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Electronic transport through correlated electron systems with nonhomogeneous charge orderings
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The spinless Falicov-Kimball model exhibits outside the particle-hole symmetric point different stable
nonhomogeneous charge orderings. These include the well-known charge stripes and a variety of orderings
with phase-separated domains, which can significantly influence the charge transport through the correlated
electron system. We show this by investigating a heterostructure in which the Falicov-Kimball model on a
finite two-dimensional lattice is located between two noninteracting semi-infinite leads. We use a combination
of nonequilibrium Green’s function techniques with a sign-problem-free Monte Carlo method for finite
temperatures or a simulated annealing technique for the ground state to address steady-state transport through
the system. We show that different ground-state phases of the central system can lead to simple metallic-like or
insulating charge transport characteristics, but also to more complicated current-voltage dependencies reflecting
a multiband character of the transmission function. Interestingly, with increasing temperature, the orderings tend
to form transient phases before the system reaches the disordered phase. This leads to nontrivial temperature
dependencies of the transmission function and charge current.
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I. INTRODUCTION

Nonhomogeneous long-range charge and spin orderings
have been observed in a multitude of strongly correlated
electron systems. Among the most studied are the static and
fluctuating stripelike charge orderings, observed in doped
copper oxides, that interfere with the high-temperature super-
conductivity [1–11]. Equivalent structures have been observed
in a variety of other materials including layered cobalt oxides
[12,13] and nickelates [14–18]. The nonhomogeneous long-
range orderings are often accompanied by a phase separa-
tion characterized by domains of mutually different phases
[15,19,20], and this tendency toward the electronic phase
separation and pattern formation seems to be rather general
in strongly correlated electron systems [21–24].

Different theoretical approaches have been applied to de-
scribe the formation of nonhomogeneous orderings in these
materials. Important insight into the problem was gained by
phenomenological models [24–30] and in works focusing on
the competition between the long-range interactions and the
natural tendency of strongly correlated electron systems to
phase separation [31–33]. However, it was also shown that
various simplified models of correlated electrons that consider
only local and nearest-neighbor interactions can naturally
describe the formation of nonhomogeneous ground states
including charge and spin stripes [34–47].

The simplest of these models is the Falicov-Kimball model
(FKM) [48] in which the itinerant electrons interact with lo-
calized particles. The ground state of the spinless FKM at the
particle-hole symmetric (PHS) point is a charge density wave
(CDW) phase for any finite Coulomb interaction on a bipartite
lattice in dimension two or higher [49–51] and this phase is
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stable up to finite critical temperatures [52–56]. However, it
was also proven that a segregated phase, which is a special
case of phase separation where the heavy particles (ions) and
electrons reside in separate domains, is the ground state in the
limit of infinite Coulomb interaction of the spinless version
of the FKM [57–62]. Away from these special limits, hence,
for moderate Coulomb interaction and outside the PHS point,
the ground state of the FKM is extremely rich and contains
stable nonhomogeneous charge orderings of various types
including different types of charge stripes [37,63–67] which
are stable also at finite temperatures [68–73]. Besides, these
already exotic charge orderings are often accompanied by
nonhomogeneous magnetic structures in the spinful version
of the FKM and its various generalizations [41,74–76].

It is worth emphasizing that nonhomogeneous charge
phases play an important role in studies of various phenom-
ena modeled by the FKM including crystallization [77–79],
metal-insulator and valence transitions [80–89], localization
[86,90–93], distribution of heavy and light cold atoms in
optical lattices [70,94–97], or studies of nonlocal correlations
[98–101]. They should be also considered when addressing
different nonequilibrium phenomena [102–110] and any type
of transport [73,93,111–115] while dealing with a system
outside the PHS point, e.g., a doped system.

In our work we are especially interested in nonequilibrium
steady-state charge transport through a finite layered FKM
system (for the sake of clarity, we refer by “system” just
to the central part of the heterostructure shown in Fig. 1)
sandwiched between two semi-infinite metallic leads. This,
or similar setups, has been addressed before [73,93,111,114].
However, the regimes of nonhomogeneous charge orderings,
such as stripes or phase separation, have not been considered.

We focus on the regime of intermediate Coulomb inter-
action between the constituents for which it was shown in
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FIG. 1. Heterostructure with the central spinless FKM system
sandwiched between two noninteracting semi-infinite metallic leads
with semielliptical surface DOS of total width 2B centered around
εL,R. The nearest-neighbor hopping is set by the matrix element t
which we use as the unit of energy. The exchange of the d electrons
between the system and leads is given by the couplings γL = γR = 2t
and the hopping in the leads by tl = B/2 = 10t .

previous works that it is rich in nonhomogeneous charge
orderings, which are stable even at finite temperatures
[37,63,64,68,71]. Here, we address transport through a system
that is in principle infinite in the direction parallel to the
system-leads interfaces (y), but finite in the perpendicular di-
rection (x) as illustrated in Fig. 1. This allows us to investigate
the dependence of the transport on the width of the system
starting with a lattice just a few layers thick. To model this we
use a central system with mixed boundary conditions, namely,
open ones at the system-leads interfaces and periodic in the
other direction.

As far as we know, this system geometry has not been
addressed in the literature away from PHS point. Therefore,
building on the prior studies of orderings in the FKM on
regular square lattices with periodic boundary conditions
[37,63,64,68,71], we first investigate the stability of the non-
homogeneous charge orderings in our setup. We focus on
the influence of particle filling, the thickness of the system,
and also temperature on the charge ordering in the system.
We then show how various homogeneous configurations and
their change influence the nonequilibrium charge transport
properties.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and outline the methodology to char-
acterize the ground-state and finite-temperature properties. In
Sec. III A we focus on transport through the ground-state
orderings of various particle concentrations. In Sec. III B we
study finite-temperature transport properties for representa-
tive cases that evolve with increasing temperature from the
low-temperature nonhomogeneous phases through a transient
ordering to a high-temperature disordered phase. Section IV
concludes with a summary. In Appendix A we address the
stability of the density of electrons for varying electrochem-
ical potential, voltage, or temperature; in Appendix B we
discuss the finite-size scaling of some transport properties;
and Appendix C is dedicated to the influence of different types
of particle excitations on the charge current.

II. MODEL AND METHODS

A. Model

We consider a heterostructure consisting of a central sys-
tem of correlated electrons on a lattice sandwiched between
two noninteracting leads as illustrated in Fig. 1. The physics

of the central system, where the itinerant d electrons and
localized fermionic f particles interact via local Coulomb in-
teraction, is described by the spinless Falicov-Kimball Hamil-
tonian [48,77]

Hs = −
∑
〈 j, j′〉

t j j′d
†
j d j′ + U

∑
j

d†
j d j f †j f j −

∑
j

μ jd
†
j d j . (1)

Here, the first term describes quantum mechanical tunneling
of d electrons from site j to j′ on a lattice. The lattice
geometry and boundary conditions are set by the hopping
matrix with the elements t j j′ . We assume only hopping to the
nearest-neighbor sites with a constant amplitude t which sets
the unit of energy in our system. We consider a square-lattice
central system in two dimensions, typically with number of
layers Lx and number of sites per layer Ly being unequal.
We employ mixed system boundary conditions, namely, open
at the edges coupled to the leads and periodic boundary
conditions in the y direction.

