triplet
ground state and an excited non-Kramers doublet. We present
single ion results for the magnetic susceptibility in this case,
arguing that this reversed level scheme is likely to be relevant
to the 5d2 rhenate [31] Ba2YReO6.

Our theory strengthens the case for multipolar orders in
a class of d-orbital Mott insulators, pointing to a smooth
conceptual link between the physics of heavy d-orbital oxides
and f -electron based heavy fermion materials. Such octupolar
order with a high transition temperature may provide a new
template to store information.

I. LOCAL MODEL

We use the following Hamiltonian for two electrons in a
d-orbital placed in an octahedral environment:

H = HCEF + HSOC + Hint, (1)

where we include the octahedral crystal field splitting,
SOC, and Kanamori interactions, written in the orbital basis
({yz, xz, xy}, {x2 − y2, 3z2 − r2}) ↔ ({1, 2, 3}, {4, 5}) where
α ≡ {1, 2, 3} label t2g orbitals and α ≡ {4, 5} label eg orbitals.
The CEF term is given by

HCEF = VC

∑
α=4,5

∑
s

nα,s, (2)

where s is the spin. The SOC term is

HSOC = λ

2

∑
α,β

∑
s,s′

〈α| L |β〉 · 〈s| σ |s′〉 c†α,scβ,s′ , (3)

where σ refers to the vector of Pauli matrices, and L is the
orbital angular momentum. Its components in the orbital basis
are given in Appendix A. We assume a Kanamori interaction
for all five d orbitals given by

Hint = U
∑

α

nα↑nα↓ + U ′ ∑
α>β

nαnβ − JH

∑
α 
=β

�Sα · �Sβ

+ JH

∑
α 
=β

c†α↑c†α↓cβ↓cβ↑, (4)

FIG. 1. Low energy spectrum (15 lowest eigenvalues) of the
Hamiltonian in Eq. (1) with two electrons, corresponding to states
where both electrons predominantly occupy the t2g orbitals. The
numbers at the end of the curves, and in the zoomed-in insets
which show weak splittings, indicate the degeneracies of the different
energy levels.

where �Sα = (1/2)c†αs �σs,s′cαs′ . This simple form, where we use
the same interaction parameters for all t2g and eg orbitals,
is used to avoid a proliferation of interaction parameters.
Assuming spherical symmetry of the Coulomb interaction, we
have U ′ = U − 2JH (see, e.g., Ref. [32]).

For electronic configurations with partially filled t2g or-
bitals, the most commonly used approach is to simply ignore
the eg orbitals and restrict attention to the low energy t2g states.
We find that the ground state manifold in this approximation
consists of a fivefold degenerate J = 2 state. However, we
show below that this degeneracy is further split due to two
possible microscopic mechanisms: t2g-eg mixing and devia-
tions of the Coulomb interaction from spherical symmetry.

A. t2g-eg mixing: Exact results, perturbation theory

We consider two electrons in the full d-orbital manifold
including t2g and eg states, and study this using numerical
exact diagonalization in the 45 basis states. For coupling
constants we use values typical for 5d transition metal oxides:
VC = 3 eV, U = 2.5 eV, λ = 0.4 eV, and JH = 0.25 eV. Fig-
ure 1 plots the evolution with JH of the lowest 15 energy levels
which correspond to eigenstates where the two electrons are
predominantly both in the t2g sector. The indicated numbers
mark the degeneracies of these multiplets. For JH = 0, there
are just three energy levels, which, in increasing order of
energy, correspond to having (i) both electrons in j = 1/2,
(ii) one electron in j = 1/2 and one electron in j = 3/2
(energy cost 3λ/2), and (iii) both electrons in j = 3/2 (energy
cost 3λ). We see that the lowest energy set of five states
evolves adiabatically out of the first sector as we increase
JH ; this set of five states corresponds to the J = 2 moment.
However, a zoom-in of this multiplet, as well as of one of
the higher energy multiplets, shows that the apparent fivefold
degeneracy of these states is actually weakly broken as 2 ⊕ 3
due to weak t2g-eg mixing. In particular, the naively expected
fivefold degenerate J = 2 ground state is split into a non-
Kramers doublet ground state and an excited magnetic triplet;
for the typical values listed above, this splitting is ∼8 meV.

