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We investigate ’t Hooft anomalies in the CPN−1 model in space-time dimensions higher than two and identify
two types of anomalies: one is a mixed anomaly between the PSU(N ) flavor-rotation and magnetic symmetries
and the other is between the reflection and magnetic symmetries. The latter indicates that even in the absence
of the flavor symmetry, the model cannot have a unique gapped ground state as long as the reflection and
magnetic symmetries are respected. We also clarified the condition for the ’t Hooft anomalies to survive under
monopole deformations, which explicitly break the magnetic symmetry down to its discrete subgroup. Besides,
we explicitly show how the identified ’t Hooft anomalies match in the low-energy effective description of
symmetry broken phases—the Néel, U(1) spin liquid, and the valence bond solid phases. An application to
the finite-temperature phase diagram of the four-dimensional CPN−1 model is also discussed.
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I. INTRODUCTION

Symmetry provides fundamental tools to understand the
nonperturbative aspects of quantum many-body systems. An
’t Hooft anomaly, an obstruction to gauge global symmetry, is
such a symmetry-based theoretical approach beyond perturba-
tive analysis. If the quantum system under consideration has
an ’t Hooft anomaly, it constrains possible low-energy dynam-
ics due to the ’t Hooft anomaly matching [1–3]. Recently, new
’t Hooft anomalies involving generalized global symmetries
such as discrete symmetries [4] and higher-form symmetries
[5] are found and applied to a large variety of systems both in
condensed matter physics [4,6–22] and high-energy physics
[23–38]. In these applications, the global anomaly induced
by a large gauge transformation and a discrete symmetry
transformation often plays a central role rather than the
perturbative anomaly (such as the chiral anomaly) induced
by an infinitesimal transformation (see Refs. [39,40] for the
classic examples of the global anomaly and also Refs. [41,42]
for a review on a fermionic global anomaly). Furthermore,
recent developments also reveal the relation between ’t Hooft
anomalies and boundary physics of novel states of matter
known as the symmetry-protected topological (SPT) phases
[4,6,8,10].

Quantum field theoretical approach to low-dimensional
spin systems provides one representative ground where ’t
Hooft anomalies play a pivotal role in understanding their pos-
sible low-energy behaviors such as properties of their ground
states and energy spectra [11,16–21]. One can see this because
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the ’t Hooft anomaly can be regarded as an avatar of the Lieb-
Shultz-Mattis (LSM) theorem for the lattice model [43–46]
in the continuum field theory [15,17] (see also Refs. [47–49]
for recent developments on the LSM theorem). Indeed, the
(1 + 1)-dimensional CP 1 model with the θ term is shown to
have an ’t Hooft anomaly between the PSU(2)(≡ SU(2)/Z2)
flavor symmetry [or the SO(3) spin-rotation symmetry in the
condensed-matter terminology] and the charge conjugation
symmetry at θ = π [20], which corresponds to the original
LSM theorem for the (1 + 1)d half-integer spin chain [17].
Furthermore, the (2 + 1)d CP 1 model also contains the ’t
Hooft anomaly between the PSU(2) flavor symmetry and
the U(1) magnetic symmetry (or its discrete subgroup such
as the Z4 magnetic symmetry) [16,17,20]. This mixed ’t
Hooft anomaly accounts for competition between the Néel
and valence bond solid (VBS) phases with an unconventional
quantum critical point known as the deconfined quantum
critical point in (2 + 1)d quantum antiferromagnets [50–52].1

While the above anomalies ensure that the (1 + 1)d ((2 +
1)d) CP 1 model shows nontrivial low-energy spectra as long
as the PSU(2) flavor symmetry and charge conjugation sym-
metry (magnetic symmetry) are respected, it is interesting to
ask whether breaking the flavor symmetry can allow the model
to have a unique gapped ground state. If one finds another
anomaly without the flavor symmetry, the anomaly ensures
its ground state is still nontrivial. In Ref. [17], such ’t Hooft
anomalies in (1 + 1) and (2 + 1) dimensions are studied from
the bulk SPT perspective. Constructing bulk SPT actions, they

1The CP 1 model has been also attracting attentions in the con-
text of (2 + 1)-dimensional dualities [53] (see e.g., Ref. [54] for a
review).
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found anomalies involving only discrete internal symmetries
in the CP 1 model which are identified as lattice symmetries
in the underlying lattice model (e.g., the translation and site-
centered rotation symmetries). On the other hand, Ref. [18]
directly computes an anomaly in the (1 + 1)d CPN−1 model
by putting the model on a nonorientable manifold and reveals
that the (1 + 1)d CPN−1 model has an ’t Hooft anomaly
involving a space-time symmetry: the one between the re-
flection and charge conjugation symmetries. However, since
the latter work discusses only the (1 + 1)-dimensional case,
it is worthwhile to generalize their discussion to higher di-
mensions and explore a possible ’t Hooft anomaly with a
space-time symmetry.

In this paper, we investigate ’t Hooft anomalies and their
matching in the CPN−1 model (or N-flavor Abelian Higgs
model) living on D-dimensional space-time with D � 3,
which captures the long-wavelength behaviors of SU(N ) spin
systems. We start our discussion with an ’t Hooft anomaly
between the PSU(N )(≡ SU(N )/ZN ) flavor symmetry and the
magnetic symmetry. Then, putting the model on a nonori-
entable manifold in a similar manner to Ref. [18], we obtain
an ’t Hooft anomaly involving the reflection symmetry, i.e.,
a mixed ’t Hooft anomaly between the reflection symmetry
and the magnetic U(1) symmetry. Thus the anomaly matching
argument forbids the CPN−1 model to possess a unique
gapped ground state as long as the reflection and magnetic
symmetries are respected. We also clarify the condition that
the ’t Hooft anomalies survive under monopole deformations
to the CPN−1 model, which explicitly break the magnetic
U(1) symmetry down to its discrete subgroup.

We further discuss several consequences of the anomaly
matching based on the identified ’t Hooft anomalies. In the
Néel phase, where the PSU(N ) flavor symmetry is sponta-
neously broken, the anomalies tell us that a topologically con-
served current in this phase, or the so-called skyrmion current,
has a fractional part in the presence of background gauge
fields.2 As the second application, we consider the U(1) spin
liquid phase, where the magnetic U(1) symmetry is sponta-
neously broken, and find a topological defect carries nontrivial
charges under the PSU(N ) flavor and reflection symmetries.
Taking account of the possible charge-n monopoles, we also
discuss the case where the magnetic symmetry is explicitly
broken down to its discrete subgroup Zn. The condensation of
monopoles, in this case, leads to the valence bond solid (VBS)
phase, where the discrete magnetic symmetry is broken spon-
taneously. The spontaneously broken discrete symmetry leads
to the n-fold degeneracy of the ground state, and thus, the
(2 + 1)d VBS phase can possess domain walls interpolating
the degenerate ground states. In addition to the flavor anomaly
matching discussed in Ref. [16], we show that a domain wall
in the (2 + 1)d VBS phase shares the same anomalies as the
(1 + 1)d CPN−1 model via the anomaly inflow mechanism
[55]. Finally, we discuss the finite-temperature phase diagram

2A similar phenomenon is discussed in the context of massless
QCD, where the discrete chiral symmetry plays a pivotal role. The
anomaly matching argument in the chiral symmetry breaking phase
requires the existence of the topologically conserved current carrying
the baryon number [30].

of the CPN−1 nonlinear sigma model in (3 + 1) dimension.
After showing persistence of the ’t Hooft anomalies in the
finite-temperature (3 + 1)d CPN−1 model, we discuss how
they constrain its phase diagram (see Ref. [23] for an anal-
ogous restriction in the pure Yang-Mills theory at θ = π

and Refs. [20,25,27,32] for the discussion on other gauge
theories). We also mention its consistency with the large-N
analysis on the CPN−1 nonlinear sigma model.