The second term in Eq. (1) describes local Coulomb-like
interaction between the d electrons and localized f particles.
With the last term, the position-dependent electrochemical
potential μ j is taken into account, combining both the elec-
trostatic and chemical potential of the decoupled system,
acting on d electrons. In principle, the profile of this potential
can be influenced by the leads [73,111,113,114,116] acting
as reservoirs for the itinerant d electrons. In our study, we
assume that the electrochemical potential is constant in the
whole system μ j = μ. The influence of the leads is taken
into account implicitly as a constant shift of this potential. A
similar term for the f particles is neglected as we are keeping
their concentration fixed because their number is not altered
by the leads.

The central system is sandwiched between two metallic
leads, which are modeled by

Hl
lead = −tl

∑
〈n,n′〉

(c†l,ncl,n′ + c†l,n′cl,n) + εl

∑
n

c†l,ncl,n, (2)

where tl is the hopping constant for lead l = L, R and εl

represents a constant energy shift of the respective lead. The
coupling between the central system and leads is described by
the hybridization term

Hl
hyb = −γl

∑
〈i,n〉

(c†l,ndi + d†
i cl,n), (3)

with γl being the lead-system coupling.
We assume that the semi-infinite leads are unaffected by

the system and model them by parallel chains coupled to the
central system as shown in Fig. 1. Therefore, the leads can be
characterized by their surface density of states (DOS)

ρl (E ) = 2

πB2

√
B2 − (E − εl )2, (4)

with half-bandwidth B = 2tl centered around the band energy
shift εl from Eq. (2) [73,117]. We keep the leads half filled
by fixing μl = εl , where μl is the chemical potential of the
leads. The voltage drop V = μL − μR is then introduced by
mutually shifting μL and μR.
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B. Methods

We are utilizing a combination of a sign-problem-free
Monte Carlo (MC) method [54,56,71,118,119] with a
nonequilibrium Green’s function technique [120,121], which
allows us to address nonequilibrium steady-state charge trans-
port in the heterostructure [73,93]. This method takes advan-
tage of the fact that the occupation numbers n f

j = f †j f j of the
localized f particles are integrals of motion and, therefore,
their distribution does not change in time. In addition, there is
no reservoir that would allow for a fast thermal rearrangement
of the f particles after the system is coupled to the leads. This
describes a situation in which the f particles are effectively so
much heavier than the conducting d electrons that the investi-
gated steady state for the d subsystem is reached much faster
than any nonequilibrium effect on the f -particle distribution
can be observed [122]. In our study, we assume that in the
distant past the system was decoupled from the leads and both
the system and the leads had been in thermal equilibrium.
This means that the steady state depends on the equilibrium
f -particle distribution [73,104,113].

The value of electrochemical potential, which governs the
number of d electrons in the decoupled system, is dictated by
the equilibrium state of the semi-infinite reservoirs (μL = μR)
before the leads are coupled. Formally, we take μ to be part of
the system Hamiltonian. This choice shifts the system Fermi
level to zero energy and makes the voltage drop in the leads
symmetrical around zero (μL = −μR).

If we split the system’s electrochemical potential into
its constituents, another interpretation of our protocol is
possible—namely, that the chemical potential of the decou-
pled system is always zero and that the number of d electrons
and consequently the f -particle distribution are both dictated
by the varying flat electrostatic potential, as is common in
studies of pressure-induced valence and metal-insulator tran-
sitions [82,83,87,88]. No matter the interpretation, the method
requires us to first investigate the thermal distribution or the
ground-state f -particle configurations of the central system.

1. Decoupled system

The fact that the f -particle number operators n f
j are good

quantum numbers can be used to simplify the system Hamil-
tonian in Eq. (1) by replacing n f

j with its eigenvalues w j = 1
(occupied) or 0 (unoccupied). The simplified Hamiltonian for
a fixed f -particle configuration w thus reads

Hw
S =

∑
j, j′

h j j′d
†
j d j′ =

∑
α

λαb†αbα (5)

with h j j′ = (Uw j − μ)δ j j′ − t j j′ . Here, a unitary transforma-
tion λ = UhU† is used to diagonalize the system matrix
h with λα being its eigenvalues stored in ascending order.
Finding the ground state then means to find the configuration
w with the lowest energy,

Egs
S (w) =

L∑
α=1

λw
α 	

(−λw
α

)
, (6)

where 	(E ) is the Heaviside step function. Although this is
formally simple, finding the ground-state configuration for a
large lattice size L = Lx×Ly is computationally demanding,

often out of reach for the current state computational tech-
niques. Therefore, we determine the ground state approxi-
mately using a simulated annealing method [123] built on the
same MC technique which we use for finite temperatures.

The MC method takes advantage of the fact that the mean
values of any local d-electron operator Ô of the FKM can be
written in the form

〈Ô〉 = Trw〈Ô〉d ≡ 1

Z

∑
w

e−βF (w)〈Ô〉d , (7)

where

F (w) = − 1

β

∑
α

ln[1 + e−βλw
α ], (8)

with Z = ∑
w e−βF (w) being the partition function (remember

that μ is incorporated into the Hamiltonian). Here, 〈.〉d is the
trace over the d-electron subsystem for fixed w [54]. As this
is a single-particle problem, the trace can be calculated effi-
ciently using exact numerical diagonalization. The sum over
configurations w can then be calculated using a Metropolis-
algorithm-based MC method [54,56,71,118,119,124].

The simulated annealing method [123], which we use for
finding the ground-state configurations, is methodically equiv-
alent to the MC method, where we start at a high temperature
and decrease it steadily to zero. However, instead of the
free energy in Eq. (8) we use as weights the ground-state
energy Egs

S (w) from Eq. (6), which allows us to reach lower
temperatures. In some cases, the temperature at which the
ground-state configuration starts to order is very low, making
the annealing process inefficient. For these cases we have
also applied a simple variation of the zero-temperature hill-
climbing algorithm described in Ref. [125].

Besides the distribution of f particles, we use other prop-
erties of the isolated system to explain the character of charge
transport. In this context, the most important property is the
system density of states DOS(E ) = TrwDOS(E ,w) with

DOS(E ,w) = 1

L

∑
α

δ(E − λw
α )

≈ 1√
4πσL

∑
α

e− (E−λw
α )2

4σ , (9)

where we use a Gaussian broadening of otherwise sharp states
λω

α with σ = 0.1t2 when addressing the ground-state proper-
ties and σ = 0.02t2 otherwise. This artificial broadening is
used only to smooth the data in the figures. It has no effect
on the transport in the heterostructure because there only the
broadening which arises naturally from the coupling to the
leads is taken into account.