Figure 2 shows the dependence of this lowest energy
doublet-triplet energy splitting (blue solid line) on VC . We find
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FIG. 2. Energy difference between the lower energy non-
Kramers doublet (Ed ) and the excited triplet (Et ), given by � =
Et − Ed , obtained via exact diagonalization of the Hamiltonian in
Eq. (1) (blue, solid line) plotted as a function of the dominant t2g-eg

splitting VC . We compare this with the third-order perturbation theory
result (red, dashed line) induced by small (JH/VC, λ/VC ) which leads
to weak t2g-eg mixing.

that this splitting can be semiquantitatively captured within
third-order perturbation theory, as discussed in Appendix B,
where we first eliminate the eg states, to find an effective
t2g model, and then diagonalize this reduced Hamiltonian.
The relevant terms arise at O(λ2JH/V 2

C ), from the following
sequence: (i) SOC λ promoting one electron from the t2g

manifold into the eg sector, (ii) intermediate state t2g-eg inter-
actions driven by Hund’s coupling set by JH , and finally (iii)
de-exciting back via SOC λ to end up with both electrons in
the t2g manifold. Diagonalizing this third-order perturbative
Hamiltonian, in conjunction with the bare t2g Hund’s cou-
pling, leads to the non-negligible splitting shown (red dashed
line) in Fig. 2, which agrees well with the full numerical cal-
culation in the regime of large VC . Our result is in contrast with
a previous conjecture that the splitting would appear at fourth
order in perturbation theory [21], which would have indeed
rendered this effect negligible. This highlights a nontrivial
effect of t2g-eg mixing, showing that it can be important for
nucleating multipolar order in 5d Mott insulators. However,
this effect by itself may be too small to account for the spin
gap observed in neutron scattering experiments [18,19] on
Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6. We next turn to
an additional mechanism, which can cooperate to enhance this
splitting, or even reverse the level ordering which we argue is
important in certain other materials.

B. Nonspherical Coulomb interactions in t2g model

The second important physical effect we consider is that
projecting the Coulomb interaction to the t2g Wannier or-
bitals can lead to deviations from the spherical symmetry
assumption, so that U ′ 
= U − 2JH . This is expected to be
more important for 5d orbitals which have more significant
overlap with the oxygen cage, as has been previously noted in
an ab initio study [28]. We therefore numerically diagonalize

FIG. 3. Energy difference � = Et − Ed between the magnetic
triplet and the non-Kramers doublet obtained via exact diagonaliza-
tion of the t2g-only model, shown as a function of the normalized de-
viation δU ′/U ′ of the Coulomb interaction from spherical symmetry.
For δU ′ > 0, the non-Kramers doublet has lower energy so � > 0.

the above model Hamiltonian, restricting ourselves to the
Hilbert space where both electrons occupy the t2g orbitals,
and varying δU ′ = U ′ − (U − 2JH ) to simulate the deviation
from spherical symmetry. Figure 3 shows how the low energy
degeneracy gets split as we go away from δU ′ = 0. We see
from here that even a small deviation δU ′/U ′ ∼ 0.1 leads
to a substantial splitting ∼20 meV. For δU ′ > 0, we find
that the non-Kramers doublet is lower in energy than the
magnetic triplet, which we argue is relevant to osmates such as
Ba2ZnOsO6, Ba2CaOsO6, and Ba2MgOsO6. The case where
the δU ′ < 0, so that the magnetic triplet lies lower in energy
than the doublet, may be important to understand aspects of
the unusual magnetism of the rhenate [31] Ba2YReO6; this
will be discussed in Sec. III.

