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Partial bosonization of the two-dimensional Hubbard model focuses the functional renormalization flow on
channels in which interactions become strong and local order sets in. We compare the momentum structure of
the four-fermion vertex, obtained on the basis of a patching approximation, to an effective bosonic description.
For parameters in the antiferromagnetic phase near the onset of local antiferromagnetic order, the interaction of
the electrons is indeed well described by the exchange of collective bosonic degrees of freedom. The residual
four-fermion vertex after the subtraction of the bosonic-exchange contribution is small. We propose that similar
partial bosonization techniques can improve the accuracy of renormalization flow studies also for the case of

competing order.
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I. INTRODUCTION

Cuprates exhibiting high-7¢ superconductivity [1,2] fea-
ture effectively two-dimensional CuO, layers. For this rea-
son, Anderson [3], as well as Zhang and Rice [4], proposed
using the two-dimensional Hubbard model on a square lattice
[5-7] to describe the phase diagram of these superconductors.
Despite the Hubbard model’s conceptual simplicity, only a
few features are known rigorously for special cases [8]. A
quantitative understanding of the macroscopic properties of
this simple microscopic model has remained a great challenge
for theoretical many-body physics. In particular, it is ex-
pected that competing order effects of the strongly correlated
fermions lead to a particularly rich phase structure.

Functional renormalization group (FRG) techniques have
already made important contributions [9-49] to a qual-
itative and sometimes quantitative understanding of the
two-dimensional Hubbard model on a square lattice. For a
computation of the phase structure of the Hubbard model it
is crucial to precisely take into account fluctuations beyond
the mean-field approximation. Because of its nonperturbative
and versatile character, it is expected that the FRG is well
suited to capture the relevant dynamics. In parallel, numerical
simulations based on the Monte Carlo method have provided
first-principles computations for such strongly correlated sys-
tems [50-58]. It is difficult, however, to use them to inves-
tigate the full phase structure of the Hubbard model due to
the sign problem in systems with a finite chemical poten-
tial. Furthermore, diagrammatic resummation techniques as
dynamical mean-field theory (DMFT) have provided insight
into important structures of the Hubbard model [59-61]. They
can be combined with FRG, called DMF’RG [62]. (For a
compilation, see [63] and references therein.)

The Hubbard model is defined as a purely fermionic model
which describes the hopping and scattering of electrons on
a lattice. It provides a natural description of the relevant
microscopic electron dynamics in solids. On the other hand,
the macroscopic properties, reflected in various possible order
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parameters, and long-range dynamics, are most easily
described by collective bosonic excitations such as antifer-
romagnetic spin waves or d-wave electron pairs. Order pa-
rameters can be interpreted as the expectation values of these
composite bosonic fields.

Within the FRG, two main approaches have been followed.
The first concentrates on the flow of the four-fermion inter-
action in a purely fermionic setting. On microscopic scales,
one starts with a pointlike interaction. As more and more
fluctuations are included, the renormalization flow generates a
complicated momentum dependence of this vertex. Following
numerically the flow of the momentum-dependent interaction,
one observes strong enhancements, and even divergences, in
certain momentum channels. This is related to the possible
onset of condensation phenomena in the corresponding chan-
nels. First set up for a description of collective mesons in a
purely fermionic quark model [64], this method has found
important developments for strongly correlated electrons. In
particular, the N-patching method [14] has allowed for a better
resolution of the momentum dependence of the four-fermion
coupling and provided many insights for the Hubbard model
[14-17], and other strongly correlated electron systems like,
e.g., pnictides [65—67] or graphene [68—71].

The second main approach has employed some form
of bosonization [26-33,72-81]. By means of a Hubbard-
Stratonovich transformation [82,83], the fermionic system
with a pointlike interaction can be rewritten in terms of one
or several “collective” bosons coupled to fermions by Yukawa
couplings. For the microscopic pointlike interaction one can
employ a standard form of the momentum dependence for
the fermion-boson coupling, reflecting the properties of the
corresponding channel. At this stage, the boson propagator is
simply a constant. As the flow proceeds to smaller momentum
scales, the inclusion of fluctuation effects generates a momen-
tum dependence of the boson propagators. Furthermore, the
bosonic part of the effective action does not remain quadratic
in the boson fields. A nontrivial effective potential develops
for these fields. A minimum of the potential at nonzero
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field value indicates spontaneous symmetry breaking, with
the corresponding order parameter given by the value of the
bosonic field at the minimum of the potential. The flow can
be followed into the ordered phase, and the divergences in the
four-fermion vertex at the onset of local order can be avoided.
This has allowed to establish antiferromagnetic and d-wave
superconducting order in corresponding regions of parameter
space [24-33], and the existence of competing order [33].

An important aspect of the bosonized approach is the pos-
sibility of “dynamic bosonization” [73-78]. Fluctuations gen-
erate four-fermion interactions even if the original pointlike
four-fermion interaction has been bosonized via a Hubbard-
Stratonovich transformation and replaced by boson-fermion
interactions. Flowing bosonization allows to (partially) ab-
sorb the newly generated four-fermion vertex in the flow of
the propagator and the Yukawa couplings of the interacting
system of fermions and bosons. Using dynamical bosoniza-
tion, there is no need to start with a Hubbard-Stratonovich
transformation. One may keep the fermionic interaction, and
only attribute dominant fluctuation effects to a suitable boson
exchange [32,33].

Both approaches have their advantages and disadvantages.
The purely fermionic description allows for a detailed and
unbiased resolution of the momentum dependence of the four-
fermion vertex. No a priori guess on relevant channels is
necessary. The disadvantage is a rather indirect description
of spontaneous symmetry breaking. Typically, the quartic
four-fermion vertex diverges at the onset of local spontaneous
symmetry breaking, and the flow cannot be continued reliably
into the ordered phase.

In contrast, a bosonic description is well suited for a
description of spontaneous symmetry breaking. The effec-
tive potential develops terms that are quartic in the bosonic
fields. Such a potential can account for spontaneous symmetry
breaking whenever the term quadratic in the boson fields, the
boson “mass term,” becomes negative. The vanishing of the
mass term at the onset of spontaneous symmetry breaking
produces the divergence of the four-fermion vertex in the cor-
responding purely fermionic description. Quartic boson inter-
actions, which stabilize the effective potential, correspond to
vertices with eight fermions in the purely fermionic language,
which are hard to incorporate in the purely fermionic flow.

The disadvantage of bosonic methods is the necessity of
guessing the relevant channels corresponding to collective
bosons. In most applications, the remnant four-fermion inter-
action is dropped. Since the relevant channels may differ for
different parameters of the macroscopic model, and several
channels may be equally important, the guess introduces a
certain bias in the description. For example, in mean-field
theory results depend strongly on the choice of the channels
in the Hubbard-Stratonovich transformation [28—30]. This de-
pendence is greatly reduced once fluctuations of the collective
bosons are included [84], but a residual bias remains for a
given truncation (see, e.g., [85]). Furthermore, the exchange
of collective bosons restricts the possible momentum depen-
dence of the effective four-fermion interaction generated by
the boson exchange. In a more physical sense, one has to guess
what kind of order parameter could be realized in the vacuum
state of the system and introduce the corresponding collective
(auxiliary) fields. In other words, in this method, one has to

TABLE I. Comparison between different methods. The abbre-
viations are given as follows. (PF): pure fermionic theory; (HS):
bosonization via the Hubbard-Stratonovich transformation with-
out residual four-fermion interaction; (DB): dynamical bosoniza-
tion without residual four-fermion interaction; (DBF): dynamical
bosonization with residual four-fermion interaction; (SSB): naturally
access to spontaneous symmetry breaking with order parameter;
(FM): full momentum dependence of complete four-fermion vertex;
(FL): fluctuations on all scales included for leading channels; (BF):
free of bias of channel selection. The check mark (v') indicates that
a method can naturally address to an issue.

SSB FM FL BF
PF v v
HS v
DB v v
DBF v v v v

guess in advance which symmetries are likely to be broken by
the dynamics of electrons.