We also utilize the specific heat, defined as

CV = β2

L

(
〈E2〉 − 〈E〉2 +

〈∑
α

(λw
α )2

eβλw
α + e−βλw

α + 2

〉)
, (10)

and various order parameters to identify the approximate
temperatures below which nonhomogeneous orderings start to
form.
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2. Coupled system

The transformed Hamiltonian in Eq. (5) describes, for a
specific configuration w, a noninteracting system. Nonequi-
librium transport in this kind of model is a well-studied
problem [73,117,126] and the exact form of the steady-state
Green’s functions is given by [120]

Gr,a(E ) = gr,a(E ) + gr,a(E )�r,a(E )Gr,a(E ), (11)

G<(E ) = Gr (E )�<(E )Ga(E ). (12)

Here, Gr (a) is the retarded (advanced) Green’s function of
the coupled system, G< is the lesser Green’s function, and
gr (a)(E ) is the retarded (advanced) Green’s function of the
bare system with components

gr,a
αβ (E ) = δαβ

E − λw
α ± i0

. (13)

The total tunneling self-energies of the simplified leads
�r,a,< = �r,a,<

L + �r,a,<
R have the components


r,a
l,αβ

(E ) = �l,αβ (E ) ± i

2
�l,αβ (E ),


<
l,αβ (E ) = i�l,αβ (E ) fl (E − μl ),

�l,αβ (E ) = 2πγ 2U {sl }
αβ ρl (E ), (14)

�l,αβ (E ) =

⎧⎪⎪⎨
⎪⎪⎩

2γ 2

B2 U {sl }
αβ (E − εl ), for |E − εl | < B,

2γ 2

B2 U {sl }
αβ [(E − εl ) ∓

√
(E − εl )2 − B2],

for (E − εl ) ≷ ±B,

U {sl }
αβ =

∑
i∈{sl }

U†
βiUiα,

where {sL,R} are the sets of system lattice positions at the
left and right interfaces and fl (E ) is the Fermi function. This
exact analytical form of the self-energies follows from the fact
that leads in our model consist of independent semi-infinite
chains, each connected to the system only through one site.
The details of the derivation of Eq. (14) can be found in
Refs. [73,117,127].

Using the standard Landauer-Büttiker formula, the steady-
state current Iw for a specific f -particle configuration is given
by

Iw =
∫

dE

2π
T (E ,w)[ f (E − μL ) − f (E − μR)], (15)

where T (E ,w) is the transmission function given by the trace
over the d-electron subsystem:

T (E ,w) = Trd{�L(E )Gr (E )�R(E )Ga(E )}. (16)

Other quantities that we are interested in are the spatially re-
solved nonequilibrium densities of the conducting d electrons,

〈
nNE

d, j

〉
d

= −i
∫

dE
∑
α,β

U jαU†
β jG

<
αβ (E ), (17)

and the local DOS of the coupled system,

LDOS j (E ,w) = i

2πL

⎡
⎣∑

α,β

U jαU†
β jG

r
αβ (E )

−
∑
α,β

U†
α jU jβGa

αβ (E )

⎤
⎦, (18)

which allows us to define the generalized inverse participation
ratio (gIPR):

gIPR(E ,w) =
∑

j LDOS2
j (E , w)[∑

j LDOSj(E , w)
]2 . (19)

The inverse participation ratio and its generalization can be
used to identify the localization of itinerant electrons in
strongly correlated electron systems [118,128–130]. The gIPR
scales as 1/L for completely itinerant states, as ∼1/Ly for
energies within the gap and outside the central system DOS,
where the dominant contribution comes from the LDOS at the
interfaces, and it converges to a finite value with increasing L
for localized states.

Because the f -particle occupation numbers are integrals of
motions, the thermal mean values of above quantities can be
evaluated by employing the same MC procedure as introduced
for the decoupled system [73].

III. RESULTS

It was shown in previous studies that the FKM with inter-
mediate interaction U exhibits a vast variety of stable charge
configurations [37,64,68,70,71]. Here, we address a few typ-
ical, but nontrivial, examples of this regime represented by
U = 4t . The stability of nonhomogeneous phases for U = 4t
was investigated in detail in several studies; therefore, various
approximate phase diagrams are known [64,69,71]. Although
these diagrams have been calculated for different system
geometry and boundary conditions, we use them as a guide
for setting the concentration of the f particles which heavily
influences the charge ordering in the system. The system
ground-state concentrations of the d electrons (nd ) are set by
the electrochemical potential (for details see Appendix A).
We focus on two types of fillings studied in the literature,
namely the neutral (or nearly neutral) case n f � nd [37] and
the half-filled case n f + nd � 1. Note that the similarity signs
refer to the fact that we fix the same μ for all temperatures,
lattice sizes, and voltages. Under this condition, the total
density of d electrons is stable with changing lattice size and
reasonably stable with the temperature. However, it varies
with the voltage because of the asymmetric DOS of the d
electrons. We address this problem in detail in Appendix A.

In our analysis, we first focus on charge transport at
zero temperature because this allows us to discuss the direct
influence of the specific f -particle orderings without any
thermal fluctuations. In the following we use leads with half-
bandwidth B = 20t , which was chosen to be broad enough
to incorporate the whole DOS of the isolated system when
V � B. We set γ = γL = γR = 2t , which corresponds only
to a fifth of the hopping amplitude in the leads (which follows
Ref. [117]), but still provides a sufficient broadening of the
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system states. Note that the charge-current dependence on γ

is, in general, nonlinear and might be nonmonotonic even in
the simple case of a noninteracting single resonant level model
[120]. However, our tests showed that the choice γ = 2t is
at a range of values, where charge current increases with γ

approximately linearly for all voltages.
For every investigated case we first address the ground-

state real-space f -particle distribution. We show how it de-
pends on system width by considering three lattice sizes, L =
Lx×Ly = 6×24, 12×24, and 24×24. We use Ly = 24 because
it was shown recently for the PHS point that Ly ∼ 20 is suffi-
cient to approximate a layered system with Ly → ∞ [73] and
similar conclusions can be drawn outside this point as briefly
discussed in Appendix B. Afterward, we address the related
DOS of the d electrons for the isolated system. The ground-
state orderings of f particles and the DOS of the d electrons
are often sufficient to explain the main qualitative features of
the I-V characteristics and transmission functions that give
detailed information about the nonequilibrium charge trans-
port. In cases where deeper analysis is needed we discuss also
other quantities such as the gIPR or order parameters. Note
that because we are always addressing transport in a finite
system we call an I-V characteristic insulating if it clearly
reflects a large energy gap on the Fermi level with negligible
current for small voltages, and we call it metallic-like if the
current increases approximately linearly already for small
voltages.

A. Zero temperature

1. Particle-hole symmetric case

We start our analysis by discussing the PHS case μ = U/2
which sets n f = nd = 0.5 and is, therefore, both neutral and
half filled. This regime was investigated in detail in previous
works [73,93], but it is useful to recapitulate the main results
here as we will later put them into contrast with the situation
away from the PHS point.

As illustrated in Fig. 2(a), the ground state at μ = U/2
is a perfect checkerboard ordering of f particles for any
system thickness. We emphasize again that this ordering will
not change after we couple the system to the leads. The
system DOS, shown in Fig. 2(b), contains a CDW gap of
width �PHS = U centered around the Fermi level. This gap is
reflected in the equilibrium transmission function in Fig. 2(d).

As a consequence, and despite the broadening coming
from the leads, the current in Fig. 2(c) is negligible for small
voltages V < �PHS, even for Lx = 6. A sharp increase of the
current can be seen when V > U because then the chemical
potentials of the leads reach the edges of the gap and the
voltage starts to probe the main bands of the transmission
function. It is important to note that here as well as in all
other cases the shape of the transmission function depends
only weakly on the voltage if V < B/2 [73]. Therefore, we
can in most cases illustrate its main qualitative features and its
influence on the current by showing the transmission function
profile for V = 0.