This paper is organized as follows. In Sec. II, we briefly
summarize our setup, global symmetries of the CPN−1 model,
and its relation to quantum antiferromagnets. In Sec. III,
after reviewing the ’t Hooft anomaly matching argument,
we elucidate the ’t Hooft anomalies in the CPN−1 model
in general space-time dimensions higher than two with and
without the flavor symmetry. We also investigate their stability
to the monopole deformations. In Sec. IV, we demonstrate
how the ’t Hooft anomalies match in the low-energy effective
theories of the possible symmetry broken phases. Section V
is devoted to the discussion on the fate of the anomalies at
finite temperature and its consequence for the phase diagram
of the (3 + 1)d CPN−1 model. In the last section (Sec. VI), we
summarize our result together with the discussion on a possi-
ble realization of the mixed anomaly between the reflection
symmetry and the magnetic symmetry in the lattice model.

II. CPN−1 MODEL AND GLOBAL SYMMETRY

In this section, we first explain our setup and the global
symmetries of the CPN−1 model (or N-flavor Abelian Higgs
model) living on a D-dimensional space-time manifold MD.
Throughout this paper, we focus on space-time dimensions
higher than two (i.e., D > 2) and work in Euclidean signature.

Let us introduce the CPN−1 model. The Lagrangian for the
CPN−1 model takes the following form:

LCPN−1 = |Daz|2 + V (|z|2) + 1

2g2
da ∧ �da, (1)

where z and z† denote an N-component complex scalar field
and its Hermitian conjugate, respectively. Notice that |z|2 ≡
z†z is not constant in our model.3 We also introduced the
dynamical U(1) gauge field a ≡ aμdxμ and the covariant
derivative Daz = (d − ia)z. The Lagrangian is invariant under
the following U(1) gauge transformation:

z(x) → eiθ (x)z(x),

a(x) → a(x) + dθ (x),
(2)

with a gauge transformation parameter θ (x). The field strength
for a is given by da, and the last term in Eq. (1) represents the
ordinary Maxwell term.

We then describe the global symmetries of the CPN−1

model. The three symmetries, PSU(N )F , U(1)[D−3]
M , and R,

3In that sense, this model is different from the CPN−1 nonlinear
sigma model and the one often called the SU(N ) Abelian Higgs
model giving a linear realization of the nonlinear sigma model.
Nevertheless, only the symmetry property plays a fundamental role
in our discussion, and both of the linear and nonlinear models share
all the results on the ’t Hooft anomalies.
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which we respectively call the flavor, magnetic, and reflection
symmetries, play essential roles in our discussion. First of
all, PSU(N )F is a continuous flavor symmetry. The PSU(N )
group represents the quotient group SU(N )/ZN , which is
obtained by dividing the SU(N ) group by its center:

ZN = {e2π ik/NIN |k = 0, . . . , N − 1} ⊂ SU(N ), (3)

where IN is the N × N identity matrix. The flavor symmetry
acts on the fields as

z(x) → Uz(x),
(4)

a(x) → a(x),

where U ∈ SU(N ). At first glance, one may naively think the
global symmetry group is SU(N ). However, because of the
U(1) gauge invariance (2), elements in the center group do not
act on any physical operators, and the faithful flavor symmetry
is PSU(N )F rather than SU(N )F .

The model also enjoys another continuous symmetry
called the (D − 3)-form U(1) magnetic symmetry denoted as
U(1)[D−3]

M . The conserved current is given by

JM = 1

2π
� da, (5)

and its conservation is ensured by the Bianchi identity for
the gauge field [5]. This symmetry is sometimes called a
topological symmetry in the literature because the current
is automatically conserved without using the equation of
motion. The generator is defined on the two-dimensional
submanifold �2 as

QM (�2) =
∫

�2

�JM = 1

2π

∫
�2

da. (6)

This quantity is nothing but the magnetic flux penetrating
the surface �2 and acts on (D − 3)-dimensional magnetically
charged objects such as monopole instantons in three dimen-
sions and ’t Hooft lines in four dimensions.

Besides, we shall also consider a situation where the
magnetic symmetry is broken to its discrete subgroup Zn

because of the presence of a magnetic object with a magnetic
charge n in Sec. III C. In three dimensions, this happens
when we perform the path integral over configurations with
n-multiple monopoles. On the other hand, in four dimensions,
we can introduce magnetic monopoles in the Maxwell theory
using a 2-form U(1) gauge field b = 1

2 bμνdxμ ∧ dxν , whose
Lagrangian reads

LEM+mon = 1

2g2
(da − nb) ∧ �(da − nb) + 1

8π2ρ2
M

db ∧ �db,

(7)

where ρM denotes the stiffness of the monopole condensate.
This theory represents a gauge theory coupled to charge-n
magnetic monopoles because it is equivalent to the charge-n
scalar η coupled to the dual vector potential ã via the S-duality
(see the discussion in Sec. IV D):

LEM+mon ↔ ρ2
M

2
(dη − nã) ∧ �(dη − nã) + g2

8π2
dã ∧ �dã.

(8)

We thus can interpret the scalar field η dual to the 2-form
gauge field b represents the monopole field. The Zn shift
symmetry for η and ã is translated into the magnetic symmetry
in the original model defined by LEM+mon. In the following,
we will consider the U(1)[D−3]

M symmetry or the (Zn)[D−3]
M

symmetry depending on whether we consider monopole de-
formations or not.

Third, we shall explain the reflection symmetries Rμ (μ =
1, . . . , D), which act on the fields as follows:

z(x) → 	z∗(Rμx),

a(x) → −(Rμ · a)(Rμx). (9)

Here, we introduced the D × D matrices Rμ =
diag(1, . . . , 1,

μ︷︸︸︷
−1 , 1, . . . , 1) and a certain element

	 ∈ SU(N ). Note that R1 represents the time-reversal
transformation.

Using the fact that Rμ generates a Z2 transformation, one
can show that 	 and its transpose 	t satisfy (see Ref. [18] and
Appendix for a derivation)

	 = +	t for odd N,

	 = +	t or − 	t for even N.
(10)

For example, 	 = −	t for even N can be explicitly realized
by the following choice:

	 = diag(

N/2︷ ︸︸ ︷
iσ y, . . . , iσ y), (11)

where we used the Pauli matrix σα (α = x, y, z). The sign
in front of 	t in Eq. (10) is essential in our following
discussion because it determines the presence and absence
of the mixed anomaly between the reflection and magnetic
symmetries. Since these reflection symmetries are related to
each other through Lorentz transformations, we will refer to
the reflection symmetry just as R in the next section.

Before closing this section, we comment on a relationship
between the CPN−1 model (1) and spin systems in con-
densed matter physics. When N = 2, the CP 1 model enjoys
the PSU(2) flavor symmetry, which can be identified as the
SO(3) spin-rotation symmetry of antiferromagnets because
of PSU(2) 	 SO(3). The model is thus reduced to the O(3)
sigma model describing quantum antiferromagnets in the Néel
phase after imposing the constraint |z|2 = ρ2 and neglecting
the Maxwell term. Note that the gauge-invariant combina-
tions, z†σαz with the Pauli matrices σα (α = x, y, z), are iden-
tified as the normalized Néel order parameter nα = ρ−1z†σαz
with nαnα = 1.