This has led to approaches that combine the introduc-
tion of resonant channel with the fermionic description:
Within a purely fermionic description an organization of the
momentum-dependent four-fermion interaction in terms of
important collective channels has been advocated [20]. In
QCD a Fiertz-complete basis of the four-fermion interaction
has been taken into account, while treating the resonant scalar-
pseudoscalar channel with dynamical bosonization [79,80].
Such a Fiertz-complete approach with full momentum depen-
dence requires sophisticated numerical tools, and the numer-
ics in this paper is based on the numerical tools developed in
[79,80] for relativistic systems. The setup allows in particular
to check whether or not additional channels are resonant. In
QCD in the vacuum this is not the case and no competing
order effects occur. For the Hubbard model, the problem of
competing order parameters has been studied in Refs. [24,25]
within an effective mean-field theory for the momentum
modes that have not yet been included at the scale where the
four-fermion vertex diverges. For investigations of competing
order on the bosonized side the idea is to use only a partial
bosonization, while keeping, in addition, a four-fermion in-
teraction. This approach has been followed in [32,33], where
a momentum-independent four-fermion interaction is kept in
addition to the one generated by boson exchange. In Table I
we summarise comparisons between different methods.

In this paper we propose to combine partial bosonization
with a momentum-dependent residual four-fermion interac-
tion. The flow of the four-fermion action can be followed
by use of an N-patching scheme. We suggest a truncation
that involves a combined system of fermions and bosons,
for which the bosonic fields represent fermion bilinears or
more complicated collective fields. We propose to keep a
momentum-dependent four-fermion vertex in addition to the
flow of boson propagators, Yukawa interactions, and an ef-
fective potential for the bosons. Partial bosonization can be
employed to convert the four-fermion vertex into the exchange
of collective bosons as much as possible. This approach
preserves all the advantages of a bosonic description. In
addition, the momentum resolution of the total four-fermion
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FIG. 1. Momentum dependence of the four-fermion vertex. Parameters are u =¢' =0, U/t =3, T = 0.1, and the vertex is evaluated
at kir ~ 0.9¢ (T ~ 0.25¢). We display U, (P, P, —P, —P) = Ucpu(P), where at one-loop level only the crossed particle-hole channel (CPH)
contributes, with P = (0, p,, p,). The top left panel shows the numerical result, which is dominated by nesting peaks located at (&7 /2, 7 /2).
The top right panel shows a boson-exchange mediated vertex of the form Azb)(p) + U,fo) =2(m} + A2p — m)7' + A where m?, Ay,
and )L,((O) are momentum-independent fitting parameters. The bottom panels show the momentum dependence of the residual four-fermion
interaction, given by the difference between the two vertices on the top panels, A)»,(("’)(p) = Ucpu(P) — [A(b)(p) + Uk(o)]. The bottom right
panel is a magnified version of the one on the bottom left. Differences between Ucpy(P) and A,((b)(p) + U,f are overall about one order of

magnitude smaller than the peaks.

interaction is no longer limited since it appears in the residual
four-fermion interaction, which remains even after dynamical
bosonization. There remains a residual bias in the selection of
the channels in which boson fields are introduced. Only for
these channels, higher-order terms in the bosonic fields can
represent corresponding eighth-order fermionic interactions.
The consequences of this bias are much reduced, however,
since the momentum dependence of the residual four-fermion
interaction can still “detect” important channels that may have
been omitted by the guess for the bosonized channels.

A crucial ingredient for the proposed scheme of partial
bosonization is the relative size of the boson-mediated and
the residual four-fermion interaction. This is the focus of this
paper. Partial bosonization is most efficient if the leading part
of the full effective four-fermion interaction can be expressed
in terms of boson exchanges, with a comparatively small
residual four-fermion interaction. Here, we concentrate on the
antiferromagnetic phase for which the exchange of bosons
associated to antiferromagnetic spin waves is indeed found to
be the dominant interaction.

The main result of this work is demonstrated in Fig. 1.
The upper left figure shows the momentum dependence of the
four-fermion vertex in an appropriate projection in the space
of momenta of the fermions. It has been computed by solv-
ing the purely fermionic flow using the N-patching method
down to a particular scale kig. At this scale we investigate
to which extent the four-fermion vertex can be accounted
for by boson exchange. The upper right plot displays the

contribution of a boson exchange, expressed via a generic
boson propagator with three fitted parameters. The residual
four-fermion vertex after subtraction of the boson-exchange
contribution is presented in the lower left. It is substantially
smaller than the boson-exchange contribution, and shows less
structure, as shown in the magnified plot in the lower right.
All quantities are evaluated at a momentum scale kg of the
flow close to the onset of local order. More details on this
are given in Sec. II. This figure suggests that the four-fermion
vertex is dominated by the exchange of a collective degree
of freedom called antiferromagnetic boson. An investigation
of other momentum channels confirms this picture. Combin-
ing three different momentum channels we find, in addition,
indications for an s-wave pairing boson to play a role, being
subleading as compared to the antiferromagnetic boson. All
three-momentum channels are simultaneously well described
by the exchange of antiferromagnetic and s-wave pairing
bosons, together with a constant four-fermion interaction. The
momentum dependence of the residual four-fermion interac-
tion is found to be small.

This paper is organized as follows: In Sec. II we present
our main findings by taking as a specific example a region in
parameter space where antiferromagnetic order is expected.
Section III specifies our notation for the Hubbard model
and Sec. IV recapitulates the relevant features of functional
renormalization. Section V describes the fermionic flow, and
Sec. VI discusses partial bosonization. Finally, we summarize
our findings in Sec. VII.
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II. PARTTAL BOSONIZATION OF THE
FOUR-FERMION INTERACTION

Partial bosonization has been employed to describe tran-
sitions in the effective degrees of freedom within the FRG.
The main idea is to rewrite the “four-fermion vertex” or “two-
particle vertex”, or parts of it, in terms of exchanges of an
antiferromagnetic boson:

Py P1 Pl
K X o
P P Ps

Here, the left-hand side is the four-fermion interaction given
in the pure fermionic system. The first diagram on the right-
hand side can be interpreted as an electron and a hole forming
an “antiferromagnetic boson,” which then decays into an
electron and a hole again. The second diagram on the right-
hand side accounts for electron-hole scattering by exchange of
the antiferromagnetic boson. Finally, the third diagram on the
right-hand side denotes the residual four-fermion vertex after
the subtraction of the boson-exchange contribution from the
full vertex. We can interpret this equation in both directions.
We can either employ it to decompose a given vertex into a
bosonic and a residual part. Or, in the bosonic formulation, it
accounts for the full effective vertex in terms of contributions
from boson exchange and an “irreducible” part. Formally,
it constructs the connected four-point function from one-
particle-irreducible (1PI) parts. Note in this context that in
the purely fermionic language the total vertex is 1PI. There
is some freedom in the choice of the split between boson
exchange and residual four-fermion interaction, which can be
used to optimize the procedure. Observable results, such as
the gap in the fermion propagator due to collective order, have
to be independent of the choice of the split. This can serve as
a partial error estimate for a given approximation.

Dynamical bosonization provides for an exact formal
method [73-78] of translating parts of the four-fermion inter-
action to an effective action for bosons and fermions. It can al-
ways be implemented. However, the crucial question is under
which circumstances it is useful. If one keeps the momentum
dependence of the residual four-fermion vertex, the addition
of bosonic degrees of freedom and their interactions first adds
to the complexity of the problem. Partial bosonization will
only be useful if the most relevant parts of the four-fermion
interaction are captured by the boson exchange, while it seems
superfluous if the residual interaction dominates. The relative
importance of the boson exchange is a quantitative question
that we investigate here by solving the flow of the four-
fermion interaction numerically, and by comparing the size of
the boson exchange and the residual four-fermion interaction
at the scale kg.