As a result of the finite bands of the leads, the I-V char-
acteristic is nonmonotonic. It drops when the overlaps of the
occupied states in the left lead, the unoccupied states in the
right lead, and the DOS of the system decrease. This is a

FIG. 2. Ground-state f -particle configurations (a), DOS of the
central system calculated with artificial Gaussian broadening with
σ = 0.1t2 (b), I-V characteristics for systems (c), and equilibrium
transmission function (d) at PHS point (nf = nd = 0.5) and for
system widths Lx = 6 (black circles and lines), 12 (blue), and 24
(red) and Ly = 24.

common feature to all f -particle concentrations and we are
therefore not addressing it in detail for other cases.

Because of the perfect checkerboard ordering, the I-V
characteristic is practically independent of the layer thickness
for Lx � 6. The reason is that for a wide enough system,
the checkerboard structure of the f particles is seen by the
electrons as a perfect periodic potential without any additional
scatterers.

Note that any disruption of the checkerboard ordering,
which cannot be avoided when leaving the PHS point, leads
to the formation of subgap states or bands in the system’s
DOS [54,56,68,93]. However, the transmission through these
subgap states in the vicinity of the PHS point is negligible for
a sufficiently broad system [93]. The main reason is the effect
of d-electron localization [118] for states within the gap.

We next move away from this special case starting with
two typical half-filled cases (n f + n f � 1).

2. Half filling nf + nd � 1

With lowering the concentration of f particles to n f = 1/3
and fixing the equilibrium half-filling condition by μ = 2.8t ,
the checkerboard phase starts to compete with the irregular
diagonal stripes of unoccupied lattice points [Fig. 3(a)]. The
system has a tendency to keep the interfaces unoccupied
or only sparsely occupied by the f particles. This tendency
seems to be rather general for the half-filled cases away from
PHS point. We have observed it also for higher concentrations
of f particles, which we do not discuss here for the sake of
brevity.

The disruption of the checkerboard pattern by the di-
agonal structures leads to formation of a sub-�PHS band
[−2.5t � E � −1t in Figs. 3(b) and 3(d)], which merges
with the lower main band forming a strongly asymmetric
DOS with a narrower gap � ∼ U/2 ∼ �PHS/2. This is re-
flected in the I-V characteristics, where the current starts to
increase significantly at much lower voltages than for the PHS
case in Fig. 2(c) and has a flatter slope for 2t < V � 10t .
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FIG. 3. Ground-state charge configurations for Lx = 6 (black
circles), 12 (blue), and 24 (red) and Ly = 24 (a), the equilibrium DOS
of the decoupled system (b), current-voltage characteristics (c), and
transmission function (d) for nf = 1/3, μ = 2.8t (nd � 2/3) at zero
temperature. The color coding of the system width is the same for all
panels.

Nevertheless, because of the disruption of the checkerboard
pattern, the current in this range of voltages is smaller than
in the PHS case, and it decreases with increasing system
thickness for any V .

At very low concentrations of f particles, represented in
Fig. 4 by the case n f = 1/6 and μ = 3.5t , the ground state is
a homogeneous distribution of the localized f particles. The

FIG. 4. Ground-state charge configurations for Lx = 6 (black
circles), 12 (blue), and 24 (red) and Ly = 24 (a), the equilibrium DOS
of the decoupled system (b), current-voltage characteristics (c), and
transmission function (d) for nf = 1/6, μ = 3.5t (nd � 5/6) at zero
temperature. For comparison, the DOS (b) and transmission function
(d) for an empty lattice at the same μ̄ are plotted by green line. The
gIPR dependence on E illustrating the different character of the states
at low and high energies is plotted in (e). The color coding of the
system width is the same for all panels.

gap around the Fermi level has even smaller width than for
n f = 1/3 but it is still present.

Interestingly, the states in the vicinity of this gap have a
relatively low transmission function when compared to the
ones for E < −3t [see Fig. 4(d)], even though the system
DOSs have similar magnitudes. This points to a different
nature of the states in these two energy regimes, at least for
finite systems. A similar difference can also be observed for
the case n = 1/3, but here it is much more pronounced, and
therefore more suitable for a closer examination.

The DOS for low energies E < −3t resembles the non-
interacting case. We illustrate this in Fig. 4(b) where we
compare the DOS of the interacting case with that of a nonin-
teracting system for L = 24×24 (green line). It suggests that
the states with low energies are less affected by the f particles
and therefore less localized. To support this conjecture, we
plot in Fig. 4(e) the gIPR(E ,w) scaled by Lx for the three
lattice widths used. Clearly, the scaling in the range of −7t <

E < −3t points to delocalized or only very weakly localized
states. Unfortunately, the gIPR around the gap has too many
sharp features to draw a reliable conclusion about how it
evolves with increasing system size, but for a finite width it
clearly indicates a higher localization than for the states in
the range −7t < E < −3t . The presence of a broad range of
fairly delocalized states is the main reason why the current for
V > 6t shown in Fig. 4(c) exceeds the one in Fig. 3(c) for all
comparable lattice sizes, but most profoundly for the widest
one.

Overall, the following conclusions can be drawn for the
half-filled case. The open boundary conditions lead to f -
particle configurations with the tendency to form unoccupied
f -particle structures at the interfaces and the configurations
have the same character for all lattice sizes. All cases studied,
including those not presented here, exhibit a gap around the
Fermi level in the system DOS and have, therefore, a typical
insulating character with negligible current for small voltages.
The formation of bands within the former CDW gap can lower
the threshold voltage at which a significant charge current
starts to flow through the system but a localization of d
electrons seems to play a role in suppressing the transmission
for these states.

3. Away from half filling nf � nd

A lowering of the total concentration of the particles below
half filling leads to various qualitative changes in the proper-
ties of the heterostructure. First, the size of the system starts
to influence the character of the f -particle configurations
significantly. This can be seen in Fig. 5 where we show
data for n f = 1/3 and μ = −0.15t . These parameters set the
neutral case n f � nd .

For Lx = 6 (and any smaller width), the f particles are
forming wall-like stripes at the edges of the system. The
reason is the open boundary conditions at the interfaces for
the decoupled system, which lead to a smaller mobility of the
d electrons at the interfaces than in the central part. Because
of the low density, nd ∼ 1/3, of d electrons it is energetically
advantageous to push the f particles to the edges and let the
d electrons concentrate in the empty central part of the lattice.
This is, therefore, an example of a segregated phase.
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FIG. 5. Ground-state charge configurations for Lx = 6 (black
circles), 12 (blue), 24 (red) and Ly = 24 (a), the equilibrium DOS
of the decoupled system (b), current-voltage characteristics (c), and
transmission function (d) all for nf = 1/3 and μ = −0.15t (nd �
1/3) at zero temperature. The color coding of the system width is the
same for all panels.

Naturally, the walls of f particles at the system-lead in-
terfaces have consequences for the charge transport of the
coupled system. Because of the Coulomb interaction with
the conducting electrons, the stripes form a barrier which
lowers the total magnitude of the current [compare Fig. 5(c)
with Fig. 3(c)]. However, there is also a benefit. The center
of the lattice is empty which leads to a gapless DOS. The
current has a metallic-like character with approximately linear
dependence of the current on voltage for V � 6. The states
above E = 3.5t in DOS have a negligible transmission for
Lx = 6 [the black line in Fig. 5(d) is practically at T (E ) = 0
in this range] and, therefore, do not contribute to the transport.
Consequently, the I-V characteristic has its maximum already
at V ∼ 7t and the current declines way before it reaches the
edges of the system DOS.