On the other hand, a lattice model counterpart of the
magnetic symmetry is more indirect. In (2 + 1) dimension,
the magnetic symmetry is regarded as the spatial rotation
symmetry in the lattice models, which is sensitive to their lat-
tice structures. For instance, the rectangular, honeycomb, and
square lattices possess the Z2, Z3, and Z4 rotation symme-
tries, respectively, and they are identified as discrete magnetic
symmetries in the presence of charge-n magnetic monopoles.
This identification means that magnetic symmetry-broken
phases in the CP 1 model with the monopole deformations de-
scribe the VBS phases in lattice models [51,56,57]. Therefore,
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FIG. 1. The reflection Ri as the link-centered parity transforma-
tion along the xi direction.

for applications to condensed matter physics, it is meaning-
ful to consider the possible appearance of monopole having
magnetic charge n, which breaks the U(1)[D−3]

M magnetic
symmetry down to the (Zn)[D−3]

M symmetry.
Let us finally identify the reflections Rμ in the antifer-

romagnet on, e.g., the square lattice, setting the space-time
dimension D = 3. In the N = 2 flavor case, one can simply
use 	 = iσ y satisfying 	 = −	t , and the reflection Rμ acts
on the Néel order parameter as

Rμ : nα (x) → −nα (Rμx). (12)

This equation indicates that R1 represents the time-reversal,
and R2 (R3) does the link-centered parity in the x2 (x3)
direction at the lattice scale (see Fig. 1).

III. ’T HOOFT ANOMALY

In this section, we show that the CPN−1 model (1) exhibits
two ’t Hooft anomalies: the one between the PSU(N ) flavor
and magnetic symmetries, and the other between the magnetic
and reflection symmetries. Before proceeding to it, we shall
quickly review an ’t Hooft anomaly and its consequence, the
anomaly matching [1–3].

Suppose that our system living on the space-time manifold
MD has a global symmetry G, such as the flavor, magnetic,
and reflection symmetries in the CPN−1 model. One can
generally couple a background gauge field A associated with
the symmetry G and define the generating functional for the
system Z[A] as

Z[A] =
∫

Dϕ exp(−Sgauged[ϕ; A]), (13)

where ϕ is a set of dynamical fields—e.g., ϕ = {z, a} in the
CPN−1 model—and Sgauged[ϕ; A] denotes the action equipped
with the background G-gauge field A. The background gauge
field promotes the global symmetry to a local one. We naively
expect that the generating functional is invariant under the
local transformation, A(x) → A(x) + δθA(x), where δθA(x)
represents the gauge variation with a possible gauge parameter
θ (x). However, contrary to our naive expectation, this is not
always the case. The generating functional sometimes obtains
a phase factor:

Z[A + δθA] = Z[A]eiA[θ,A], (14)

and the gauge invariance is broken up to this phase. A[θ, A]
is a local functional of θ (x) and A(x). The system is defined
to have an ’t Hooft anomaly when the anomalous phase shift
A[θ, A] cannot be canceled out by a variation of any gauge-
invariant local counterterm in D dimensions (i.e., A[θ, A] 
=

δθSD
local[A]). Instead, it is usually saturated by a variation of a

local action living on ND+1, a (D + 1)d open manifold whose
boundary is MD:

δθSD+1
SPT [A] = iA[θ, A]. (15)

Here, SD+1
SPT [A] represents the local action and describes an

SPT phase protected by the symmetry G on the (D + 1)-
dimensional space-time. We emphasize that the combination
Z[A]e−SD+1

SPT [A] is gauge invariant thanks to the SPT action.
If we find the ’t Hooft anomaly, it inevitably constrains the

low-energy behaviors of the model. Consider the renormaliza-
tion group (RG) transformation of the gauge-invariant com-
bination Z[A]e−SD+1

SPT [A]. While the RG on the D-dimensional
boundary results in a certain low-energy effective theory of
the edge system, the RG in the (D + 1)d bulk is trivial because
the SPT action has no dynamical degrees of freedom. Thus the
low-energy effective action on the boundary must reproduce
the same anomalous phase factor canceling the variation in
the bulk because the RG preserves the gauge invariance of the
total system.

As a result, since the effective action for any nondegenerate
(unique) gapped ground state cannot reproduce the phase
shift iA[θ, A], it is impossible to gap out the system without
ground state degeneracy. Therefore possible scenarios for the
low-energy behaviors of systems (such as ground state) are
restricted to show (1) spontaneous symmetry breaking of G,
(2) topological order, or (3) conformal behavior, where a
unique gapped ground state is ruled out. This consistency
condition on the infrared (IR) behaviors of the system is
known as the ’t Hooft anomaly matching.

In order to detect the ’t Hooft anomaly, we thus need to
gauge global symmetries in the CPN−1 model: the flavor,
magnetic, and reflection symmetries. Since gauging the flavor
and reflection symmetries requires some effort, we first ex-
plain a straightforward part, gauging the U(1)[D−3]

M magnetic
symmetry.4 It is accomplished by introducing a background
(D − 2)-form gauge field K through the minimal coupling to
the magnetic current JM defined in Eq. (5). Then, the action
for the CPN−1 model takes the following form:

S[z, a; K] =
∫ [

|Daz|2 + V (|z|2) + 1

2g2
da ∧ �da

]

+ i

2π

∫
K ∧ da, (16)

where the last term results from gauging the U(1)[D−3]
M sym-

metry. As a result, the action (16) becomes invariant under the
U(1)[D−3]

M local transformation given by

z(x) → z(x),

a(x) → a(x), (17)

K (x) → K (x) + dθ (x),

with a (D − 3)-form local parameter θ (x). Under this trans-
formation, the generating functional is invariant because the

4See Sec. III C for an extension to the case with charge-n
monopoles, where the magnetic symmetry is broken to be (Zn)[D−3]

M .
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action changes only by

i

2π

∫
dθ ∧ da ∈ 2π iZ, (18)

which does not affect the generating functional. Note that this
gauge field K does not transform under the flavor symmetry
but changes under Rμ as

K (x) → (Rμ · K )(Rμx). (19)

We demand this transformation to keep i
2π

∫
K ∧ da invariant

under the reflection Rμ.
At this stage, we do not encounter any obstruction to gauge

the magnetic symmetry, but the situation will be changed
when we try to gauge other symmetries. In the following, we
study the PSU(N )F × U(1)[D−3]

M and R × U(1)[D−3]
M anoma-

lies in Secs. III A and III B, respectively. We will observe that
turning on background gauge fields for PSU(N )F and R spoils
the U(1)[D−3]

M invariance (18), which implies the existence of
the mixed ’t Hooft anomalies. In Sec. III C, we also discuss
whether the ’t Hooft anomalies exist or not when U(1)[D−3]

M
is broken down to its discrete subgroup by the monopole
deformation of the model.

A. PSU(N)F × U(1)[D−3]
M anomaly

Let us begin with coupling the system to a background
gauge field for the PSU(N )F symmetry [5,58]. The PSU(N )
gauge field is realized as a pair of a U(N ) gauge field A and a
2-form U(1) gauge field B satisfying the following constraint:

NB = trF [A], (20)

where F [A] = dA − iA ∧ A is the field strength for A. This
constraint allows us to regard B as a 2-form ZN gauge field,
whose surface integration is fractionally quantized:∫

�2

B ∈ 2π

N
Z, (21)

where an arbitrary two-dimensional closed manifold �2. The
U(N ) gauge field acts on the fields in the ordinary manner:

z(x) → U (x)z(x),

a(x) → a(x),

K (x) → K (x), (22)

A(x) → U (x)A(x)U †(x) − idU (x)U †(x),

B(x) → B(x),

with a gauge transformation parameter U (x) ∈ U(N ). Nev-
ertheless, since the U(N ) gauge field contains the undesired
U(1) component, we eliminate this by imposing the 1-form
gauge invariance:

z(x) → z(x),

a(x) → a(x) − λ(x),

K (x) → K (x), (23)

A(x) → A(x) + λ(x)IN ,

B(x) → B(x) + dλ(x),

where λ(x) is a 1-form U(1) field. Note that one needs to
transform the 2-form gauge field B to keep the constraint (20).

This 1-form gauge invariance removes the redundant diagonal
part in U(N ), which acts on no gauge-invariant operators as
discussed in Sec. II, and allows us to realize the U(N )/U(1) 	
PSU(N ) gauge field. It may be also helpful to recall a relation
U(N ) 	 U(1) × SU(N )/ZN , where the center of SU(N ) is
divided to avoid double counting with the U(1) part.