The central quantity for this problem is the four-fermion
interaction [see Eq. (17) in Sec. III], which we parametrize by
a momentum-dependent coupling Uy (P, P>, Ps, Py). Here, P,
i=1,...,4,are the momenta and frequencies of the fermions
in the vertex, and the index k indicates that we consider a
scale-dependent coupling which flows from a microscopic
scale to a macroscopic scale as the effects of fluctuations
are successively incorporated. The corresponding term in the
scale-dependent effective action (effective average action or

coarse-grained free energy) 'y reads as

rint — Zg(pl — Py + Py — P)Up(Py, P2, P, Py)

P;

X Yd POV (P Y (P 4(PY), )

where P; = (w, py, py); is the shorthand notation collecting
the Matsubara frequency w and a two-dimensional (2D) mo-
mentum p = (py, p,) for the electron field ,, where the
indices «, B denote the electron spin. More concrete setups
and definitions for the FRG and the Hubbard model are pre-
sented in the following sections. The initial value of Uy at the
microscopic scale k = A is given by the Hubbard coupling U
for a pointlike interaction, which is a momentum-independent
constant

UA(PI’P27P3’P4)=U3 (3)

with A of the order of the inverse lattice distance. Using
the FRG equation with an N-patching scheme for the
four-fermion vertex, we follow the RG flow of
Ui(Py, P,, P, P,) from an ultraviolet (UV) scale k = A
to a certain infrared (IR) scale k = kjg. We do not resolve
the frequency dependence here, working at w; = 0. For a
general momentum configuration, Uy, (P1, P, P3, P4) is then
a nontrivial function of three independent two-dimensional
momenta.

Partial bosonization should capture the nontrivial mo-
mentum dependence of Ui (P, P>, P3, Py) in terms of boson-
exchange processes. Let us add to the effective action a
bosonic part

1 N —
ri=) {zas,-(—@(c;zw(@) ()
Q.j

~ > s@-P+ Pz)wjm)(af)aﬂw,swz)@(g)}.

PP,
4

The three boson fields ¢;(Q) correspond to the Fourier modes
of spin waves in the spin-one channel, with o/ the Pauli
matrices. For the particular momentum Q = IT = (0, 7, ),
this is an antiferromagnetic spin wave. The inverse propagator
of a boson of this type is taken to be

G w) ™

with [P]* = p; + p} if p.. p, € [-7, 7], and periodically
continued outside the Brillouin zone. The superscript (a)
denotes the“antiferromagnetic” type boson. It is chosen to
have its minimum at Q = IT if A; > 0. A nonzero expectation
value (¢;(Q = IT)) corresponds to antiferromagnetic order.
The Yukawa coupling of the bosons to the electrons is set to
one here.

The field equation for ¢; in the presence of fermion fields
reads as

9;(Q) =

= m? + A[Q — TP, Q)

Y GOyt PyelyP +0). (6

Py

This identifies ¢; with a fermion bilinear. A Gaussian inte-
gration over the boson field amounts to insertion of the field
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equation (6) into the effective action I'¢, resulting in

1 N .
Mf=-52_ 2 G Pely e -0

j QO.PL.Ps
x [ (Py)oly(Ps + Q). 7
With the identity
> (0ap(07)ys = 28588, — Supdys. ®)

J

the boson-exchange contributions to U, in Eq. (2) lead to
the term

A =269 (P, — P) + GO (P — Py). ®

This procedure corresponds to the inversion of the
Hubbard-Stratonovich transformation. The two terms can be
associated with two boson-exchange processes. Either one
electron with momentum p, and a hole with momentum
—p; can form a boson with momentum ¢ = p, — p;. Or,
two electrons with momenta p, and p, are scattered to two
electrons with momenta p; and p;, with momentum transfer
q = p, — p, carried by the exchanged boson, and similar for
hole-hole scattering. We may represent the two processes
graphically by

electron

electron

electron hole

(10)

electron hole electron electron

According to the momentum conventions in Eq. (2), the spin
is conserved along each line. These graphs already account
for the reordering of spin indices according to Eq. (8). They
are different from the Feynman graphs for which the boson-
fermion vertex involves /.

The residual four-fermion interaction after subtraction of
the boson-exchange contribution is given by

AW =U -0, (11)

where the superscript (1) stands for the residual pure four-
fermion interaction corresponding to the last term on the
right-hand side of Eq. (1). We are interested in the relative size
of )»,(;//) as compared to k,(c“). More precisely, we compare the

momentum-dependent part A)\,(:”) of )»,(;b) to Uy, subtracting a
momentum-independent part:

ALT(B) = KPRy~ U (12)

The constant part Uk(o) could also be incorporated in )»,((“),
where it would amount to an additive constant in the prop-
agator AG,(C“) = Uk(o) /3. It seems natural, however, to keep

it as part of the residual four-fermion interaction )‘1(;//) as in
Refs. [32,33].

As an example of a momentum configuration of the
four-fermion coupling, we take the momentum configuration
(Py, Py, P3, Py) = (P, P, —P, —P), which corresponds to the

“crossed particle-hole” channel in accordance with [20,86].
For this configuration we obtain

@ py _ 2
W)= m; + Al 2pe — ) + 2py — )]
+ ; (13)
m,% + 27‘[2Ak
The wupper left part in Fig. 1 shows Ucpg(P) =

Uy (P, P, —P,—P) with P = (0, p,, py,) as a function of
(px, Py). We observe pronounced peaks of Ui(px, py)
at (px,py) = (£ /2, £m/2). At these values of the
momenta one has [(2p, —7)*+ (2p, — 7)*] =0, such
that )»,((“)(px, py) has a maximum. The upper right part in
Fig. 1 shows )»,(f')(px, py). We find good agreement with
Ui (px, py); the four-fermion vertex is indeed well described
by a boson exchange. In order to determine m,% and Ay, we
have performed a three-parameter fit of U with the ansatz

Ui(p) = 2\ 2(p) + UL = 20m} + Al2p — o) + 20
(14)

At kg ~ 0.9 we find

m; =032, A, =053 U” =108 (15)

The second part in Eq. (13) only contributes a small part to
the constant A(? obtained from the fit,

A U = 0.09. (16)

m; + 27 2Ag -
The residual four-fermion interaction A)L,(;/’) =U, — )L,((b) —
Uk(o) is displayed in the lower left panel of Fig. 1.

Other momentum configuration cases will be investigated
in Sec. VI (see Figs. 2 and 3). The results support the
overall effectiveness of partial bosonization. In the following
sections, we introduce our setups for the Hubbard model and

the FRG and then explain in a more concrete way how we fit
the boson-exchange contributions to Uy, (P1, Pa, P3, Py).

II1. HUBBARD MODEL

The Hubbard model describes nonrelativistic fermions on a
lattice, e.g., as a toy model for electrons in Mott insulators. For
a 2D square lattice, the microscopic action of the single-band
fermionic Hubbard model in momentum space is given by

SWT Y =Y i Q)iwg + &)V, (Q)
0

U
+ 3 2 VPOV PV PV (P)
P;

x8(Py — P+ P — Py). 17)

Here, we have introduced the shorthand notations Q :=
(w9, q) = (wg, gx, gy) and

(2m)?
T

§(P—Q):= 8(wp — w)8® (p — q),

._ [ d
XQ:._TE/ o (18)
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Ap)+ U

FIG. 2. Four-fermion coupling Uy (P, —P, —P, P) = Uppu(P), P = (0, py, py), where at one-loop level only the direct particle-hole channel
(DPH) contributes. Parameters are the same as for Fig. 1. The numerical result shown in the top left panel is dominated by nesting peaks located
at (£7/2, +7/2). The top right panel shows a bosonic-exchange propagator of the form A% (p) + Uk(o) = (m} +A2p — w*) "+ A0y
fitted to the result. We find that Uppy(P) =~ )Lg’gH (p)+ Uk(o) to high accuracy. The bottom panels show the the momentum dependence of the
residual four-fermion vertex as difference between Uppy(P) and Ag’liH(p) + Uk(o), where the bottom right panel is a zoomed-in version of the
one on the bottom left. Differences between Uppy (P) and )»g’llH(P) + Uk(o) are overall about one order of magnitude smaller than the peaks.