As the width of the system is increasing, the character of
the configuration changes. The edges stay occupied, but a
regular pattern of f -particle dimers is formed in the central
part of the system. The dimers are not spread in a most
homogeneous way but concentrate in a domain with the rest
of the lattice staying empty. This is therefore an example of a
phase separation with three domains—namely, fully occupied
edges, the empty domain, and the dimer domain. This pattern
does not change with further broadening of the system; the
dimer domain just becomes more dominant.

The dimer domain does not open a gap in the DOS
at the Fermi level; therefore, the I-V characteristic is still
metallic-like, even for Lx = 24 [Fig. 5(c)]. There are two
interesting conclusions concerning the influence of the dimer
domain on charge transport. First, the dependence of the
current on the system width is rather weak for small voltages.
This means that the regular dimer pattern is not a significant
source of scattering for low energies. Second, this domain
boosts the transmission for high energies E > 5t [blue and
red lines in Fig. 5(d)]. A clearly separated band with high
transmission is formed in the range 5t � E � 6.5t for systems
that contain the dimer domain. This band leads to a steplike

FIG. 6. Current-voltage characteristics for the artificially ordered
central systems shown in the insets with the lattice width Lx = 6
(black circles), 12 (blue), and 24 (red) and Ly = 24. All parameters
besides the f -particle orderings are identical to the case shown
in Fig. 5.

increase of the current at V ∼ 12t and, surprisingly, the
currents for broader system widths can therefore overcome
even the one for Lx = 6.

The reason for the high transmission through high-energy
states seems to be that if the dimer domain spreads from one
edge of the system to the other, it is a perfectly periodic pattern
(within the system). This allows electrons to travel through
system without scattering. Therefore, the dimer domain actu-
ally boost the current and the only real barriers are the walls
at the edges of the system, which are not part of the dimer
periodic pattern.

To show the magnitude of the influence of these walls
on the transport, we plot in Fig. 6 the I-V characteristics for
systems with the same n f and μ, where instead of the edge
stripes a perfectly ordered pattern of dimers is formed. Note
that although these orderings are artificial for open boundary
conditions, they have been observed for periodic ones [71] and
might represent a configuration which stabilizes when using
other measurement protocols, e.g., when the f -particle con-
figuration orders in an already coupled system. The maxima
of the current in Fig. 6 are approximately five times higher
than in Fig. 5(c), so we can conclude that the effect of the
edge walls is significant.

As we lower the particle concentration even further, the
segregation starts to dominate with f particles forming walls
at the system edges for any width. Because this leads to a
relatively simple I-V characteristic we omit this case from
the discussion and instead we address transport through a
predominately charge-stripe ordered phase.

To this end, we investigate a ground-state configuration
where every other vertical layer is empty. Because both sys-
tem edges tend to be occupied by the f particles this type
of ordering forms more naturally in systems with odd Lx,
especially for narrow ones. Inspired by Refs. [64,71], we
choose n f = 3/8 and μ = 0.14t which stabilizes nd ∼ 0.34.
As for n f = 1/3, the smallest system shows a segregated
phase, but from Lx = 11 up clear vertical charge stripes are
formed, as shown in Fig. 7(a). These share the lattice with
connected empty domains.
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FIG. 7. Ground-state charge configurations for Lx = 5 (black
circles), 11 (blue), 23 (red) and Ly = 24 (a), the equilibrium DOS
of the decoupled system (b), current-voltage characteristics (c), and
transmission function (d) all calculated for nf = 3/8 and μ = 0.14t
(nd � 0.34) at zero temperature. The color coding of the system
width is the same for all panels.

The I-V characteristics in this case are metallic-like. The
current through the system with Lx = 5 and Lx = 11 resem-
bles the situation for n f = 1/3, where I for Lx = 12 was
at high voltages higher than I for Lx = 6. However, the I-V
characteristic for Lx = 23 differs qualitatively from the Lx =
11 case. This can be seen already in the transmission function,
Fig. 7(d), where the transmission function for Lx = 23 (in
contrast to Lx = 11) does not show a clear band around E =
6t . The reason is that the upper band in the transmission for
Lx = 11 is related to the perfect stripe order in the lower half
of the system, shown in the second panel of Fig. 7(a). Hence,
it is related to the areas (channels) of perfectly periodically
arranged f particles spreading from the left to right interface,
where here, and in contrast to the dimer domain in Fig. 5(a),
even the stripes at the edges play along.

Because an equivalent channel is missing for the system
Lx = 23, both the transmission at high energies and the cur-
rent at high voltage drop significantly for this system width.
To test this conjecture we show in Fig. 8 the I-V characteristics
of some artificial stripe orderings for the same n f and μ.
Panel (a1) represents a case without a periodic channel. Its I-V
characteristic at high voltages matches the current through the
true ground-state ordering (plotted by the green dashed line
for comparison). The case shown in (a2) represents a slight
modification of the ground-state configuration which now has
three perfectly periodic (within the system) horizontal lines.
Its I-V characteristic already contains the steplike increase
of the current at high voltages. This also shows that a small
f -particle excitation from the ground state can have a big
influence on the current at high voltages. Finally, panel (a3)
represents an optimal case with keeping the completely oc-
cupied edges. Its current at high voltages is more than four
times higher than for the the ground state, showing again the
importance of the periodic arrangements.

In general, the cases with low total concentration of par-
ticles are more sensitive to the system width and the open
boundaries than the half-filled one. Because of that, the f -

0.0
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I[
t]

V[t]

(a1)
(a2)
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FIG. 8. Artificial stripe configurations a1, a2, and a3 (from left
to right) (a) at filling nf = 3/8, μ̄ = 0.14t , L = 23×24, and their
corresponding I-V characteristics (b) illustrating the influence of
complete periodic horizontal lines on the transport. The green dot-
dashed line represents the ground-state solution. The color coding in
panels (a) and (b) is the same.

particle orderings and the I-V characteristics have different
character for small and large system widths. Although the
I-V characteristics are metallic-like for all investigated sys-
tem widths, the periodic channels connecting left and right
interfaces, observed only for wider systems, can significantly
enhance the current at high voltages.

B. Finite temperatures

The finite-temperature phase diagram of the two-
dimensional FKM is surprisingly rich even at the PHS point
[118]. It describes, in the thermodynamic limit and at high
temperatures, either a Mott insulator (U � 7t), characterized
by a finite gap in the DOS, or a gapless Anderson insulator
(U � 7t). However, for finite systems the latter phase actually
consists of a smooth crossover from the Anderson insulator
(U � 7t) through a weakly localized phase, which can have a
metallic-like character, down to a Fermi gas at U = 0 [118].
Below a critical temperature τc, which depends on U and has
a maximum of τc ≈ 0.16t at U ≈ 3.5t , the system enters an
ordered phase. This phase shows a broad CDW gap between
the main Hubbard bands in the DOS. Nevertheless, at finite
temperatures this gap also contains subgap states emerging as
a consequence of the f -particle excitations [54,93].