After introducing the PSU(N )F gauge field, the resulting
action of the CPN−1 model takes the form:

S[z, a; A, B, K] =
∫ [

|Da+Az|2 + V (|z|2)

+ 1

2g2
(da + B) ∧ �(da + B)

+ i

2π
K ∧ (da + B)

]
. (24)

The covariant derivative for z is now replaced by Da+Az =
(d − ia − iA)z. This completes gauging the quotient group
symmetry PSU(N )F .

We then show gauging PSU(N )F indeed spoils the large
gauge invariance for U(1)[D−3]

M . The generating functional
similarly acquires an anomalous phase factor under the local
U(1)[D−3]

M transformation, K (x) → K (x) + dθ (x) as

Z[K + dθ, A, B] = Z[K, A, B] exp

(
− i

2π

∫
MD

dθ ∧ B

)
.

(25)

Thus a nontrivial phase shift under the large gauge transfor-
mation remains because the fractional quantization (21) yields

i
2π

∫
MD

dθ ∧ B ∈ 2π i
N Z.

We must confirm no local counterterm cancels the phase
shift. A possible local action canceling the variation takes the
form: ∫

MD

K ∧ B. (26)

Nevertheless, it is not invariant under the ZN 1-form gauge
transformation, and we have no local counterterm to cancel
the phase shift. Therefore we find the PSU(N )F × U(1)[D−3]

M

anomaly in the D-dimensional CPN−1 model. Furthermore,
one can show this anomaly is saturated by attaching the
CPN−1 model on the boundary of an SPT phase living on a
(D + 1)-dimensional manifold ND+1:

SSPT[K, A, B] = (−1)D+1 i

2π

∫
ND+1

K ∧ dB. (27)

One can readily show the combination Z[K, A, B]e−SSPT[K,A,B]

is invariant under both Eqs. (17) and (23).

B. R × U(1)[D−3]
M anomaly

We next study the mixed anomaly between the reflection
symmetry R and the magnetic symmetry U(1)[D−3]

M .
To detect the anomaly, we need to introduce a gauge field

for R. A flux for such a discrete symmetry is introduced
by imposing a twisted boundary condition associated with
the symmetry. In the case of the reflection symmetry, it is
equivalent to putting the theory on a nonorientable manifold
(see Refs. [13,18] and also related work [7,9]).
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For simplicity, we first consider the CPN−1 model living
on a three-dimensional cube whose side length is L. We
choose the periodic boundary condition along the x1 direction
but impose the twisted boundary conditions on the other (x2

and x3) directions by using the R3 and R2 transformations.
The boundary condition along the x2 direction is explicitly
given by

z(x1, L/2, x3) = eiθ2(x1,x3 )	z∗(x1,−L/2,−x3), (28a)

a(x1, L/2, x3) = −(R3 · a)(x1,−L/2,−x3) + dθ2(x1, x3),

(28b)

K (x1, L/2, x3) = −(R3 · K )(x1,−L/2,−x3), (28c)

and that along the x3 directions is

z(x1, x2, L/2) = eiθ3(x1,x2 )	z∗(x1,−x2,−L/2), (29a)

a(x1, x2, L/2) = −(R2 · a)(x1,−x2,−L/2) + dθ3(x1, x2),

(29b)

K (x1, x2, L/2) = −(R2 · K )(x1,−x2,−L/2), (29c)

where we introduced possible U(1) phases θ2 and θ3 allowed
by the gauge invariance (2). We will specify the condition
imposed on these phases resulting from consistency of the
twisted boundary conditions. Note that imposing these bound-
ary conditions is equivalent to putting the theory on the
S1 × RP 2 manifold.

Let us specify a condition which the U(1) phases θ1 and θ2

satisfy. Recalling that we have two ways to patch the scalar
field on the line (x1, L/2, L/2) = (x1,−L/2,−L/2) as

z(x1, L/2, L/2) = eiθ2(x1,L/2)	z∗(x1,−L/2,−L/2)

= eiθ3(x1,L/2)	z∗(x1,−L/2,−L/2),
(30)

we find that θ2(x1, L/2) is equal to θ3(x1, L/2) modulo 2π . In
a similar way, the consistency on the line (x1, L/2,−L/2) =
(x1,−L/2, L/2) gives us

z(x1, L/2,−L/2) = eiθ2(x1,−L/2)	z∗(x1,−L/2, L/2)

= eiθ3(x1,−L/2)	t z∗(x1,−L/2, L/2).
(31)

Equation (31) indicates the U(1) phases satisfy

θ2(x1,−L/2) − θ3(x1,−L/2)

∈
{

2πZ for 		∗ = +1,

π + 2πZ for 		∗ = −1,
(32)

which plays a pivotal role in finding the R × U(1)[D−3]
M

anomaly.
We then calculate the Dirac quantization condition for the

dynamical gauge field a on the RP 2 plane and show the R ×
U(1)[D−3]

M anomaly. With the help of Stokes’ theorem and the
twisted boundary conditions, the magnetic flux threading the
plane is directly evaluated as∫

x2,x3
da =−

∫ L/2

−L/2
dx2[a2(x1, x2, L/2)−a2(x1,−x2,−L/2)]

+
∫ L/2

−L/2
dx3[a3(x1, L/2, x3) − a3(x1,−L/2,−x3)]

= − [θ2(x1,−L/2) − θ3(x1,−L/2)]

+ [θ2(x1, L/2) − θ3(x1, L/2)].

Thus the choice 		∗ = +1 results in the standard Dirac
quantization condition, while 		∗ = −1 brings about a non-
trivial one:∫

x2,x3
da ∈ 2πZ, for 		∗ = +1, (33)∫

x2,x3
da ∈ 2πZ + π, for 		∗ = −1. (34)

Here, the latter result indicates∫
x2,x3

da =
∫

x2,x3
πw2 (mod 2π ), (35)

where w2 denotes the second Stiefel-Whitney class for the
tangent bundle on our space-time manifold [59] (see also
Refs. [7,9]). It is defined modulo 2 and takes zero and one on
spin and nonspin manifolds, respectively. In that sense, it does
not directly measure the orientability of the manifold, which
is instead detected by the first Stiefel-Whitney class. However,
since we introduce the twisted boundary conditions just in the
two directions, the second Stiefel-Whitney class is related to
the first Stiefel-Whitney class via w2 = w2

1 (see the Appendix
of Ref. [9]), and the nontrivial second Stiefel-Whitney class
means nonorientablity of the manifold. As will be discussed
shortly, it is worth emphasizing that πw2 plays a similar role
to the 2-form gauge field B in Sec. III A.
The modified Dirac quantization condition might imply
the CPN−1 model has an ’t Hooft anomaly. Under the
twisted boundary conditions with 		∗ = −1, performing
the large U(1)M gauge transformation K (x) → K (x) + dθ (x)
with θ (x) = 2πnx1/L (n ∈ Z) gives us

Z[K + dθ,w2] = Z[K,w2] exp

(
−in

∫
x2,x3

πw2

)
. (36)

Thus the choice 		∗ = −1 could yield a mixed ’t Hooft
anomaly between the R and U(1)M symmetries while one
does not find such an anomaly in the other case 		∗ = +1.
A possible local term which cancels the anomalous phase (36)
is just

− i

2π

∫
M3

K ∧ πw2. (37)

However, one finds that this term is ill-defined as follows.
For example, when we substitute a specific configuration K =
ηdx1/L with η ∈ [0, 2π ] into Eq. (37) and put the theory on
the manifold S1 × RP 2, this term (37) reduces to

− iη

2π

∫
x2,x3

πw2, (38)

which is not consistent for a generic value of η ∈ [0, 2π ]
because

∫
x2,x3 w2 is only defined modulo 2. Therefore we

cannot remove the anomalous phase shift (36) by adding any
local counterterms, which proves that the CPN−1 model pos-
sesses the R × U(1)M anomaly. In addition, the SPT action
corresponding to this anomaly is identified as

SSPT[K,w2] = i

2π

∫
N4

K ∧ πdw2. (39)

Likewise, N4 is a four-dimensional bulk whose boundary is
given by M3 = S1 × RP 2.
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Generalizing the above discussion to higher dimensions is
straightforward. We impose the twisted boundary conditions
on two directions, or put the model on a manifold MD =
MD−2 × RP 2. When one chooses 		∗ = −1, the generating
functional similarly picks up the following phase factor under
the local U(1)[D−3]

M transformation:

Z[K + dθ,w2] = Z[K,w2] exp

(
− i

2π

∫
dθ ∧ πw2

)
.