3 UPP(P)

Pz T

FIG. 3. Four-fermion coupling Ui (P, P, P, P) = Upp(P), P = (0, p., p,), where at one-loop level only the particle-particle channel (PP)
contributes. The numerical result shown in the top left panel is qualitatively different from the one in the particle-hole channels. Instead of
nesting peaks, we observe a suppression of Uy at p, =0, £ and p, = 0, £x. The top right panel shows a bosonic-exchange propagator
of the form Agp (p) + U = (m] + Ac[2p?)~" + Afy fitted to the result. We find that Upp(P) & Am(p) + U” is a good approximation. The
bottom panels show the difference between Upp(P) and )ngp)(p) + U9, where the bottom right panel is a zoomed-in version of the one on the
bottom left. We find that differences between Upp(P) and )\SQ(P) + Uk(o) are much smaller than the peaks.
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The fermionic fields

V(Q) = (¥, (D), ¥, (@) 19)

describe fermions (electrons) on a square lattice which follow
the momentum-space dispersion relation

& = — — 21[c0s(qx) + cos(qy)]. (20)

Here, ¢ denotes the the nearest-neighbor hopping parameters,
and p is the chemical potential associated with the doping
level. In this work, we do not take into account the next-to-
nearest-neighbor hopping. The fermionic Matsubara frequen-
cies at a finite temperature 7 are given by wg = 2w (ng +
%)T. All components of the generalized momentum Q are
measured in units of the lattice spacing a, i.e., ¢ — q/a. In
this work, we always seta = 1.

The action (17) is invariant under global U(1) and SU(2)
rotations. The U(1) symmetry corresponds to charge (or parti-
cle number) conservation, while the SU(2) symmetry reflects
the spin-rotation invariance of the system. In addition, the
Hubbard model is invariant under simultaneous rescalings of
the imaginary time t and the corresponding inverse rescalings
of the parameters U, T, and ¢. For this reason, we express
these quantities in units of the nearest-neighbor hopping r and
consequently set# = 1 most of the time. Our numerical results
employ u =0,7 =0.1,and U/t = 3.

The energy dispersion relation €, = u + &, satisfies the
nesting property, i.e.,

€gin = —€q, 2D

where m = (7, 7) is the nesting vector. In particular, for u =
0 the half-filled band is realized and the fermion surface be-
comes a perfect square, the so-called umklapp surface. In this
case the particle-hole channels are strongly enhanced. More
specifically, for the momentum configurations p;, — p, = £x
and p, — p, = £x, quantum fluctuations corresponding to
bubbles of electron-hole pairs become strong, so that anti-
ferromagnetic ordering (electron-hole condensate) takes place
for any U > 0. We discuss this in more detail in Sec. V B.

IV. FUNCTIONAL RENORMALIZATION GROUP

In this section, we introduce the functional renormalization
group (FRG). We then make an ansatz for the effective aver-
age action in order to solve the FRG equation. In this work, we
take into account only the flow of the four-fermion interaction.
We also describe our choice of the fermion regulator.

A. Flow equation

The FRG is a formulation of Wilson’s RG in the context of
quantum field theory. According to Wilson, renormalization
should be thought of as a sequence of coarse-graining steps,
each corresponding to integrating out quantum fluctuations
in an infinitesimal momentum shell £ — 8k < p < k, where k
denotes an IR cutoff scale. This process can be formulated as a
functional differential equation for a scale-dependent effective
action without any approximation. In this work, we employ
the exact flow equation for the scale-dependent one-particle-
irreducible (1PI) effective action (or effective average action)

Iy [87], which reads as

1 1
0l = = Tr | —5—— kR |- 22
kL k ) r |:F/(¢2)+Rk k ki| (22)

Here, Tr denotes a generalized functional trace over field
space and all internal spaces such as frequencies, momenta,
and spins. F,iz) stands for the matrix of second functional
derivatives of I'y with respect to the fields, i.e., the inverse
propagator. The regulator R; implements the coarse-graining
within momentum integrations of Eq. (22) such that low-
momentum modes p < k are suppressed, and thus only high-
momentum modes p > k are effectively integrated out. In
other words, the regulator in particular has to satisfy the
conditions

/1133) R (p) =0, kJ}\ni OORk(P) = 00. (23)
The first condition implies that for k — O one obtains the
fully dressed effective action I'y—o = I'. From the fact that
the regulator behaves as a mass term for a finite IR scale &, the
second condition is needed to suppress all quantum fluctua-
tions in the high-energy limit, so that the initial condition for
the flow is given by fixing the microscopic action S at the UV
scale k = A, i.e., 'y = §. For more details on the FRG and
its applications, see e.g. Refs. [75,86,88-92].

B. Effective average action

Although the flow equation (22) is exact, it generally
cannot be solved exactly. In general, the effective action I’y
obeying the flow equation (22) involves an infinite number
of effective operators compatible with the symmetries of the
theory. Therefore, we need to truncate our theory space in
order to be able to do computations in practice. To this end, we
make an ansatz for the effective action I'; and choose suitable
projections to describe its flow in terms of flowing couplings.
Here, we make the simple ansatz

. 1
e =D VIQPIQY,(Q) + 5 D Ui(Pr, P, Py, Py)
o P

X Y (P, (P2) Wg(P3)W,3(P4)5(PI — P+ P - R,
(24)

where Pf(Q) = iwg + &, is the inverse fermion propagator,
with wg the Matsubara frequency and &, the dispersion given
in Eq. (20). In addition to the cutoff scale, the four-fermion
coupling constant in the effective action (24) depends on
external momenta.

C. Fermion regulator

There are various possible choices for the regulator Ri(Q)
which obey the conditions (23). Here, we focus on the fact
that the finite-temperature effect avoids the existence of zero
modes in the fermionic propagator, i.e., wg = wT for n = 0.
Hence, the temperature itself plays the role of a regulator. For
fermions we thus use an effective temperature cutoff [29,30]

; . (T . 1
K@ =iog( 3~ 1) =2ni(n+3)m-10 @9
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With this cutoff, the temperature 7 in the Matsubara fre-
quency is replaced by the scale-dependent effective temper-
ature T;. Here a general class of the scale-dependent effective
temperature T is given by

k2 p
(T =T"+ <;> ) (26)

with p an integer larger than 2. In the long-wavelength limit
k* « T, the fermionic effects should be suppressed in order
for the bosonic picture to be relevant. For this reason, p
has to be a sufficiently large value. In this work, we choose
p = 4, for which the scale-dependent effective temperature is

given as
k2 4 %
T, = [T4 + (;> } ) (27)

For k* > T, one has T; ~ k*/m, such that the regulated
inverse propagator behaves as P, ~ i(2n + 1)k* + &4, so that
the zero mode is regulated by k2, while for k?> < T the finite
temperature 7T regulates the zero mode. This is compatible
with the fact that in nonrelativistic systems the lowest order
of the kinetic energy is proportional to p?, namely, one can
interpret the behavior T; ~ k* for k> > T as a regularization
of the kinetic term of the fermionic field. Our numerical
results are near T = 0 where T} ~ k? /.

V. FLOW OF THE FOUR-FERMION COUPLING

In this section we present the flow equation of the four-
fermion vertex and our approach to solving it. In addition, we
investigate the resulting momentum dependence of the four-
fermion coupling in the IR in the purely fermionic setting.

Using the flow equation (22) and projecting onto
the momentum-dependent four-fermion coupling
Ui(Py, P,, P;, Py) in the effective action (24), we obtain
the beta function

Uk (P1, P>, P3, Py) = Tpp + Topu + Tcpu, (28)

where “PP,” “DPH,” and “CPH” denote the particle-particle,
direct particle-hole, and crossed particle-hole channel, respec-
tively. We present the details of our projection scheme and
the explicit forms of the flow diagrams 7; in Appendix A.
At the initial scale k = A, we set the four-fermion coupling
to a constant, i.e., U5 (Py, P», P3, Py) = U. The flow equations
hold for arbitrary temperature 7. Our numerical results are
evaluated at 7 = 0.1.

A. N patching and frequency dependence

The four-fermion vertex Uy is a function of four general-
ized momenta P; = (w;, p;), each consisting of a Matsubara
frequency w; and a two-dimensional momentum p;, giving
a dependence on 12 parameters in total. Conservation of
energy and momentum allows us to eliminate one generalized
momentum, e.g., Py, which, however, still leaves us with nine
parameters in total. To further reduce the computational effort
of our study, we thus make use of two main simplifications,
which we explain in the following.

In the low-energy limit the most relevant effects would
come from the dynamics of electrons on the Fermi surface. In
other words, it is expected that the scaling dimensions of the
four-fermion couplings with external energies and momenta
perpendicular to the Fermi surface are negative at the fixed
point associated to the antiferromagnetic phase transition,
i.e., these couplings are irrelevant parameters in the sense of
Wilson’s RG, while the couplings corresponding to tangential
external momenta are relevant parameters. Hence, as a first
approximation, we neglect the external frequency dependence
of the four-fermion coupling. This makes it possible to ana-
lytically perform the Matsubara sums occurring in the flow
diagrams on the right-hand side of Eq. (28). We show the
explicit computations in Appendix B.