II. MAGNETIC FIELDS FROM OCTUPOLAR ORDER

On phenomenological grounds, and the above microscopic
calculations, 5d2 oxides are candidates for a low-lying non-
Kramers doublet. As shown previously [19], this doublet may
be described using the wave functions of the J = 2 manifold
in terms of |Jz〉 eigenstates written as pseudospin-1/2 states:

|ψg,↑〉 = |0〉; |ψg,↓〉 = 1√
2

(|2〉 + | − 2〉). (5)

Each of these two states is individually time-reversal in-
variant. The angular momentum operators (J2

x − J2
y ) and

(3J2
z − J2), restricted to this basis, act as pseudospin-1/2

operators (τ x, τ z ), forming the two components of an XY-
like quadrupolar order parameter, while JxJyJz (with overline
denoting symmetrization) behaves as τ y, and serves as the
Ising-like octupolar order parameter. The mean field ferro-
octupolar ordered ground state is described by each site being
in the superposition state |ψoct

± 〉 = |ψg,↑〉 ± i|ψg,↓〉. Here the
signs reflect the Z2 nature of the Ising order, and i reflects the
breaking of time-reversal symmetry.
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The broken time-reversal symmetry of the octupolar
ground state would lead to internal magnetic fields in the
crystal. Using exact diagonalization, we obtain |ψoct

± 〉 as
the two-electron wave function obtained by superposing the
two degenerate time-reversal invariant ground eigenstates as
above, and compute the electronic currents in these states
which generate the internal magnetic fields. In the single-site
picture, the orbital currents responsible for the internal fields
live on the d2 ion. We thus define the orbital current density
operator as

J(r) = ieh̄

2m

∑
s

[
†
s (∇
s ) − (∇
†

s )
s ], (6)

where s sums over the physical electron spin. We expand the
operator 
 in the orbital basis as


†
s =

∑
α

ψn�α (r, θ, φ)c†α,s, (7)

where r ≡ (r, θ, φ), ψn�α refers to the real hydrogenlike wave
function, with n = 5 and � = 2 for the 5d wave functions, and
α denotes the orbital. We thus arrive at the spatially varying
expectation value of the current density operator:

〈J(r)〉± = ieh̄

2m

∑
s

∑
αβ

〈ψoct
± |c†α,scβ,s|ψoct

± 〉 ξαβ, (8)

ξαβ = R2
n�(r)

(
Y�α∇Y�β − Y�β∇Y�α

)
, (9)

where the two Ising states have 〈J(r)〉− = −〈J(r)〉+. Here
Y�α (θ, φ) are real Tesseral harmonics, and Rn�(r) is the radial
wave function. To compute the current density, we use a
variational ansatz for the radial wave function, which takes
on a hydrogenic form, but with an effective nuclear charge
which decreases with r, from a bare nuclear charge Z0 for
r → 0 to the screened effective charge Z∞ for r → ∞, over
a length scale r0. For the Os6+ ion relevant to Ba2ZnOsO6,
Ba2CaOsO6, and Ba2MgOsO6, we use Z0 = 76 and Z∞ =
7, and consider different values of r0; details are given in
Appendix B.

Using this expectation value for the current density, we
compute the magnetic field via

B±(r) = μ0

4π

∫
d3r′ 〈J(r′)〉± × (r − r′)

|r − r′|3 , (10)

where the integral is carried out over primed variables. The
two Ising time-reversed partner states have opposite magnetic
fields B−(r) = −B+(r).

The orbital current pattern which creates this field is shown
schematically in Fig. 4 (left panel), highlighting that it is
analogous to loop current orders proposed in certain cuprate
and heavy fermion materials [33,34]. In a more realistic calcu-
lation, which retains hybridization with oxygen, the octupolar
order we have uncovered may in fact be identical to plaquette
loop current order in the OsO6 cage. We find that the magnetic
field has a pattern which, appropriately, might be expected
from a set of eight alternating “magnetic monopoles” arranged
on a cube, as shown in Fig. 4 (right panel), to form an octupole
centered on the Os6+ ion. Figure 5 shows the magnetic field
expected from these orbital currents as a function of distance
from the Os6+ ion along the [111] direction, where the field

FIG. 4. Left: Schematic plot of the orbital current pattern on the
5d2 Os ion (indicated by the ball), showing that it has the same
symmetry as plaquette loop current order residing on the OsO6 octa-
hedral cage. Right: Configuration of fictitious “magnetic monopoles”
forming an octupole, which would produce the octupolar current
loop pattern shown in the left panel.