(40)

No local counterterms saturate this phase factor, but the fol-
lowing SPT action living on a (D + 1)-dimensional manifold
ND+1 with ∂ND+1 = MD cancels it:

SSPT[K,w2] = (−1)D+1 i

2π

∫
ND+1

K ∧ πdw2. (41)

Thus we find the R × U(1)[D−3]
M anomaly in general dimen-

sions. Note that 		∗ = +1 gives no anomaly again.
Here, we mention a relation to the previous work. Up to a

total derivative term, the SPT action (39) is rewritten as

SSPT[K,w2] = − i

2π

∫
N4

dK ∧ πw2. (42)

This SPT action coincides with one of the topological actions
for topological paramagnets protected by the U(1) × T sym-
metry [7]. Since the transformation law of K given in Eq. (19)
under R ∼ R1 ∼ T is different from that of the ordinary U(1)
gauge field by a charge conjugation, it obeys the classification
of topological paramagnets. We note that our SPT action (41)
also describes its higher-form generalizations.

In summary, we find the R × U(1)[D−3]
M anomaly in the

CPN−1 model when the number of flavor N is even, and we
further choose 		∗ = −1. The R × U(1)[D−3]

M is obtained
without using the PSU(N )F symmetry. Therefore the R ×
U(1)[D−3]

M anomaly survives even if we allow the model to
have any potential for the scalar field breaking the flavor sym-
metry but respecting the reflection symmetry. This indicates
that even when the model explicitly breaks the flavor sym-
metry, it cannot show a unique gapped ground state as long
as the reflection and magnetic symmetries are respected. Fur-
thermore, we also emphasize that the R × U(1)[D−3]

M anomaly
is present even without the Lorentz or rotation symmetries
but only with the magnetic symmetry and two of the Rμ

(μ = 1, . . . , D) symmetries.

C. Stability to monopole deformation

In this section, we investigate stability of the above anoma-
lies under the monopole deformation, which explicitly breaks
the magnetic symmetry. When the model couples to a charge-
n magnetic object, the magnetic symmetry is broken down
to its Zn subgroup referred to as (Zn)[D−3]

M . In this case, the
background gauge field is replaced by a (D − 2)-form Zn

gauge field Kn, which is realized as a (D − 2)-form U(1)
gauge field satisfying the constraint nKn = dH with (D − 3)-
form U(1) gauge field H . Due to this constraint, the local
(Zn)[D−3]

M transformation acts on both Kn and H as

Kn → Kn + dθ,
(43)

H → H + nθ,

where θ denotes a (D − 3)-form local function. Although the
gauged action itself takes the same form up to the replacement
of K with Kn (and an action for a magnetic object), this
deformation allows us to have additional local counterterms,
which may cancel the anomalous phases, Eqs. (25) and (40).
If they cancel the anomalous phase shifts, the anomalies are
not stable to the explicit breaking of U(1)[D−3]

M , and such a
deformation results in a unique gapped ground state. In the
following, we clarify conditions for the anomalies to survive
by investigating whether we can remove the anomalous phase
shifts with the new local counterterms or not.

First, we begin with the PSU(N )F × (Zn)[D−3]
M anomaly.

Thanks to the (D − 3)-form gauge field H , we also have the
local counterterm:

Sk[H, B] = ik

2π

∫
dH ∧ B, (44)

which possibly cancels the anomalous phase shift in Eq. (25).
Here, note that the coefficient k is an integer running
from 0 to N − 1 because B denotes a ZN gauge field.
Then, let Z[Kn, H, A, B] be the generating functional for the
CPN−1 model with the monopole deformation, which ac-
quires the same phase factor as the original one (25) under
the (Zn)[D−3]

M transformation (43). With the help of the new
local counterterm, we redefine the generating functional as
Z̃[Kn, H, A, B] = Z[Kn, H, A, B]e−Sk [H,B], which results in

Z̃ [Kn + dθ, H + nθ, A, B]

= Z̃[Kn, H, A, B] exp

(
− i(kn + 1)

2π

∫
dθ ∧ B

)
. (45)

This equation means Sk[H, B] can saturate the anomaly if and
only if (kn + 1) ∈ NZ. In other words, such Sk[H, B] exists
when GCD(n, N ) = 1. We thus conclude the flavor anomaly
vanishes in this case, but otherwise it is still present, which
reproduces the previous result in Ref. [20] for D = 3.

Let us next clarify the condition under which the R ×
(Zn)[D−3]

M anomaly survives. A parallel discussion allows the
additional local counterterm:

Sk[H,w2] = ik

2π

∫
dH ∧ πw2, (46)

where k = 0, 1 resulting from the property of the second
Stiefel-Whitney class. We then modify the generating func-
tional for the deformed model Z[Kn, H,w2] by adding this
local counterterm as Z̃[Kn, H,w2] = Z[Kn, H,w2]e−Sk [H,w2],
whose large (Zn)[D−3]

M gauge transformation results in

Z̃[Kn + dθ, H + nθ,w2]

= Z̃[Kn, H,w2] exp

(
− i(kn + 1)

2π

∫
dθ ∧ w2

)
. (47)

This shows the R × (Zn)[D−3]
M anomaly exists for even n,

while it is a fake for odd n.

IV. ANOMALY MATCHING IN LOW-ENERGY
EFFECTIVE THEORIES

In this section, we investigate the ’t Hooft anomaly match-
ing of the CPN−1 model (1) in the low-energy effective theory
showing spontaneous symmetry breaking. In Sec. IV A, we
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TABLE I. ’t Hooft anomalies for the CPN−1 model with
U(1)[D−3]

M (© and × indicate the presence and absence of an
anomaly).

PSU(N )F × U(1)[D−3]
M R × U(1)[D−3]

M

	 = +	t © ×
	 = −	t © ©

first demonstrate possible scenarios with spontaneous symme-
try breaking which saturates the specified ’t Hooft anomalies.
Then, we heuristically show how the low-energy effective the-
ories in the symmetry-breaking phases— the Néel, U(1) spin
liquid, and VBS phases—consistently match the specified ’t
Hooft anomalies in Secs. IV B, IV C, and IV D, respectively.

A. Possible symmetry breaking scenarios

Let us first constrain possible ground states with spon-
taneous symmetry breaking for the CPN−1 model in the
absence of monopoles. The model without monopoles enjoys
the topological U(1)[D−3]

M symmetry, and Table I demonstrates
a short summary on the ’t Hooft anomalies obtained in the
previous section. Recall that the R × U(1)[D−3]

M anomaly is
sensitive to whether the number of the flavors N is even or
odd and how R is represented in contrast to the PSU(N )F ×
U(1)[D−3]

M anomaly.
In this case, the ’t Hooft anomaly matching tells us that we

have the following two typical symmetry breaking scenarios:
(1) spontaneous PSU(N )F symmetry breaking (Néel phase)
and (2) spontaneous U(1)[D−3]

M symmetry breaking (U(1) spin
liquid phase). We call the PSU(N ) symmetry-broken phase
as the Néel phase—indeed, the case with N = 2 represents
the Néel phase for the antiferromagnet—and the U(1)[D−3]

M
symmetry broken phase as the U(1) spin liquid phase.