In addition, we approximate the momentum dependence of
the four-fermion vertices occurring on the right-hand side of
Eq. (28) by projecting the two-dimensional momenta onto the
Fermi surface, i.e.,

Uc(P1, Py, P3, Py) ~ U(p1f» Pops Par)s (29)

where p; denotes the projections of p; onto the Fermi surface,
and where we have explicitly used momentum conservation to
eliminate p,. This allows us to still resolve the full momentum
dependence of the four-fermion coupling in particular mo-
mentum channels, while significantly reducing computational
effort by only feeding back a coupling depending on three
parameters.

Furthermore, to numerically solve the flow of Uy in prac-
tice, we cannot evaluate Uy, for continuous parameters, but in-
stead employ a multidimensional grid of discrete parameters.
In particular, we employ an N-patching scheme [14] for the
four-fermion vertices fed back on the right-hand side of the
flow equation of Uy. This is achieved by dividing the Brillouin
zone into N patches for which momenta are parametrized by
indices corresponding to the position of the patch, e.g., p;p =
P, - All momenta in the same patch labeled by n; are projected
onto the same momentum on the Fermi surface, at the center
of the patch. This way, in order to feed back the four-fermion
vertex, we only need to keep track of a three-dimensional grid
of couplings

Uc(p1ps Par»> P3p) — Ui(ng, na, n3). (30)

The results presented in the following use N = 24.

B. Antiferromagnetic ordering

As mentioned in Sec. III, at half-filling with © = 0, an-
tiferromagnetic ordering forms at sufficiently low tempera-
ture. A tendency to antiferromagnetism can be seen from
the beta function for Uy. For the momentum configurations
p; — P, = m (direct particle-hole channel) and p;, — p, =&
(crossed particle-hole channel), the kernel of threshold func-
tions defined by Li(Q, Q — P) = 9(GL(Q)GL(Q — P)) does
not depend on external momenta thanks to the nesting prop-
erty (21), i.e.,, L(Q, QO — P) = L(Q, Q). Within the N-patch
approximation the dispersion (20) can be expanded around the
Fermi surface,

§g ~ &g, + VFlg=q, - (@ —qF), (3D
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where vy = V&, is the Fermi velocity. At half-filling one has
€q, = &g, + 1 = 0. The saddle points (£, 0) and (0, £7)
have a vanishing Fermi velocity vy = 0 which causes the
so-called van Hove singularities in the density of states.
Another solution to vy = 0 is the nesting vector . Therefore,
quantum fluctuations of particle-hole bubbles, L(Q, Q), for
the nesting external momenta enhance around the vanishing
Fermi velocity vz = 0 because of the umklapp scattering with
momentum transfer & and the nesting property. This strong
enhancement is expected to generate antiferromagnetic order
at sufficiently low T'.

We present the results for Uy evaluated on the crossed and
direct particle-hole channels, Ucpy and Uppy, in Figs. 1 and 2.
As can be seen in the top left plots of the figures, the particle-
hole channels exhibit strongly enhanced peaks at momenta
p = (£ /2, £m/2), which drive antiferromagnetic ordering
effects. This behavior of the four-fermion coupling constant
is driven by the umklapp and nesting processes mentioned
above. We can interpret this as a signal for the breaking
of SU(2) spin-rotation invariance in the system and as an
emergence of antiferromagnetic ordering.

VI. PARTIAL BOSONIZATION

As explained in the last section, we integrate down the
flow of the four-fermion coupling until we reach a scale
close to the onset of antiferromagnetic ordering. There the
divergence of nesting peaks in the particle-hole channels
signals the transition to an antiferromagnetic phase, and we
can no longer follow the flow of the four-fermion coupling
in the purely fermionic setting. As discussed in Sec. VB,
the nesting peaks are indeed the most prominent features in
the particle-hole channels. In order to follow the flow of the
four-fermion coupling into the symmetry-broken regime, we
need to bosonize its corresponding channels.

In this section, we first present our results, which show
that the nontrivial shape of the four-fermion coupling in dif-
ferent momentum channels can be well described by boson-
exchange processes, parametrized by a few fitting parameters.
After a short review of partial bosonization via the Hubbard-
Stratonovich transformation, we explain our ansatz for the
effective action to capture particle-hole or particle-particle
scatterings in a bosonic language. We then attempt to bosonize
the four-fermion coupling into an antiferromagnetic order
boson and an additional boson which can be associated to
s-wave Cooper pairing. We also investigate the shape and
relative size of the residual four-fermion coupling.

A. Different momentum channels

In order to resolve the momentum dependence of the
four-fermion coupling in more detail, we concentrate on
three specific momentum channels, for which we employ
two-dimensional grids of discrete momenta P = (0, p) with
P = (px, py). In particular, we investigate the momentum
dependence of the four-fermion coupling for the following
momentum configurations:

Ucpn(P) := Ur(P, P, —P, —P),
UDPH(P) = Uk(P7 _P9 _P5 P)7
Upp(P) := Uy(P, P, P, P). (32)

TABLE II. Numerical results for fitting the ansatz (33) in differ-
ent momentum configurations. An exchange of an antiferromagnetic
boson a leads to a momentum-dependent contribution to the particle-
hole channels, multiplied by the integer n;, as well as a constant
contribution in all three channels, multiplied by n,. We can extract
the fit parameters m? and A; parametrizing the boson propagator
from the momentum-dependent part, while the constant part together
with an additional constant part of the four-fermion interaction U,fo)
leads to a total constant shift )»,((0). Since an antiferromagnetic boson
exchange only contributes an overall constant to the particle-particle
channel, we cannot perform the same fit for this channel.

(P1, P, P5, Py) )‘;(b)(nls ny) m} Ag Uk(o)
CPH (P, P, —P, —P) 2, 1 032 053 1.08
DPH (P, —P, =P, P) (1, 2) 0.41 0.69 1.08
PP (P, P, P, P) (0, 3)

These momentum configurations have in common that for
each of them specific channel momenta take a maximal value
2P, namely, PCPH = Pl — P4, PDPH = Pl — P2, and Ppp =
Py + P5, while many other sums or differences of momenta
are zero. They can thus be associated to the crossed and direct
particle-hole channels, and the particle-particle channel.

Boson exchanges affect the four-fermion vertex in different
momentum channels differently. For example, the exchange of
an antiferromagnetic boson contributes only a small constant
in the particle-particle channel. With Eq. (9) the antiferromag-
netic boson-exchange vertex is given by

(a) _ n ny

, 33
k m? + Ai[2p — m]? + mi + 22 A; (33)

with n; and n, integers, n; + np, = 3, given in Table II. The
result of the fit for Uppy is shown in Fig. 2, similar to the one
for Ucpy in Fig. 1. The fitted parameters m3, Ay, and )L,((O) are
shown in Table II.

In an ideal situation of a pure boson-exchange interaction,
the same parameters m,% and A should describe Uy, for various
momentum configurations. We observe that the values of
m? and A extracted from the fits in the crossed and direct
particle-hole channels are indeed of similar size, confirming
the possibility of a partially bosonized description. In par-
ticular, Eq. (33) implies that the amplitude of the antiferro-
magnetic peaks in the CPH channel is twice the amplitude
of the peaks in the DPH channel. This is approximately
realized by the computed four-fermion interactions. For the
peak locations Py we find Ucpy(Py) ~ 6.87, and Uppy(Fy) =
3.46. The absence of an antiferromagnetic enhancement in
the PP channel is also realized by the computed four-fermion
interaction, as we will see in more detail in Sec. VIE.

B. Bosonization of the four-fermion interaction

The exchange of an antiferromagnetic boson is not the only
possibility. Other collective degrees of freedom, such as elec-
tron pairs [93], ferromagnetic bosons [94], or density waves
[95] may play an important role in certain regions of the phase
diagram of the Hubbard model. See also Refs. [29,32,33] in
the context of partial bosonization. Each would contribute
in specific momentum channels. Partial bosonization has to
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account for all the various possibilities, as well as for inter-
actions where two (or even more) collective modes play an
important role.