strength is the largest, for two different choices of r0 as in-
dicated. Figure 6 shows the same calculation, but normalizing
the field by that generated by a 1 μB dipole located at the Os6+

site.
While we have discussed above the magnetic field due to

octupolar order as a function of distance from Os, in order
to make a comparison with μSR experiments, we have to
estimate the fields produced by the octupolar order at possible
muon stopping sites. We thus next estimate the magnetic
field distribution over the surface of a sphere of radius 1 Å
centered around the oxygen site, which is where the muon
is expected to be bound [35,36]. Figure 7 shows a plot of
the field distribution, where we find the maximum field to
be present at points on this sphere located near the Os6+

ion. (This calculation retained nine Os6+ ions closest to the
oxygen ion, beyond which the contribution was negligible.)
We note that these maxima lie between the 〈111〉 and 〈100〉
directions. The presence of four symmetric maxima of the

FIG. 5. Magnetic field generated within the crystal in the pres-
ence of ferro-octupolar order, plotted as a function of distance from
the 5d2 Os ion along the [111] direction. The two curves correspond
to different choices of the screening parameter r0, which impacts the
field only at short distances. The wiggles reflect the structure of the
radial wave function.
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FIG. 6. Magnetic field in the presence of ferro-octupolar order,
plotted as a function of distance from the 5d2 Os ion along the [111]
direction. The data are the same as in Fig. 5, but normalized by Bdip

which denotes the magnetic field at the same location generated by
a 1 μB dipole moment located at the origin and pointing along the
[111] direction.

field strength is consistent with the residual symmetry in
the ferro-octupolar state of C4 rotations about the Os-O axis
followed by time reversal. The computed maximum field is
found to be ∼30 G, within a factor of 2 of the ∼50 G mag-
netic field inferred from μSR experiments on Ba2ZnOsO6,
Ba2CaOsO6, and Ba2MgOsO6 below a transition tempera-
ture T ∗. A quantitative computation with the μSR results
would need to retain the Os-O hybridization and ab initio
calculations for the optimal muon stopping sites [35,36]. The
magnetic field inferred from μSR experiments was previously
attributed to possible weak magnetic dipolar order, with a tiny
ordered moment �0.02 μB. Such a tiny ordered moment is
difficult to explain given the typical ∼1 μB local moments

FIG. 7. Color plot of the ferro-octupolar magnetic field distribu-
tion over a sphere of radius 1 Å around the oxygen site where the
muon is expected to be bound. The oxygen site is located half-way
between Os and the B-site ion (Mg, Zn, Ca). The largest field strength
(in red) appears near the Os6+ ion.

FIG. 8. Temperature dependence of the inverse magnetic suscep-
tibility (normalized to its value at T = 300 K) in the single-site prob-
lem with a low lying magnetic triplet and an excited non-Kramers
doublet; see text for details of the model and parameters. At high
temperature, we find a Curie-Weiss-like linear form χ−1(T ) ∝ (T +
Ts ), as indicated by the dashed line, with Ts ∼ 275 K for the chosen
parameters. At low temperature, we find the Curie law χ−1(T ) ∝ T .
The temperature where the low T and high T lines meet denotes a
crossover temperature scale Tcr ≈ 30 K. Varying the doublet-triplet
splitting, we find that kBTcr ≈ 0.07|�| and kBTs ≈ 0.35|�|.

expected in such Mott insulators, unless one is fine tuned to
be near a quantum critical point. Our work instead naturally
rules out dipolar order, and instead explains this weak field as
arising from loop currents in a phase which supports octupolar
order.

III. REVERSED LEVEL SCHEME: MAGNETIC
TRIPLET GROUND STATE

In previous work and in the above sections, we have ex-
tensively explored the case where the J = 2 multiplet is split
into a low-energy non-Kramers doublet and a spin-gapped
magnetic triplet. In this section we explore the single-ion
physics of the reversed level scheme which has also not been
studied in the oxides literature. As an illustrative example of
a model which leads to this level ordering, we explore the
Hamiltonian in Eq. (1), but with δU ′ = U ′ − (U − 2JH ) <

0, and projecting onto just the t2g orbitals. We note that
this deviation is not necessarily the only way in which the
Coulomb interaction can deviate from spherical symmetry—
indeed, imposing only the octahedral point group symmetry
will allow for a broader set of interactions.