These phases can be realized by tuning the potential term
in the action (1). For example, suppose that the potential
be V (|z|2) = m|z|2 + λ|z|4 with λ > 0. Then, for m < 0, the
complex scalars can condense, and an order parameter �ab =
zaz∗

b acquires a nonzero expectation value. The nonvanishing
order parameter �ab breaks the PSU(N )F symmetry as well
as the reflection symmetry. On the other hand, for m > 0, the
complex scalars are expected to be gapped, and thus, we can
integrate out them. In this case, the dynamical gauge field a
remains massless, which means the spontaneous breaking of
the U(1)[D−3]

M symmetry. This is why we refer to this U(1)[D−3]
M

symmetry broken phase as the U(1) spin liquid phase.

We next consider the charge-n monopole deformation,
which explicitly breaks the U(1)[D−3]

M symmetry down to its
discrete subgroup (Zn)[D−3]

M . Table II shows the CPN−1 model
in the presence of charge-n monopoles has a little complicated
anomaly structure depending on the value of the monopole
charge n. The Néel phase and U(1) spin liquid phases also sat-
urate the PSU(N )F × (Zn)[D−3]

M and R × (Zn)[D−3]
M anomalies

since (Zn)[D−3]
M is included in U(1)[D−3]

M . Besides, the model
can have a spontaneous (Zn)[D−3]

M symmetry-broken phase.
We call the (Zn)[D−3]

M symmetry broken phase as a valence
bond solid (VBS) phase following a terminology often used
in D = 3. It is worth to emphasize that this phase describes
topological order in D � 4 since the broken symmetry is a
higher-form discrete one [5,22]. The model allows the ad-
ditional symmetry breaking scenario: spontaneous symmetry
breaking of (Zn)[D−3]

M (valence bond solid (VBS) phase).
The ’t Hooft anomaly matching states the low-energy

effective action associated with the above symmetry broken
phases must reproduce the anomalous phase shifts. Although
all the above scenarios with spontaneous symmetry breaking
could saturate the ’t Hooft anomaly, it is quite nontrivial how
the ’t Hooft anomalies are saturated in the low-energy effec-
tive theory. In the rest of this section, we directly examine how
the saturation of the anomaly is realized in the low-energy
effective action describing the symmetry-broken phases.

B. Néel phase

In this section, we demonstrate the anomaly matching
in the low-energy effective field theory of the Néel phase,
where PSU(N )F is spontaneously broken to the U(N − 1)F

symmetry.
As we explained in the previous section, the potential

V (|z|2) = m|z|2 + λ|z|4 with m < 0 may result in the con-
densation of zi in its ground state. We then assume this
condensation indeed occurs and then, parametrize the ground
state expectation value as e.g., 〈za〉 = fπδ1

a with a real constant
fπ (classically given by fπ = √−m/λ) and the Kronecker
delta δa

b . This ground state expectation remains invariant under
the act of the subgroup U(N − 1)F . Further taking account
of the U(1) gauge invariance, we see that the actual broken
symmetry forms CPN−1 	 U(N )/[U(1) × U(N − 1)]. Then,
the resulting Nambu-Goldstone mode is introduced as

z(x) = U (x) 〈z〉 with U (x) ∈ U(N )/[U(1) × U(N − 1)],
(48)

where the coset U (x) contains the Nambu-Goldstone mode.
Note that we took account of the fact that 〈z〉 is invariant under

TABLE II. ’t Hooft anomalies for the CPN−1 model in the presence of charge-n monopoles (© and × indicate the presence and absence
of an anomaly).

monopole charge n PSU(N )F × (Zn)[D−3]
M R × (Zn)[D−3]

M

GCD(N, n) = 1 × ×
	 = +	t

GCD(N, n) > 1 © ×
GCD(N, n) = 1, GCD(2, n) = 1 × ×

	 = −	t GCD(N, n) > 1, GCD(2, n) = 1 © ×
GCD(N, n) > 1, GCD(2, n) > 1 © ©
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the unbroken symmetry U(N − 1)F and chose the unitary
gauge. Substituting this into the original Lagrangian (1), we
obtain

L = f 2
π tr[�0(dU † ∧ �dU + ia ∧ �(U †dU − dU †U ))]

+ 1

2g2
da ∧ �da + f 2

π a ∧ �a, (49)

where we introduced the matrix �0, whose component is
given by �0

ab ≡ δ1
aδ

1
b in our gauge. Here we neglected the

constant term V ( f 2
π ) resulting from the potential. The conden-

sation of z giving a mass to the dynamical U(1) gauge field
a via the Higgs mechanism. Then, we can safely perform the
integration over a by using the equation of motion:

a = −itr(�0U †dU ) + O(d3). (50)

As a consequence, we derive the effective Lagrangian for the
Néel phase as

LNéel = f 2
π [tr(�0dU † ∧ �dU )

+ tr(�0U †dU ) ∧ �tr(�0U †dU )]

= f 2
π

2
tr(d� ∧ �d�), (51)

where, in the second line, we introduced the matrix field
�(x) = U (x)�0U †(x). Eq. (51) gives an effective Lagrangian
for the Néel phase describing the dynamics of the Nambu-
Goldstone mode (see e.g., Ref. [60]). Since the flavor sym-
metry g ∈ PSU(N )F acts on � as � → g�g−1, the effective
Lagrangian (51) respects the PSU(N )F symmetry manifestly.

Based on the constructed effective theory, we then confirm
the ’t Hooft anomaly matching in the Néel phase. A key
question arising from the bottom-up view of the low-energy
effective theory (51) is whether we have a symmetry corre-
sponding to U(1)D−3

M within its framework. At first glance,
the answer seems negative since there is no corresponding
symmetry in the effective Lagrangian (51). However, the
crucial observation is that the second homotopy group of the
coset is nontrivial:

π2

(
U(N )

U(1) × U(N − 1)

)
= π2(CPN−1) = Z. (52)

This topological number allows the Néel phase to possess
topologically stable configurations. As a result, we have the
topologically conserved (D − 2)-form current:

�JS = − i

2π
tr(�0dU −1 ∧ dU ) = − i

2π
tr(�d� ∧ d�),

(53)

whose coefficient is chosen so that
∫

S2 JS ∈ Z with a spa-
tial 2-sphere S2. This (D − 2)-form current is referred to
as the skyrmion current since the associated charge in the
(2 + 1)d case indeed counts a number of the magnetic (or
baby) skyrmions. We then identify the skyrmion current as
the (D − 2)-form magnetic current in the original CPN−1

model. On the other hand, from the top-down viewpoint, this
identification is naturally justified because we can rewrite the
magnetic current using Eq. (50) as

�JM = 1

2π
da = − i

2π
tr(�0dU −1 ∧ dU ) = �JS. (54)

We thus find that the low-energy effective theory of the
Néel phase realizes the U(1)[D−3]

M symmetry as the topological
symmetry. By inserting the background (D − 2)-form gauge
field K , the effective action acquires the additional coupling
as

SNéel[�; K] = f 2
π

2

∫
tr(d� ∧ �d�) + i

∫
K ∧ �JS. (55)

In the following, we will show that the additional term actually
saturates both the PSU(N )F × U(1)[D−3]

M and R × U(1)[D−3]
M

anomalies.
a. PSU(N )F × U(1)[D−3]

M anomaly matching. Let us first
turn on the PSU(N )F background gauge field. This just re-
places the partial derivatives in the effective Lagrangian with
the covariant ones. However, this naive replacement violates
the conservation of the skyrmion current. The violation is
canceled if one modifies the skyrmion current by adding the
gauge-invariant term:

�JS = − i

2π
tr(�0DAU −1 ∧ DAU ) − 1

2π
tr(�0U

−1F [A]U )

= − i

2π
tr(�0d[U −1DAU ]), (56)

where we defined the covariant derivative of the coset
DAU ≡ (d − iA)U . The modified current (56) is the so-called
Goldstone-Wilczek current [60–62] (see also Ref. [63] for
a related early work). Although the second term fixes the
conservation law or the U(1)[D−3]

M symmetry, it, instead, spoils
the ZN 1-form gauge invariance.