The situation outside the PHS point is even more com-
plicated [37,63,64,68,71]. As illustrated in Fig. 9, the high-
temperature DOS for U = 4t , on which we focus, is gapless
for all investigated fillings. Therefore, we can exclude the
Mott insulator phase from our analysis.

With decreasing temperature the system often goes from
the disordered phase first through some transient orderings
before the critical temperature of the low-temperature ordered
phase is reached [68,71,73]. In the vicinity of the PHS this
transient phase usually shows CDW orderings [68,71]. Far
away from the PHS the transient orderings typically form
for systems where the ground state is phase separated. This
happens because some of the constituent phases can start to
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FIG. 9. System DOS at high temperature (τ = 0.2t) for nf =
1/3, μ = 2.8t (nd � 2/3) (a), nf = 1/6, μ = 3.5t (nd � 5/6) (b),
nf = 1/3, μ = −0.15t (nd � 1/3) (c), and nf = 3/8, μ = 0.14t
(nd � 0.34) (d).

order at higher temperatures than others. These transitions and
crossovers have a significant influence on the nonequilibrium
charge transport.

We illustrate this by focusing on three representative cases.
The first, with n f = 1/3 and μ = 2.8t (half-filled case), is
insulating at zero temperature and shows a ground-state order-
ing where a checkerboard structure competes with diagonal
stripes. The remaining two cases, n f = 1/3, μ = −0.15t and
n f = 3/8, μ = 0.14t , are metallic but with fully occupied
interfaces and different f -particle orderings in the central part.

1. Insulating case

The half-filled case, n f = 1/3 and μ = 2.8t , is an example
of a system with a transient regime. This can be seen in
Fig. 10(a) where we plot the specific heat, CV , as a function
of temperature. The specific heat shows two low-temperature
anomalies (local maxima) for all three system widths ad-
dressed. Together with the three examples of averaged con-
figurations in the inset of Fig. 10(b), these anomalies point to
two stages of the ordering process. The checkerboard domains
start to form already below τ ≈ 0.12t , and only at much lower
temperatures (τ ≈ 0.01t) the irregular axial empty stripes and
the empty structures at the vicinity of the interfaces, found in
the ground-state configurations in Fig. 3(a), start to form. The
f -particle densities in the inset of Fig. 10(b) were calculated
from a single MC run and averaged over a hundred successive
measurements separated by a single sweep. Therefore, they
can be seen as thermally blurred snapshots of a typical config-
uration.

Note that we use the anomalies in CV together with some
supporting quantities, like typical configurations or the order
parameters, only to estimate the temperatures below which
an ordering starts to form for a specific system width and to
see how the orderings depend on the temperature. We do not
investigate whether the anomalies relate in the thermodynamic
limit to crossovers or real phase transition. For that we would
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FIG. 10. The half-filled case nf = 1/3 fixed by μ = 2.8t .
Figures show the specific heat as a function of temperature (a),
averaged f -particle densities (see the text) (b), the transmission
function at Fermi level as a function of temperature (c), the trans-
mission function (d), gIPR for chosen energies at high temperatures
(note that both scales are logarithmic) (e), and I-V characteristics for
L = 12×24 and various temperatures (f).

have to resort to a finite-size scaling for much larger systems
than we can currently access.

We start the analysis of the transport properties in the
disordered phase at high temperatures. Here, the system has
a high DOS at the Fermi level which does not depend on
the system width [see Figs. 9(a) and 10(b)]. However, the
transmission function at the Fermi level rapidly decreases
with the system width. This can be seen in Fig. 10(c) where
T (E = 0) at τ = 0.5t is for system width Lx = 24 more
than a hundred times smaller than for Lx = 6. In addition,
a clear pseudogap can be seen in the transmission function
[Fig. 10(d)] in the vicinity of the system’s Fermi level. These
qualitative differences in DOS and T point to a relatively
strong localization of the states in the vicinity of the Fermi
level. This is also supported by the gIPR in Fig. 10(e), which
at E = 0 quickly saturates and stays practically constant with
increasing Lx for both τ = 0.3t and 0.5t . Such a saturation is
typical for localized states and is in contrast to the situation for
E = −2t and E = −4t , where the gIPR at τ = 0.3t does not
show any sign of localization for the addressed system widths
(note the logarithmic scales).

The formation of the checkerboard domains, which takes
place below τ ∼ 0.12t , leads to a sharp decrease of the DOS
at the Fermi level [Fig. 10(b)]. This is accompanied by a
steplike [note the logarithmic scale in Fig. 10(c)] decrease
of the transmission function at the Fermi level and with the
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broadening of the deep pseudogap in the transmission func-
tion in Fig. 10(d). The transmission function actually de-
creases in the range of energies from ∼ − 2.5t to ∼1.5t which
reflects the CDW gap �PHS = U of the PHS case. On the other
hand, the transmission through the main bands is increasing.
This results in different tendencies for the current at low
and high voltages already observed for the PHS case [73].
For V < 4t the current decreases with decreasing temperature,
which reflects the formation of the gap in the DOS and
transmission function. For V > 4t , the current first increases,
which follows the increasing transmission through the main
bands and reflects the formation of periodic CDW structures.
However, it decreases for the temperatures below the position
of the lower anomaly in CV where the labyrinth-like patterns
of empty diagonal stripes disrupt the checkerboard configura-
tion of f particles.

The broad pseudogap of width ∼2t dominates the I-V
characteristics at low temperatures and small V . Because
this gap forms already below τ = 0.12t , the transition to
the phase with clear domains which takes place below τ =
0.01t does not lead to a qualitative difference in the current
profile at small voltages. The transmission function T (E = 0)
has the tendency to saturate to its zero-temperature value
which is most evident for a small system width. However,
even for this case the transmission function is in the ordered
phase more than three orders of magnitude lower than in
the disordered phase. This leads to a negligible current for
small voltages even for Lx = 6 (see Fig. 3). As a result, the
finite-temperature I-V characteristics resemble even at low
temperature the ones for the PHS case [73], although with
smaller gap.

2. Metallic-like cases

The cases n f = 1/3, μ = −0.15t and n f = 3/8, μ = 0.14t
show metallic-like transport properties even for zero tem-
perature and broad system width. The main reason is that
the Fermi level is shifted into the lower main band of the
systems DOS, where the states are fairly delocalized. At finite
temperatures these cases also go through some intermediate
orderings, which influence the transmission.

Figure 11 shows the case n f = 1/3 and μ = −0.15t . For
small system widths the ground state is a segregated phase
with f particles ordered at the interfaces. For wider system
width an additional dimer domain exists in the central part.
However, the ordering at the edges starts to form at sig-
nificantly higher temperatures (τ ≈ 0.045t for Lx > 6) than
the dimers (τ ≈ 0.01t). This can be seen in the evolution of
the thermally blurred snapshots in Fig. 11(b). The formation
of the isolated stripes at the edges (combination of fully
occupied interface and empty next layer) leads to a broad
local maximum in specific heat that decreases with the system
width. Because this ordering represents an effective barrier for
the conducting electrons, its formation leads to a significant
decrease of the transmission with decreasing temperature as
shown in Figs. 11(c) and 11(d).