Let us start with a short discussion of the basic no-
tion of bosonization in a fermionic system. The Hubbard-
Stratonovich transformation allows us to rewrite the purely
fermionic action (17) as a Yukawa system such that

Sy, ¢)
m2
= g ¥ (Q)(iwg + )Y (Q) + - ; P (—Q)p(Q)

— Y YT POV PISQISQ — P+ Py). (34)
PO

At the level of the bare action, the (as of yet unspecified)
bosonic field ¢ is an auxiliary field, i.e., a nondynamical field.
The action (34) is equivalent to the pure fermionic action (17).
Indeed, plugging the equation of motion for ¢ into the action
(34), we get back the original action (17). The scalar boson
mass parameter m> is related to the four-fermion coupling
constant as

U=-—. (35)

Here, the inverse scalar mass parameter is regarded as the
momentum-independent propagator of the bosonic field. We
can see explicitly that the Yukawa coupling can be eliminated
by redefining the bosonic field ¢ — ¢/h in the action (34),
i.e., the Yukawa coupling /4 is a redundant coupling in the bare
action. Hence, relation (35) implies that at the classical level
the four-fermion vertex is rewritten in terms of an exchange
process of the bosonic field, as diagrammatically represented
in Eq. (1), although as of yet without external momentum
dependencies or a residual four-fermion vertex.

The bosonic form (34) corresponds to the exchange of a
density wave boson and leads to negative U. We can also
use bosonization with an antiferromagnetic boson in the limit
Ay = 0. In this case we obtain from Eq. (13)

3

U= (36)

W.
The sign is opposite to the exchange of the density wave boson
(35). There are further possibilities to perform bosonization
along these lines, introducing a substantial amount of ar-
bitrariness in the bosonization of a pointlike four-fermion
interaction [29].

Fluctuation effects change the situation profoundly. They
introduce a momentum dependence of U. Now, only particu-
lar choices of collective fields can generate by their exchange
the dominant features of U, provided appropriate momentum-
dependent bosonic propagators, and possibly momentum-
dependent Yukawa interactions, are chosen.

For a half-filled lattice we expect the occurrence of antifer-
romagnetic ordering. The order parameter for this is (for),
which characterizes the breaking of SU(2) spin-rotation sym-
metry. The collective modes corresponding to such an or-
dering are in the adjoint representation of SU(2), and we
denote them by m'(Q) here. A typical feature associated to
antiferromagnetic ordering is the occurrence of nesting peaks,

for which the sum of incoming external momenta equals .
It is therefore useful for the description of antiferromagnetic
ordering to introduce collective bosons with a constant shift
in the momentum

a'(Q) = m'(Q + 1), (37)

where IT = (0, wr). An expectation value of the antiferro-
magnetic boson a' at zero momentum {(a‘'(P = 0)) # 0 then
corresponds to a homogeneous antiferromagnetic spin density.

C. Pairing bosons

In addition to the antiferromagnetic bosons a', we could
introduce another collective mode corresponding to Cooper
pairs of electrons, i.e., ¢ ~ (Y ey), with & = io? the to-
tally antisymmetric tensor. A nonvanishing expectation value
of such a collective mode indicates the breaking of U(1)
symmetry, which corresponds to charge conservation. This
type of order is identified with a superconducting phase. To
realize such a phase, however, the electrons should exhibit an
effectively attractive force, for which a departure from half-
filling may be crucial. Although Cooper pairing of electrons
is not expected to occur in the system at half-filling, we
may introduce a collective mode for Cooper pairing. Partial
bosonization in two channels allows the exploration of more
details of the four-fermion interaction and of other regions of
the phase diagram.

So far we have encoded the particular momentum de-
pendence of the boson-exchange-induced interaction in the
ansatz for the boson propagator G [cf. Eq. (5)]. It is often
more convenient, however, to account for this momentum
dependence by an appropriate momentum-dependent form
factor in the fermion-boson interaction. The inverse boson
propagator can then be chosen to have its minimum at zero
momentum, as for the antiferromagnetic boson a’ in Eq. (37).
For the antiferromagnetic boson, the form factor consists of a
shift of the boson momentum by I1. To avoid confusion, we
will in the following refer to the propagators with the minima
of their inverses fixed at p = 0 as G instead of G.

As a simple truncation for the effective action describing
the bosonization of the four-fermion coupling in the antiferro-
magnetic or superconducting channels, we use

T =Y ¥ 1(Q)iwg + &)Y (Q) + T
o

— D hax (P, P, QY (P ()] (Q)
k.0

x 8(Q—P1+Pz+n)—ZA(’%)
P,

X hyx(Pr, Py, Q) x ([y" (PDey (P)]g*(Q)
— WPy (P)Ip(Q)) x 8P+ P, — Q). (38)

Here, o' and ¢ are collective modes describing an antifer-
romagnetic spin wave and a general Cooper pair, respec-
tively. We denote by A, and h,x the respective scale- and
momentum-dependent Yukawa couplings. The square brack-
ets denote spin-contracted fermion bilinears. The form factor
A(p) specifies the momentum configuration of the Cooper
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pairing. Depending on the state of the scattered electrons, the
form factor can take the following forms:

1 (s wave),
Lcos(py) + cos(p,)]  (extended s wave),
— )2 )
Alp) = %[cos(px) —cos(py)] (de_, wave), (39)
sin(p,) sin(py) (dyy wave).

For other possible form factors see, e.g., [95]. In particular,
the d,>_,»-wave configuration may be interesting for the un-
derstanding of an occurrence of the superconducting phase
in strongly correlated systems since its form factor could de-
scribe an effectively attractive interaction between electrons.
In this work, however, we do not specify the form factor since
we would like to see whether and how well a boson-exchange
process can capture the momentum dependence of the four-
fermion coupling constant.

For the superconducting boson we may try a simple ansatz
for the propagator similar to Eq. (5),

(G(@) ™" = md, + A0, (40)

and take a momentum-independent Yukawa coupling A, = 1.
The boson-exchange contribution to the four-fermion interac-
tion is computed analogously to Sec. II. The solution to the
field equation of ¢ reads as

(@) =GP @Y A (p— 1) vulPrupvs(@—P). @)
P

with ¢ the (spacelike) momentum component of Q. Insertion
of this solution into the effective action induces the boson-
exchange interaction

rf=>6@a(p-2)a(r-1)
0.k

X Yoy (PEapPp(Q — PV, (P2)eys s (Q — P2).
(42)
This can be brought into the form (2) by use of the identity
EqpEys = 80{)/8/35 - 80{65;3;/7 (43)

such that the boson-exchange contribution to U reads as

MO (P, Py, Py, Py)

= —4GY (P, + P3) A <p—3 g’”) A (p“ > pz). (44)

For the CPH channel with (P, P, —P, —P), P = (0, p), we
have
A& (P) = —4GP (0)A*(—p). 45)

In the DPH channel with (P, —P, —P, P) we find U}, (P) =
UYL(P) since A(p) = A(—p). The PP channel with
(P, P, P, P) yields a contribution

A% (P) = —4GY (2P)A%(0), (46)

which vanishes for the d,>_y» and d,, waves. For the s waves,
A) =1.

D. Toward antiferromagnetism and superconductivity

This work is limited to an investigation of the validity of
partial bosonization. It seems useful, nevertheless, to sketch
our proposal for continuing the flow into the ordered phase,
including parts of the parameter space for which supercon-
ductivity is expected. This proposal follows for the boson-
exchange part [32,33], while we suggest to keep, in addition,
a momentum dependent k,({‘”) instead of the constant used in
Refs. [32,33]. For this purpose one will need an ansatz for
I'poson in Eq. (38).