On the other hand, we can recover the ZN 1-form gauge
invariance by adding B/2π with the 2-form ZN gauge field B,
which yields another definition of the skyrmion current:

�JS = − i

2π
tr(�0DAU −1 ∧ DAU )

− 1

2π
tr(�0U

−1F [A]U ) + B

2π

= − i

2π
tr(�DA� ∧ DA�) − 1

2π
tr(�F [A]) + B

2π
. (57)

Nevertheless, this modified current now spoils the U(1)[D−3]
M

large gauge invariance due to the fractional quantization com-
ing from the last term. This competing behavior precisely
reflects the mixed PSU(N )F × U(1)[D−3]

M anomaly. Therefore
we have shown the PSU(N )F × U(1)[D−3]

M anomaly in the
Néel phase.

b. R × U(1)[D−3]
M anomaly matching. We next investigate

the R × U(1)[D−3]
M anomaly in the Néel phase by putting

the model on a nonorientable manifold, say MD = MD−2 ×
RP 2. Recall Eq. (40), where the magnetic current takes the
half-integer value on the manifold. The equation of motion
(50) tells us∫

w2 = 1

2π

∫
da = − i

2π

∫
tr(�d� ∧ d�). (58)

In other words, a half skyrmion shows up on the nonori-
entable manifold and again breaks the U(1)[D−3]

M large gauge
invariance. Therefore thanks to the topological current, the
Néel phase is shown to be consistent with the R × U(1)[D−3]

M
anomaly matching.
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C. U(1) spin liquid phase

In this section, we examine the anomaly matching in the
U(1) spin liquid phase, where the U(1)[D−3]

M magnetic sym-
metry is spontaneously broken. The discussion in this section
also serves as a basis to discuss the anomaly matching in the
VBS phase.

In the U(1) spin liquid phase, the N-component complex
scalar field is massive, and we can simply integrate out it in the
original CPN−1 Lagrangian (1). As a result, the system only
contains the dynamical U(1) gauge field a in the low-energy
limit, which results in the simple effective Lagrangian

LU(1)SL = 1

2g2
da ∧ �da. (59)

This rather trivial effective Lagrangian is, of course, consistent
with a general symmetry-based argument. Besides, the S-
duality maps the Maxwell theory onto

L̃U(1)SL = 1

2g̃2
dã ∧ �dã, (60)

where gg̃ = 2π and ã is a (D − 3)-form U(1) gauge field
which is dual to a.

In general, when a continuous p-form symmetry is spon-
taneously broken, an associated Nambu-Goldstone boson is
described by a p-form gauge field [5,64]. Since U(1)[D−3]

M is
broken in the U(1) spin liquid phase, we can identify ã as
the Nambu-Goldstone boson associated with the U(1)[D−3]

M
symmetry breaking. In the following, we will mainly use
the dual gauge field to examine its symmetries and anomaly
matching.

Let us take a closer look at the symmetry structure of the
above low-energy effective theory. In addition to the U(1)[D−3]

M
symmetry generating the shift of the Nambu-Goldstone boson
ã as ã → ã + θ , one easily finds the low-energy effective
Maxwell theory enjoys the emergent 1-form shift symmetry
for the original gauge field a, which we call the U(1)[1]

E

symmetry. The Noether current for the U(1)[1]
E symmetry is

simply given by

�JE = 1

2π
dã, (61)

which is conserved due to the absence of electrically charged
objects in the spin liquid phase. The current �JE characterizes
linelike defects in this phase (e.g., a vortex in D = 3).

The vital point for the subsequent discussion is that the
Maxwell theory suffers from the mixed anomaly between the
U(1)[D−3]

M and U(1)[1]
E symmetries. This observation motivates

us to identify a discrete counterpart of the U(1)[1]
E symmetry,

or the (Z[1]
N )E symmetry, as a remnant of the PSU(N )F sym-

metry (recall that the original 1-form gauge transformation in
Eq. (23) is consistent with the above identification). We first
note that gauging the U(1)[D−3]

M symmetry is accomplished by
replacing dã with dã − K , an invariant combination under the
local U(1)[D−3]

M transformation:

ã(x) → ã(x) + θ (x), K (x) → K (x) + dθ (x). (62)

Furthermore, one can introduce the 2-form ZN gauge field B
through the minimal coupling to the current in Eq. (61). We
eventually find gauging the U(1)[D−3]

M and (Z[1]
N )E symmetries

leads to the following effective action:

S̃U(1)SL[ã; K, B] =
∫

1

2g̃2
(dã − K ) ∧ �(dã − K )

+ i

2π

∫
B ∧ dã, (63)

where B obeys the fractional quantization (21).
The second term in Eq. (63) enables us to confirm that

the ’t Hooft anomaly is consistently matched in the U(1) spin
liquid phase. In fact, this term respects the ZN 1-form gauge
invariance, but spoils the U(1)[D−3]

M gauge invariance under
Eq. (62) as

δθ S̃U(1)SL[ã; K, B] = i

2π

∫
B ∧ dθ. (64)

This violation is exactly the same as Eq. (25) and prop-
erly reproduces the phase shift attached to the PSU(N )F ×
U(1)[D−3]

M anomaly. Moreover, the same discussion works for
the R × U(1)[D−3]

M anomaly. On the nonorientable manifold,
the effective action is shown to take the following form:

S̃U(1)SL[ã; K,w2] =
∫

1

2g̃2
(dã − K ) ∧ �(dã − K )

+ i

2π

∫
πw2 ∧ dã, (65)

which consistently matches the R × U(1)[D−3]
M anomaly. In

both cases, the ’t Hooft anomalies are saturated by the discrete
counterparts of the U(1)[1]

E symmetry and the current (61) car-
rying nontrivial charge under the PSU(N )F and R symmetry.

D. Valence bond solid (VBS) phase

Based on the discussion in the previous section, we con-
sider the effect of the charge-n monopole deformation of the
theory and discuss the anomaly matching in the VBS phase.

The valence bond solid phase appears when the charge-n
monopole condenses so that the (Z[D−3]

n )M symmetry is spon-
taneously broken. As discussed above, identifying the discrete
subgroup of the electric 1-form symmetry, or the (Z[1]

N )E

symmetry, as a remnant of the PSU(N )F symmetry, we can
apply the same discussion as the U(1) spin liquid phase;
the effective Lagrangian in the VBS phase also contains the
followings:

SVBS
anom[ã; B,w2] = i

2π

∫
B ∧ dã + i

2π

∫
πw2 ∧ dã (66)

in the presence of the background gauge fields for the
PSU(N )F and R symmetries. We thus again see these terms
possibly spoil the (Z[D−3]

n )M gauge invariance depending on
the value of the monopole charge (see Table II), saturating our
’t Hooft anomalies. In the remaining of this section, we will
show the consequence of the anomaly matching in the VBS
phase: deconfined excitations localized on a domain wall in
D = 3 and topological order in D = 4.

a. Anomaly inflow for 3d VBS domain wall. Let us first
consider the 3d VBS phase, where the dual gauge field ã
denotes a scalar field [16]. We find that the effective theory
equipped with the (Zn)M shift symmetry of the dual scalar ã
is given by the sine-Gordon model with a potential V (ã) =
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ρ2
M (1 − cos nã). The cosine potential typically drives the sys-

tem to break the (Zn)M symmetry spontaneously, resulting in
the VBS phase. Turning on the (Zn)M gauge fields Kn and H ,
we obtain the gauged effective action of the VBS phase as

S3D
VBS[ã; Kn, H] =

∫
1

2g̃2
(dã − Kn) ∧ �(dã − Kn)

+
∫

ρ2
M[1 − cos(nã − H )]. (67)

Compared with the U(1) spin liquid phase, the 3d VBS phase
can have the domain-wall solution due to a n-fold degeneracy
of the classical vacua at ã ≡ 2πk/n (k = 0, 1, · · · , n − 1). As
discussed in Ref. [16], a nontrivial excitation is localized on
a domain wall in the VBS phase with the PSU(N ) × (Zn)M

anomaly due to the anomaly inflow. Let us confirm their
discussion also respects the R × (Zn)M anomaly.