Figure 8 shows the inverse magnetic susceptibility χ−1(T )
in this single-ion case, normalized by its value at T = 300 K,
for a choice of parameters VC = 3 eV, U = 2.5 eV, λ =
0.4 eV, and JH = 0.25 eV (as used in the previous sections),
but with δU ′ = −0.5 eV. (This choice of an admittedly large
δU ′ is only used for the simplest model to illustrate the impact
of splitting the lowest energy J = 2 multiplet; it is not meant
to capture the full spectrum of higher energy excitations.) This
leads to a triplet ground state, with an excited non-Kramers
doublet at an energy |�| ∼ 37 meV. Interestingly, we find
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that χ−1(T ) ∝ (T + Ts) in this case, exhibiting an apparent
“Curie-Weiss”-like form with Ts ≈ 275 K, over a wide range
of temperatures �150 K. Based on this, one might mislead-
ingly infer a Curie-Weiss temperature ∼ −275 K. Only upon
going to lower temperatures, do we observe a change of
slope and the correct χ−1(T ) ∝ T Curie law associated with
the single-ion low energy magnetic triplet. We find a very
similar result in an even simpler model where we split the
J = 2 multiplet using symmetry-allowed Stevens operators,
via Heff = −Veff (O40 + 5O44), with Veff < 0, where

O40 = 35J4
z − [30J (J + 1) − 25]J2

z + 3J2(J + 1)2

− 6J (J + 1), (11)

O44 = 1
2 (J4

+ + J4
−), (12)

suggesting that it is a robust consequence of triplet-doublet
splitting, with Ts reflecting single-ion physics; in this model,
|�| = 120|Veff |. Varying the doublet-triplet splitting, we
find kBTs ≈ 0.35|�|, while the crossover from the high
temperature Curie-Weiss-like form to the low temperature
behavior occurs at a temperature Tcr given by kBTcr ≈
0.07|�|.

Remarkably, precisely such a behavior, with a Curie-
Weiss-like form for χ−1(T ) and a break in slope on going
below �150 K has been observed [31] in Ba2YReO6, leading
us to suspect that the experimentally reported large Curie-
Weiss temperature ∼ − 600 K may in fact be misleading,
and could partly reflect this modified single-ion physics. The
true Curie-Weiss temperature in this material may thus well
be much smaller, and likely closer to that seen in the d2

osmates discussed above. Our exploration thus serves to partly
rationalize the widely diverging Curie-Weiss temperatures re-
ported in this class of materials as arising from the differences
in the single-ion physics of different 5d ions. The nature
and strength of exchange interactions between such magnetic
ions will be discussed elsewhere, in the context of ongoing
experiments on Ba2YReO6.

IV. DISCUSSION

We have shown that the physics of spin-orbit coupled J =
2 magnets can exhibit unconventional multipolar orders which
emerge from a low energy non-Kramers doublet. This doublet
arises from crystal field splitting of the J = 2 multiplet due
to multiple physical effects: weak t2g-eg mixing as well as
deviation of the Coulomb interaction from spherical symme-
try. Ferro-octupolar ordering within this doublet, which can
result from the interplay of magnetic exchange and orbital
repulsion [19], provides the most viable explanation for the
huge body of experimental data, including the μSR oscilla-
tions which we have shown results from orbital electronic
currents. As a further test of our theory, we propose that
nuclear magnetic resonance (NMR) studies on the oxygen site
should show no sign of any internal fields below T ∗ due to
its octupolar structure, which is evident from the schematic
plot in Fig. 4; specifically, the octupolar configuration in a
cubic system is invariant under C4 rotations about the Os-O