This has a paradoxical consequence for the I-V characteris-
tics shown in Fig. 11(e). Although the I-V characteristic has a
metallic-like character for all temperatures and there is no gap
forming at the Fermi level, the current actually decreases with

FIG. 11. Thermodynamics and transport properties for the case
nf = 1/3 and μ = −0.15t (nd � 1/3). Figures show the specific
heat as a function of temperature (a), averaged f -particle densities
(b), the transmission function at system Fermi level as a function of
temperature (c), the transmission function for chosen temperatures
(d), and I-V characteristics for L = 11×24 and various temperatures.

decreasing temperatures for all V . This changes only when
the central part starts to order below τ ≈ 0.01t as signaled
by low-temperature anomalies in CV for Lx = 12 and 24. We
illustrate this by the I-V characteristics for τ = 0.007t , which
follows the τ = 0.02t curve at low voltages but exceeds it at
high voltages approaching the zero-temperature result (dashed
purple line). The former shows that the formation on the
edges is the major cause for the lowering of the transmission
around the Fermi level. The latter reflects the ability of the
periodic channels to boost the transmission at high energies
as discussed in Sec. III A 3.

The last case we investigate in Fig. 12 is characterized by
n f = 3/8 and μ = 0.14t . The filling is close to the previous
case and they therefore share some properties, including the
formation of the f -particle walls at the interfaces before the
rest of the system starts to order. This can be seen as maxima
in the CV (at τ ≈ 0.03t) which decrease with decreasing
system width and coincide with the decreasing transmission
at zero energy shown in Figs. 12(c) and 12(d).

The regime where the f -particle wall is already formed
can be seen also in the changed slope of the T (E = 0) for
τ < 0.03t . At lower temperatures the vertical stripes start to
form in the whole system if it is wide enough. This leads to
formation of the clear maximum in CV at τ ≈ 0.015t shown in
Fig. 12(a), which correlates with a sharp increase of the order
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parameter for stripes defined as

OS = 1

Nf

L∑
j

(−1)lx ( j)−1w j, (20)

where lx numbers the layers from the left interface.
The formation of the stripes enhances the transmission

at the high-energy states for Lx = 11 [blue dashed line in
Fig. 12(d)] and boosts that way the current for high voltages.
It also leads to formation of two distinct bandlike structures
in the transmission function for E > 2t [Fig. 12(d)], which
is reflected in the two steplike increases of the current,
where already the first step overcomes the current calculated
at more than two times higher temperature. All this illustrates
that the formation of charge stripes can lead to a nontrivial
charge transport characteristic in correlated electron systems.

In general, we conclude that the transient orderings can
have a different effect on the charge current. The half-filled
case illustrates that the formation of the checkerboard patterns
leads to the opening of a pseudogap in the transmission func-
tion. As a consequence the current at small voltages rapidly
vanishes with decreasing temperature; however, simultane-
ously the current at high voltages increases. The formation
of the ground-state-like orderings does not change the low-
voltage tendency, but the high-voltage current is decreasing.

The latter two cases differ from this picture. The formation
of the f -particle walls at relatively high temperatures leads to

suppression of the current with decreasing temperature for all
voltages. This stops at temperatures where the center of the
system starts to order and the formation of periodic structures
can even lead to a significant increase of the current at high
voltages.

IV. SUMMARY

We have studied the influence of nonhomogeneous charge
orderings on the nonequilibrium charge transport in the two-
dimensional FKM for a range of particle fillings and elec-
trochemical potentials. The main results of the study can be
summarized as follows.

The ground-state configurations of the half-filled cases are
not very sensitive to the system width and show an insulating
I-V characteristic. Although the transport properties of these
configurations differ in details, qualitatively they resemble the
PHS case.

A completely different situation was found for systems
far away from half filling where we focused on the neutral
case. Here, the transport was predominately metallic-like at
any system width but the ground-state configurations, and
consequently also I-V characteristics, were sensitive to the
system size. Interestingly, periodic domains, e.g., vertical
stripes of dimer domain, which form only for sufficiently
wide systems can significantly boost the transmission at high
voltage if these domains spread from one system interface to
the other. As a consequence, the current can actually increase
with the increasing system width.

Addressing the finite-temperature properties for three rep-
resentative cases, we have shown that with decreasing tem-
perature the system tends to go from the disordered phase
through various transient orderings before it reaches the
ground state. These transient orderings significantly influ-
ence the transport properties and lead to various complicated
current-temperature dependencies. For example, the forma-
tion of checkerboard domains suppresses the current at low
voltages and enhance it at high voltages. On the other hand,
the formation of f -particle walls suppresses the current for
all voltages with decreasing temperature, but this tendency is
overruled by the formation of the periodic structures in the
center of the system, which boost the current at high voltages.

Overall, the FKM away from the PHS point naturally
shows a rich variety of stable charge orderings. The typical
cases investigated in the paper illustrate several qualitatively
different, and sometimes nonintuitive, dependencies of the
charge transport on voltage and temperature. This shows the
crucial influence of the nonhomogeneous charge orderings,
such as stripes and dimer domains or phase separation, on
the transport properties of correlated electron systems. It
also illustrates the rich nonequilibrium physics of correlated
electrons on a lattice, even when they are described by a
simple model such as the spinless FKM. Qualitative changes
can be obtained by varying the particle filling or potentials
of the system. This opens a vast variety of problems that can
be addressed by the used method and various extensions of
the FKM. Besides investigating other regimes of the spinless
FKM, e.g., the vicinity of the PHS case where various non-
homogeneous axial orderings compete with full CDW phase
[71], insight into the spin-resolved current can be gained
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from the investigation of the transport through the spinful
version of the FKM, where the homogeneous charge orderings
are accompanied by different spin orderings [76,131,132].
Such studies are expected to be particularly interesting in the
context of spintronics.
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APPENDIX A: STABILITY OF HALF-FILLED
AND NEUTRAL CASES

In the first step of our investigation we had to find the
electrochemical potentials which stabilize the half-filled and
neutral cases of the isolated system. We used the simulated
annealing to calculate the approximate nd -μ dependencies
(for example see Fig. 13), then refined the calculation in
the vicinity of the correct nd . By this procedure, we could
approximate the ranges of μ which stabilize the wanted nd .
In all cases, we found an overlap between ranges of μ for
different lattice sizes. Then we have chosen the value of μ

from this overlap and used it for all system sizes.
It is important to note that the electrochemical potential

strictly fixes the desired nd only at zero temperatures and zero
voltage. Figure 14 shows how nd depends on the temperature
for various fillings and μ in the decoupled system. The nd

for half-filled cases is perfectly stable with the increasing
temperature (illustrated by n f = 1/6 with μ = 3.5t and n f =
1/3 with μ = 2.8t in Fig. 14). To some extent, the same can
be said about the neutral case, where for the presented cases
and studied temperatures the deviation from the nd at ground
state was always below 1%.

The situation becomes more complicated after we connect
the leads and set a finite voltage. This is illustrated in Fig. 15,
where we show the high-temperature nNE

d as a function of
V for n f = 1/3, μ = −0.15t and μ = 2.8t . Both curves are
approximately constant only for small voltages. The nNE

d for
the μ = −0.15t case starts to markedly increase at V � 6t

FIG. 13. Ground-state dependencies of d-electron concentration
on the electrochemical potential μ for nf = 1/6 (left) and nf =
1/3 (right) and three lattice sizes. Black dashed line depicts the
neutral case nd = nf and the blue dashed line the half-filled case
nd + nf = 1.