The bosonic part F,'z"s"“ includes pure bosonic interactions
involving the kinetic terms of a' and d. We can parametrize
1t as

rboson _ Z Vi(a, 8) + (derivative terms),  (47)
X

where the effective potential V; in coordinate space-time X =
(t,x) is given by

Mk o Mok o

> + > 4,

with a(X) = @'(X)a'(X)/2 and §(X) = ¢*(X)p(X). This ef-

fective potential exhibits SU(2) (spin-rotation) symmetry.
Spontaneous symmetry breaking in the antiferromagnetic

channel occurs if m? is negative for k = 0, or more precisely

for k! of the order of the characteristic size of the probe. In

this case, the mass parameter mi « varies from a positive value

to a negative one through zero. For mfl (k = k;) = 0O the four-
fermion interaction strength Uy, diverges. This divergence,
seen in many FRG investigations in the purely fermionic
setting, indicates the onset of local symmetry breaking, typ-
ically with domain size k,!. For a negative value of the mass
parameter m> 2« < 0, the effective potential has a minimum
at nonzero ﬁeld value. If this persists for kK — 0, this is a
signal of antiferromagnetic ordering (a') = (o) # 0, as
a consequence of SU(2) spin-rotation symmetry breaking.
For the derivative terms involving the kinetic terms of the
bosonic fields ¢’ and ¢, we could make several choices. A
particularly simple choice amounts to assuming a separate and
quadratic dependence on frequencies and momenta:

G '(Q)

Vi, 8) = m2 o+ m2 8+ (48)

= Ziwy + Alql® + my. (49)

Here, [q]> = ¢* ifq € [—7, 7]%, and is periodically continued
otherwise. Z; and A are field renormalization factors. At the
initial scale k = A, only the fermionic dynamics is relevant,
so that we can infer Z, = A, = 0 as initial conditions. Posi-
tive finite values of Z; and A; would be generated by fluctua-
tion effects in low-energy regimes, and then the bosonic field
behaves as a dynamical collective mode.

Based on these general properties, we propose for the
future a method for which explicit bosonic fields account for
leading boson-exchange channels in the four-fermion inter-
action. The part k ®) corresponding to these leading channels
can be shifted to the bosonic sector at every scale k by
dynamical bosonization [73-78]. The residual part U, 4

)L,(;”)(Pl , P>, P3, Py) should be kept in the truncation, with
bosonic contributions adding to the fermionic fluctuation
effects. The total four-fermion interaction U can then be
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reconstructed as
Ui(P1, Po, Py, P) = AP (P, Po, Py, Py) + ALY (Py, P, Py, Py)

+U". (50)

The advantage of this method will be an enhanced resolution
of the leading channels by taking into account the effective
boson-potential (48) terms beyond the quadratic order. This
procedure allows to explore the regions with local or global
spontaneous symmetry breaking without being stopped by
the divergence of the four-fermion interaction in a purely
fermionic treatment.

E. Bosonization in different momentum channels

A given choice of bosonization is reflected in all differ-
ent momentum channels. For example, in our approximation
the antiferromagnetic boson exchange leads in the particle-
particle channel with (P, P, P, P) to a momentum-independent
constant. Subtracting this constant in the PP channel will
not absorb much of the four-fermion interaction. This is
demonstrated in Fig. 3. Indeed, Upp(P) = Uy (P, P, P, P) does
not exhibit the pronounced antiferromagnetic peaks visible in
Figs. 1 and 2. It still shows some structure, which one may
attribute to the exchange of other collective bosons.

In general, one may combine bosons in two or even more
channels in order to account for the features in different
momentum channels. The total four-fermion vertex Uy is then
composed of different boson-exchange combinations )L;(’), plus

a residual contribution )»,(f). We observe that some boson-
exchange channels give negative contributions to U, as seen
for the particle-pair bosons in Eq. (44) if the product of the
form factors A is positive. Another negative contribution is
due to density waves. Generalizing Eq. (34) by replacing m?

. -1 . . .
with (G,(f )(Q)) one finds a contribution to the four-fermion
interaction

APy, Py, Py, Py) = G (P — Py), (51)

where we have again assumed £, ; = 1. The combination of
attractive and repulsive contributions gives flexibility to the
bosonization procedure, but makes it also sometimes difficult
to disentangle different effects.

As an example, we may look at the PP channel with
momenta (P, P, P, P). We observe in Fig. 3 a momentum
structure very different from Figs. 1 and 2. If we want to
associate this to boson-exchange peaks, we would need a
negative contribution, similar to the exchange of density wave
bosons or pairing bosons. With negative peaks at multiples of
7 we actually find a good fit for

U(P, P, P, P) = —4(m} + Ad2p™]) " +22. (52

The factor 4 is somewhat arbitrary at this stage. It would
correspond to the exchange of an s-wave or extended s-
wave pairing boson according to Eq. (44), with the boson
propagator (40).

To check the consistency of such a hypothesis, one has to
look at the corresponding contribution in the CPH and DPH
channels, for which the momentum dependence is given by
the squared form factor in Eq. (45). For the s-wave pairing

boson with A?(—p) = 1 we obtain in these channels a con-
stant contributing to U, ",

4
) ~
AU = ——5 ~ 1.6, (53)

4

where we use the fit value from the PP channel mé =2.41.
This would imply for the constant part not indicated by the
exchange of the antiferromagnetic or pairing boson a value
Ué(l),)l_I A Ulg%)H ~ 1.08 + 1.66 = 2.74. This agrees reasonably
well with the constant U}Eg) ~ 2.42 extracted from the fit in
the PP channel. We conclude that the simultaneous exchange
of an antiferromagnetic and an s-wave pairing boson accounts
for a reasonable fit of most of the momentum structures
observed in all three investigated channels. Of course, in
order to confirm such a hypothesis, other momentum channels
should be explored as well.

If we replace the s wave by an extended s wave we would
predict in the CPH and DPH channels an additional momen-
tum dependence mediated by the exchange of the pairing
boson

A(‘ﬁ) :)\,((p) —

CPH DPH — (54)

1
——[cos(py) + cos(py)].
mW

This should be visible in AA\"’(p) in Figs. 1 and 2 (lower
right corner). The negative contribution is maximal for
px = py =0, £x. This is not the observed structure, and
we thus conclude that an extended s-wave boson does not
play an important role. Our discussion exemplifies that the
choice of appropriate bosons proceeds often by hypothe-
sis and verification/falsification, rather than by a systematic
treatment.

If we follow the hypothesis of a boson-exchange contri-
bution from both an antiferromagnetic and s-wave pairing
bosons we arrive in the three channels at a description of the
four-fermion interaction by

4
0) W)
m2 + Ucpy + A)‘CPH(I’),
()

Uern(p) =2G2p + 1) + ¢ —

a a 4
Uben(p) = G 2p + ) + 267 = — + Uppy + Aigpu(p),

¢
Ure(p) = 4G (2p) + 3¢, + Ugy) + Mgy (). (55)
with
@ _ @ !
=G () = (56)

mik + 272,

Here, G\” and G,(f) are both given by Eq. (40), but with
different parameters m; and Ay.

For a fit to the four-fermion interaction at the scale kg
we combine all constants to a common constant A,(CO) and

neglect Ak;{‘[’). In each channel we therefore perform a fit with
three parameters m,%, Ay, and A,(CO). We obtain the following fit
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parameters:

(mf, Ak, M) epy & (0.32,0.53, 1.17),

(m}. A, AD) oy = (0.41,0.69, 1.22),

(m, Ak, M) pp ~ (2.41,2.29,2.68). 7

The parameters m% and Ay, should be similar for the CPH and

DPH channels since both involve the same propagator G,(ca)
for the antiferromagnetic boson. The parameters in the PP
channel are different. In particular, we observe mg K mé’ &
indicating that the antiferromagnetic channel dominates.
With the “measured values” ml2 o Ak )Lf?k) we can compute

the residual constant part Uk(o) in the four-fermion interaction
after subtraction of the constant boson-exchange contribu-
tions. From Eq. (55) one finds

U, ~2.76, Ul ~2.69, US ~242.  (58)

The values are actually rather similar and close to three, indi-
cating that at least for the considered channels the fluctuation
contribution is dominated by boson exchange.

As can be seen in the upper right in Figs. 1 and 2, our fit
works well in the particle-hole channels, where it captures
the strong nesting peaks signifying the neighborhood of the
onset of antiferromagnetic ordering quite nicely. In addition,
the particle-particle channel exhibits a repulsive behavior,
which can also be fitted by a s-wave pairing boson exchange,
as shown in Fig. 3. The residual four-fermion interactions
shown in the bottom of these figures are in all cases signifi-
cantly smaller than the main features absorbed into the boson
propagators. We also note that some of the differences could
be artifacts stemming from the N-patching approximation
we used to feed back the momentum dependence of the
four-fermion coupling, or other truncation effects. In addi-
tion, if other effective boson-exchange processes like, e.g., a
charge density wave played a role at half-filling, they should
be visible in at least one of the channels we investigated. Since
we observe no large additional contribution of this type, we
can conclude that these processes as expected indeed do not
play an important role in the transition to antiferromagnetic
order, a posteriori justifying our ansatz for bosonizing the
four-fermion coupling in Sec. VID.