axis followed by time reversal. This vanishing of the field
in oxygen NMR would serve to further distinguish octupolar
order from possible dipolar order for which we do expect to
see an internal field in the NMR spectrum. Applying uniaxial
pressure along the 〈111〉 or 〈110〉 directions would break
this C4 symmetry, leading to a nonzero field at the oxygen
site which may be detectable by NMR. In previous work
[19] we have also shown how Raman scattering in a 〈111〉
magnetic field can uncover octupolar order via the appearance
of new modes below T ∗. Our work makes a compelling
case for octupolar order in a d-orbital Mott insulator. Future
experimental studies using pressure or doping, to suppress
the octupolar transition temperature and induce metallicity,
may allow one to study possible non-Fermi liquid states
associated with fluctuating multipolar orders [37]. Our work
emphasizes the need for additional ab initio studies of 5d
oxides at various filling factors to construct the appropriate
Wannier functions in order to extract the local interaction
Hamiltonian. In light of our work, it is also imperative to
revisit the entire body of experiments on other 5d2 materials,
such as Ba2YReO6, as well as 5d oxides at other filling
factors.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

APPENDIX A: ORBITAL WAVE FUNCTIONS
AND L MATRICES

The d orbital basis is constructed out of the lz eigenstates
of the angular momentum l = 2 manifold as

|yz〉 = i√
2

(|−1〉 + |1〉) ≡ |1〉α ,

|xz〉 = 1√
2

(|−1〉 − |1〉) ≡ |2〉α ,

|xy〉 = i√
2

(|−2〉 − |2〉) ≡ |3〉α ,

|x2 − y2〉 = 1√
2

(|−2〉 + |2〉) ≡ |4〉α ,

|3z2 − r2〉 = |0〉 ≡ |5〉α ,

(A1)

where the states |m〉 refer to |l = 2, m〉 and states with the
subscript α indicate the orbital basis. Since this is the basis
we will be working with in this paper, the α index will be
dropped. The |m〉 states in position space can be represented
using spherical harmonics (employing the Condon-Shortley
phase), and the particular linear combinations above ensure
that the orbital wave functions are real, giving the so-called
tesseral harmonics. In this basis, the angular momentum
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matrices can be constructed as

Lx =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −i −i
√

3

0 0 i 0 0

0 −i 0 0 0

i 0 0 0 0

i
√

3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

Ly =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −i 0 0

0 0 0 −i i
√

3

i 0 0 0 0

0 i 0 0 0

0 −i
√

3 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

Lz =

⎛
⎜⎜⎜⎜⎜⎝

0 i 0 0 0

−i 0 0 0 0

0 0 0 2i 0

0 0 −2i 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

(A2)

The top left blocks in the above matrices show the t2g sub-
space, and it is clear that the angular momentum is completely
quenched in the eg subspace.

APPENDIX B: PERTURBATION THEORY

We carry out a perturbation theory study, using HCEF

[Eq. (2)] as the unperturbed Hamiltonian and treating JH

(interactions) and λ (SOC) as perturbations. Working in the
two-electron basis |α1, s1; α2, s2〉 ≡ c†α1,s1

c†α2,s2
|0〉, where the

α’s are orbital indices, and the s’s are spin indices, the unper-
turbed eigenspace consists of three energy levels {0,VC, 2VC},
with degeneracies {15, 24, 6}. These correspond to double
occupancy within the t2g level, shared occupancy between
the t2g and eg levels, and double occupancy in the eg level,
respectively. The perturbations couple these different sectors.
For instance, SOC can excite an electron from a t2g level into
an eg level, across the gap VC . Similarly, pair hopping can hop
a pair of electrons from a t2g level into an eg level, across
an energy gap 2VC . Treating such terms within perturbation
theory we find that in order to project out the eg subspace,
we treat all such mixing terms adding second-order and third-
order perturbation effects, which leads to an effective t2g

subspace Hamiltonian. At second order, we find that U ′ − U ,
pair hopping, and magnetic Hund’s coupling are renormalized
differently, but in a way that does not break spherical sym-
metry, i.e., the renormalized Kanamori couplings obey [32]
U ′ − U = JP + JH (where JP and JH denote, respectively, the
strength of the interorbital pair hopping and magnetic Hund’s
coupling). Diagonalizing the resulting effective Hamiltonian,
which sums the full Hamiltonian projected to t2g levels with
the above perturbed interactions, we find that the ground state
remains a fivefold degenerate J = 2 multiplet. However, at
third order, we find new interactions that arise in the effective
Hamiltonian in the t2g manifold which cannot be described
as renormalizations of existing interactions; specifically, there

are terms schematically given by

�H (3)
L,L′ =

∑
H,H ′

(HSOC)L,H (HHund)H,H ′ (HSOC)H ′,L′

V 2
C

,

where L, H refer to low and high energy states with L having
both electrons in the t2g orbitals, and H having one electron
in t2g and the other in eg. This term leads to a splitting of the
J = 2 manifold into a low energy non-Kramers doublet and
a high energy magnetic triplet, with the splitting emerging at
O(λ2JH/V 2

C ) at large VC .