FIG. 14. Itinerant-electron densities of the decoupled system
plotted as a function of temperature. The dotted lines represent the
values 5/6, 2/3, 1/3, and 1/6.

and the nd for the μ = 2.8t case decreases at this range. This
behavior can be qualitatively explained by focusing on the
high-temperature system DOS showed in Figs. 9(a) and 9(c).
The DOS is quite asymmetric in both cases and the crucial
point here is the position of the E = 0 in accordance to the
distances from the left and right edges of the system DOS.
For μ = 2.8t , the zero is closer to the upper edge and there are
many fewer states above zero than below it. Therefore, as we
increase the voltage and thus shift the DOS of the left lead up
and right one down in energy, the μL reaches the upper edge at
a much lower voltage (V ∼ 8t) than at which μR reaches the
bottom one (V ∼ 12t). Consequently, because in this range
of voltages there are no more states for the left lead to be
occupied by electrons but still more states to be depleted from
the right lead, the steady-state nNE

d decreases. Because the case
with μ = −0.15t has E = 0 much closer to the bottom than
upper edge of the system DOS it follows a reversed scenario
from the μ = 2.8t case.

Because of the regular long-range nonhomogeneous char-
acter of the f -particle configuration in Fig. 5(a) we decided
to use this case (n f = 1/3, μ = −0.15t) to illustrate the
influence of the finite voltage on the nonequilibrium real-
space distribution of the d electrons. This is shown in Fig. 16
where panel (a) represents the equilibrium case. Here, for
comparison, we show also the position of the localized f
particles (black circles). It is obvious that the interaction U
is pushing the d electrons away from the sites occupied by
f particles. As we increase the voltage, and despite the fixed
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−μ = -0.15t−μ =  2.8t

FIG. 15. Nonequilibrium density of the itinerant electrons in the
coupled system for nf = 1/3, μ = −0.15t and μ = 2.8t calculated
for L = 12×24 and τ = 0.1t .
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V = 0t V = 2.5t

V = 5t V = 10t

0.0
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0.4
0.6

n d

0.2
0.4
0.6

 0  5  10  15  20  25

n d

Lx  5  10  15  20Lx

FIG. 16. Nonequilibrium distribution of the d-electron densities
of the coupled system (red circles) for various voltages L = 24×24,
nf = 1/3, and μ = −0.15t . The V = 0t case shows also the position
of the f particles (black circles), which does not depend on the
voltage. The radius of the black circles represents occupancy 1 and
presents that way the scale for the red circles.

value of μ, an increasing left-right slope can be observed in
the d-electron density calculated per layer (bottom panels).
Nevertheless, the tendency of d electrons to avoid the f
particles is clear for all voltages and shows that they also form
inhomogeneous charge patterns.

APPENDIX B: FINITE-SIZE SCALING
IN THE y DIRECTION

We restricted the vertical size of the system in all numerical
calculations presented in the main text to Ly = 24. This value
was motivated by our recent studies focused on the transport
in the PHS case [73,93], where we showed that when using
mixed boundary conditions a vertical size of Ly ∼ 20 is suf-
ficient for a reliable approximation of the Ly → ∞ limit. A
similar statement can be claimed also outside the PHS point.
We show this in Fig. 17 where we plot some examples of the
finite-size scaling on the Ly for fixed Lx = 12. The left panels
depict DOSh of the coupled system and the right ones the
transmission function density calculated at various energies
chosen from different bands. The first example was calculated
for n f = 1/3 and μ = 2.8t (half filled) at τ = 0.3t and the
second for n f = 1/3 and μ = −0.15t (neutral) at τ = 0.1t .
Both examples show that the DOSh as well as T rapidly
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FIG. 17. Finite-size scaling of the DOS [(a), (c)] of coupled
system and scaled transmission function [(b), (d)] at various energies
calculated for the case nf = 1/3 and μ = 2.8t at τ = 0.3t [(a), (b)]
and the case nf = 1/3 and μ = −0.15t at τ = 0.1t [(c), (d)] for fixed
Lx = 12.

converge with increasing Ly and are practically saturated at
Ly = 24.

APPENDIX C: INFLUENCE OF f -PARTICLE
EXCITATIONS ON TRANSPORT

We have shown in Fig. 10 that in some cases already a
very small temperature (τ < 0.01t) can significantly modify
the ground-state charge current at high voltages. The main
reason is the excitation of the f particles. Interestingly, low-
temperature excitations can both enhance (Fig. 10) as well
as suppress (Figs. 11 and 12) the current at high voltages.
Although other processes are involved as well, e.g., local-
ization, we have discussed in the main text that the major
reason for the reduction of the current is the disruption of
periodic patterns. On the other hand, we have also shown
that excitations which provide complete periodic channels to
the f -particle configurations can lead to the enhancement of
the current (see the discussion to Fig. 8). Here, we readdress
the problem for small but finite temperatures focusing on the
excitations that are responsible for the enhancement of the
current at low temperatures shown in Fig. 10(f).

 0
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 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  2  4  6  8  10  12  14

I[
t]
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GS
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FIG. 18. Comparison of I-V characteristics of the system in the
ground-state (GS) ordering and GS configuration modified by differ-
ent single-particle excitations (Ex1, Ex2). The excitations are marked
by arrows. The transport was calculated for nf = 1/3, μ = 2.8t
(nd ≈ 2/3), U = 4t , and L = 12×24.
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FIG. 19. Comparison of transport properties of the ground-state
configuration (black dots and lines) and excited configuration dis-
cussed in the text (red dots and lines). The data were obtained for
nf = 1/3, μ = −0.15t (nd ≈ 1/3), and L = 24×24. A Gaussian
broadening from Eq. (9) with σ = 0.02t2 was used in panel (c).

Figure 18 illustrates how moving a single f particle can
significantly enhance the current if the moved particle (indi-
cated by an arrow in panel Ex 1) completes a periodic chain.
Note that with increasing temperature such excitations are
preferred because above τ ≈ 0.01t the system orders in CDW
domains.

However, most of the possible single-particle excitations
actually have a negligible effect on transport (see, for exam-
ple, the black dashed line in the rightmost panel of Fig. 18,
illustrating the excitation shown in panel Ex 2). Only special
cases, which significantly disrupt or enhance the periodicity of
the localized subsystem, have a potential for crucial influence.

The above case described a simple one-particle excitations.
For sufficiently wide systems, there are also other types
of excitations that must be carefully investigated, especially
when addressing the ground-state properties. One example is
shown in Fig. 19. The excited configuration in the right panel
of Fig. 19(a) has higher energy than the ground-state one (the
difference is more than 5%) shown in the left panel. However,
it is an example of a deep local minimum of the energy in the
f -particle configuration landscape. Such a minimum is hard to
escape just by local single particle updates. This is one of the
reasons why we use the climbing algorithm that shifts multiple
particles per single update on top of the simulated annealing
process.

Interestingly, both configurations from Fig. 19(a) lead to
comparable transport properties. They have an equivalent
structure of the transmission functions, shown in Fig. 19(d),
which is also reflected in the I-V characteristics.

However, the charge current through the ground-state con-
figuration is significantly higher than the one through the
excited configuration. This shows the importance of a careful
investigation of the annealed ground state and the necessity
of averaging the finite-temperature data through a sufficient
number of independent MC run sets.
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