In summary, we find that the leading instabilities in the
four-fermion interaction which signal the transition to an-
tiferromagnetic order can be described as exchanges of an
antiferromagnetic spin wave. While some substructures in the
fermionic two-particle vertex are not absorbed by our simple
bosonization ansatz, these are small compared to the nesting
peaks in the particle-hole channels, and might at least partially
be truncation artifacts. We thus conclude that it is indeed
possible to bosonize the Hubbard model close to half-filling.

F. Buildup of bosonic-exchange channels

In order to investigate the buildup of antiferromagnetic
ordering, we repeat the fits presented in Sec. VIE at different
scales k, starting from the initial UV cutoff A (here A =
6t). We present the resulting scale dependence of the fit
parameters m,% and A; in Fig. 4. As expected, close to the
microscopic UV scale the values for m7 and A are very large,

10°
102
10!
10°
—1
10708 3 1.2 1.6 2.0
102
10t P
100 —
DPH
—— Acpn
0.8 k 1.2 1.6 2.0

FIG. 4. Fit parameters m; and A; for the boson-exchange prop-
agators presented in Sec. VIE at different renormalization scales
k. In all cases the values decrease exponentially toward the IR,
signaling a buildup of nesting peaks, or more generally a nontrivial
momentum dependence of the four-fermion coupling which can be
described as an effective boson exchange. The parameters for the
two particle-hole channels tend toward each other, consistent with
the exchange of an antiferromagnetic boson in the two channels.

corresponding to a negligible boson-exchange contribution.
The fit parameters become smaller toward the IR, however,
signaling a buildup of nesting peaks in the particle-hole chan-
nels, and a nontrivial momentum dependence in the particle-
particle channel. Close to the transition to antiferromagnetic
ordering, where our flow stops numerically, the fit parame-
ters for the particle-hole channels seem to flow toward the
same values. We interpret this as a signal that the parts of
the four-fermion interaction which signal the transition to
antiferromagnetic order can indeed be bosonized by a single
antiferromagnetic exchange boson a.

We also observe that for large k the effects of the exchange
of antiferromagnetic and s-wave pairing bosons are of similar
size. Only close to the onset of local antiferromagnetic order
a clear dominance of the antiferromagnetic channel sets in.

VII. CONCLUSIONS

In this paper, we investigated the momentum dependence
of the four-fermion coupling of the two-dimensional Hubbard
model on a square lattice close to the transition to antifer-
romagnetic order. We found that the nesting singularities in
the particle-hole channels driving the transition can be well
described by the exchange of an antiferromagnetic spin wave.
This already works for a particularly simple parametrization
of the exchange-boson propagator. At half-filling the residual
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four-fermion interaction is small compared to the part that can
be described by boson exchange.

This suggests a split of the momentum-dependent four-
fermion interaction U into a boson-exchange part )\]((b), and

a residual four-fermion interaction )»,(CW). This can be done at
every scale k of the renormalization flow, i.e.,

U(B) = 2D () + A (). (59)

The boson-exchange part can be described by explicit bosonic
fields for collective excitations using the method of flowing
bosonization. Keeping a momentum-dependent residual inter-
action k,({‘”) is important in order to diminish the effects of a
possible bias in the choice of the bosonization, maintain an
accurate momentum dependence, and detect possible other
channels for which U, can get large, and which are not yet
included in 1",

There is no need to restrict this method of partial bosoniza-
tion to a single bosonic field. For two or more bosonic
fields, effects of competing channels, competing order, or
simultaneous order for several order parameters can be in-

J

vestigated. For the present investigation of three-momentum
channels we find a good description of the momentum-
dependent four-fermion vertex by the exchange of an antifer-
romagnetic and an s-wave pairing boson. The simultaneous
flow of interactions for fermionic and bosonic degrees of
freedom enhances the algebraic and numerical complexity.
However, the bonus of access to the ordered phase and the
increased resolution for the leading channels makes it worth
it.
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APPENDIX A: FLOW EQUATION

In this Appendix, we show the explicit form of the beta function of the four-fermion coupling U occurring in the effective
action (24). A key quantity in the flow equation is the two-point function F,({z). In the Hubbard model, we compute the second-
order functional derivative with respect to ¥ and . Its result is shown in, e.g., [91]. In order to obtain the flow of Uy, we define
the spin projector

1
IPS1S2X3X4 =3 (5s1x2 ax3s4 - 831‘?3 6S2S4) .

The flow equation of the four-fermion vertex U, can then be obtained by acting with this projector on the flow equation of the
four-point function. In summary, we arrive at

(AD)

P 84Ty
SY (=Py)SYT(P3)Syr (—P2)sy T (Py)
where we have used the flow equation (22) in the second line. The spin-projected flow diagrams 7; read as [20,96]

Top(P1, Py, Py, Py) = = > L(—=Q, Q + Py + P)Ui(P1, —Q, P3, Q + Py + P)U(—Q, Py, Q + Py + Py, Py),
Q

Topu(P1, P, P3, Py) = — Y " L(Q, Q + Py — P)(=2Ux(Py, P2, Q, Q + Pi — P)Uk(Q + Py — Py, Q, 3, Py)
(Y]
+ U(P,Q+ P — P, 0, PB)U(Q+ P — P, 0,P;, Py)
+ U(P1, P, 0,0+ P — P)Ui(P3, 0,0+ P — P, Py)),

Tepu(Pr, P, P3, Py) = — ZL(Q, O — P+ PHU(P1, 0,0 — Py + Py, PHUL(Q, P, P3, 0 — Py + Py).
(]

Ur(Py, Py, P3, Py) = Tr( ) = (Tpp + Toru + Tcou)8(Pr — Py + Pz — Py), (A2)

(A3)

The abbreviations PP, DPH, and CPH stand for particle-particle, direct particle-hole, and crossed particle-hole channels,
respectively, and we introduce the threshold function

L(P, Q) := %(G(P) Gi(Q)), (A4)
with the full fermion propagator
1

iCUQ +‘§q +R£(Q)

GlQ) = (AS5)

APPENDIX B: MATSUBARA-RESUMMED PROPAGATOR LOOPS

The flow generators (A3) involve Matsubara sums. In this work, as discussed in Sec. V, we approximate the four-fermion
vertex as frequency independent and can therefore perform the Matsubara sums analytically. In particular, with wp = 27Ty (np +
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%) = fwg, where np € Z and the effective temperature cutoff (25), we obtain

TY LP,Q)=d (T > GUP)GL(Q)

neZ neZ

neZ neZ

tanh é—p — tanh é—q
1 2T 2T
=To| — 3

Ty LP,—Q) =0 (T Y Gi(P)G(—Q)

Ti & — &
)+ (57)
tanh <— + tanh | —
=T ! 21 27, . (B1)
2T; &pt&

We specified our choice of the fermion regulator and the precise form of the effective temperature 7, in Sec. IV C.

APPENDIX C: COMPUTATION CYCLE

We briefly summarize the computation cycle used in this paper.

(1) Derive beta functions by taking functional derivatives of exact flow equation.

(2) Solve the beta function of the four-fermion coupling 0,Ui (P, P, P35, Py) = Tpp + Tppu + Tcpu for three different
momentum configurations (DPH, CPH, and PP) by using N-patching method. (The top left-hand side figures in Figs. 1-3.)

(3) We fit to the obtained Uy (P;) = Uy (P, P», P3, Py) in step 2 by the bosonic propagator

AP = e + e + U, (€1
k m; +A2p — > m] +2m%A, k
and find m,%, A, and Uk(o). (The top right-hand side figures in Figs. 1-3.)
(4) We evaluate the difference between Uy (P;) and k,({b) ,
AN(P) = Ui(P) = 1) (P). (€2)

(The bottom hand side figures in Figs. 1-3.)
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