APPENDIX C: ORBITAL CURRENTS AND
MAGNETIC FIELDS

In order to study the impact of ferro-octupolar order in gen-
erating time-reversal breaking electronic currents and mag-
netic fields, we explicitly write out the orbital wave functions
in position space which enter the angular momentum states.
For this, we multiply the radial part of the hydrogenlike wave
function with the tesseral harmonic of the orbital. We use the
following form for the radial wave function:

Rnl (r) = Nnl ρ l(r)e−ρ(r)/2L2l+1
n−l−1[ρ(r)], (C1)

where n is the principal quantum number, l is the angular mo-
mentum quantum number, and ρ(r) = 2r/na(r). L2l+1

n−l−1 is the
generalized Laguerre polynomial, and Nnl is a normalization
constant. a(r) is a function which captures the screening by
the inner electrons, which we call the “effective” Bohr radius.
The function must be chosen such that

lim
r→0

a(r) = a0/Z0; lim
r→∞ a(r) = a0/Z∞, (C2)

where a0 is the (hydrogen) Bohr radius, Z0 is the bare charge
of the nucleus, and Z∞ is the effective charge that an electron
sees at large distances. We propose the following simple form:

a(r) = a0

Z (r)
; Z (r) = Z∞ + (Z0 − Z∞)e−r/r0 , (C3)

with r0 being a tuning parameter which determines how the
effective charge falls off with distance. For instance, for an
Os6+ ion, Z0 = 76 and Z∞ = 7 (since all electrons except the
one 5d electron we focus on will contribute to screening at
large distances). A reasonable value for r0 is that it is smaller
than the ionic radius ∼70 pm; we thus consider r0 = 10–
20 pm. If we are interested in 5d electrons, the radial wave
function is of the form

R52(r) = N52

(
2r

5a(r)

)2

e−r/5a(r)L5
2

(
2r

5a(r)

)
. (C4)

The normalization constant N52 depends on r0. Hence the full
wave function is given by ψnlα = Rnl (r)Ylα (θ, φ), where Ylα

is the tesseral harmonic associated with the α orbital. The
current operator thus becomes

J = ieh̄

2m

∑
α,β

∑
s

(ψnlα∇ψnlβ − ψnlβ∇ψnlα )c†α,scβ,s. (C5)

All the spatial dependence of the current is encoded in
the factor ψnlα∇ψnlβ − ψnlβ∇ψnlα ≡ ξαβ (r, θ, φ). Since the
wave functions can be separated into the radial and angular
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components, i.e., ψnlα = Rnl (r)Ylα (θ, φ), this factor becomes

ξαβ = R2
nl (Ylα∇Ylβ − Ylβ∇Ylα ). (C6)

From the exact diagonalization, we can obtain the ground state
of the system as some linear combination of our basis states.
Let us call this ground state |ψg〉:

|ψg〉 =
∑
�

a� |�〉 , (C7)

where |�〉 refers to our basis states of the form |α1, s1; α2, s2〉.
Since we are interested in the matrix elements of the current

in Eq. (C5) in this state, we can recast the problem as

〈J〉 = ieh̄

2m

∑
α,β

wαβ ξαβ, (C8)

where each factor ξαβ is associated with a “weight” wαβ , given
by

wαβ =
∑
�,�′

a∗
�a�′

∑
s

〈�| c†α,scβ,s |�′〉 . (C9)

It can be seen that wαβ = w∗
βα . The Hermiticity of J constrains

the weights to be purely imaginary. Once the expectation
value of the current density is obtained, we use Eq. (10) to
compute the magnetic field.
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