For simplicity, let us consider the n = 2 case, but gen-
eralization with arbitrary n is straightforward. The cosine
potential pins the scalar field ã to ã = 0, π leading to twofold
degeneracy of the classical vacua. Let us then consider a
domain-wall solution interpolating two vacua along e.g., the
x3 direction by imposing the boundary condition5: ã(x) = 0
at x3 = −∞ and ã(x) = π at x3 = ∞. Neglecting a thickness
of the realized domain wall, we simply put such a solution
as ã(x) = π�(x3) with a Heaviside step function �(x). Sub-
stituting this solution into the anomalous part of the effective
action (66), we obtain the following result nonvanishing on
the wall:

Sano
VBS[ã; B,w2]

∣∣
ã=π�(x3 )

= i

2

∫
x1,x2

B(x1, x2, 0) + i

2

∫
x1,x2

πw2(x1, x2, 0). (68)

Because of their coefficients, they do not satisfy the Z2 1-form
gauge invariance for B and the 2π periodicity for πw2 on the
wall and seem ill-defined itself.

This apparent contradiction is resolved by letting the the-
ory on the wall have two-dimensional anomalies so that the
total system is consistent. Such an anomalous system which
cancels both the anomalous terms in Eq. (68) is the two-
dimensional CPN−1 model with a θ term at θ = π . At this
θ angle, this 2d model has the charge-conjugation symmetry
C and also possesses the PSU(N )F × C [16,20] and R × C
anomalies [18]. In Ref. [16], it is discussed that PSU(N )F × C
anomaly saturates the first anomalous term on the wall in
Eq. (68). It is also pointed out the existence of an excitation
carrying a PSU(N )F quantum number, which is deconfined on
the wall but confined in the bulk. Here, we find that the R × C
anomaly in the 2d CPN−1 model also saturates the second
anomalous term in Eq. (68). Therefore, in the presence of the
R × (Zn)M anomaly, the deconfined excitation on the wall
must transform as in Eq. (9) under the reflection symmetry.

b. Topological order in 4d (or higher-dimensional) VBS
phase. In D � 4, a charge-n Higgs field plays a role anal-
ogous to the cosine potential in D = 3, which breaks the

5Employing this boundary condition could be also regarded as
an insertion of a nontrivial flux H with

∫
x3 dH ∈ 2πZ for the

background Z2 gauge field on a three-dimensional torus.

U(1)[D−3]
M symmetry down to (Z[D−3]

n )M (recall the discussion
on the monopole deformation of the theory given in Sec. II).
The gauged effective action is thus identified as

SD�4
VBS [ã, η; Kn, H] =

∫
1

2g̃2
(dã − Kn) ∧ �(dã − Kn)

+
∫

ρ2
M

2
(dη−nã+H ) ∧ �(dη−nã+H ),

(69)

where η is a (D − 4)-form U(1) gauge field. In the space-time
dimension higher than 3 (or D � 4), the (Z[D−3]

n )M symmetry
is spontaneously broken when ρ2

M is relevant. In that case,
we can show that the low-energy dynamics is governed by
a topological quantum field theory, known as the BF theory
[65–70]. To show this, we first rewrite the effective action (69)
with the help of an auxiliary 3-form field h as

SD�4
VBS [ã, η; Kn, H] =

∫
1

2g̃2
(dã − Kn) ∧ �(dã − Kn)

+
∫

1

8π2ρ2
M

h ∧ �h

−
∫

i

2π
h ∧ (dη − nã + H ). (70)

Instead of integrating out h, which reproduces the original
effective Lagrangian (69), we now integrate out η by using
its equation of motion dh = 0, which can be solved as h = db
with a 2-form field b. As a consequence, we obtain the low-
energy effective action for the VBS phase in D � 4 given by

Stop[ã, b; Kn, H] = − in

2π

∫
b ∧ (dã − Kn), (71)

where we neglected the higher derivative terms. The BF
theory defined by the effective action (71) describes a Z[D−3]

n
topological order such as a BCS superconductor [66]. In
addition to the original Z[D−3]

n magnetic symmetry, the BF
theory possesses an emergent Z[2]

n symmetry acting on b as

b → b + 1

n
dλ with

∫
�2

dλ ∈ 2πZ. (72)

Nevertheless, one finds that the introduction of the (Z[D−3]
n )M

background gauge field spoils this emergent symmetry as

δλStop = −i
∫

dλ

2π
∧ dã + i

∫
dλ

2π
∧ Kn ∈ 2π iZ

n
, (73)

where we used a constraint nKn = dH associated with the
(Z[D−3]

n )M gauge field. This shows the presence of the mixed
anomaly between the (Z[D−3]

n )M and Z[2]
n symmetries, and im-

plies spontaneous (Z[D−3]
n )M symmetry breaking in the VBS

phase. One can directly show the ground state degeneracy
of the BF theory (71) depends on the topology of the spatial
manifold (see e.g., Refs. [65–70] for a detailed discussion).

V. APPLICATION: 4D ANOMALY AT FINITE
TEMPERATURE

As an application of the anomaly matching, we shall
discuss the fate of the PSU(N )F × U(1)[1]

M and R × U(1)[1]
M

anomalies of the four-dimensional CPN−1 model at finite
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temperature and apply it to constrain its possible phase
diagram.

A. Persistence of the anomaly at finite temperature

A usual symmetry, or a 0-form symmetry, acts on the
point-like local operator, and the associated ’t Hooft anomaly
usually disappears when we consider a finite-temperature
situation (see, however, Ref. [71] for a way to make a 0-form
anomaly to survive under circle compactification). Neverthe-
less, since the anomalies for the 4d CPN−1 model involve the
1-form magnetic symmetry, which acts on the line operator,
they survive and forbid the model from being a trivial phase
even at finite temperature. In this section, after demonstrating
the persistence of the PSU(N )F × U(1)[1]

M and R × U(1)[1]
M

anomalies at finite temperature, we will show the consequence
of anomaly matching. We also explicitly show the large-
N phase diagram of the CPN−1 nonlinear sigma model is
consistent with the anomalies.

First of all, we explain that the anomalies in the 4d CPN−1

model indeed survive at finite temperature. Suppose that our
system lives on M4 = S1 × M3 and regard the circumstance
in the x1 direction as the inverse temperature 1/T . Then, the
magnetic symmetry in four dimensions splits into 1-form and
0-form symmetries, which act on the spacial magnetic loop
and the point-like object, respectively. In the four-dimensional
language, this can be seen as the following decomposition of
the U(1)[1]

M gauge field K :

K = K (2) + T dx1 ∧ K (1), (74)

where K (2) and K (1) are 2-form and 1-form gauge fields
on the three-dimensional spacial manifold M3. Note that
we can always introduce this specific configuration at any
temperature. In this finite-temperature setup, the magnetic
U(1)[1]

M gauge transformation given by K → K + dθ can be
decomposed into

dθ = dθ (2) + T dx1 ∧ dθ (1), (75)

where θ (2) and θ (1) are the gauge parameters for the 1-form
and 0-form magnetic symmetries, respectively. Note that this
decomposition is equivalent to the separate gauge transforma-
tions K (2) → K (2) + dθ (2), K (1) → K (1) + dθ (1). On the other
hand, the 2-form gauge field B just reduces B(2), a 2-form
gauge field on M3

6. Substituting the above decomposition
of K and the reduced expression of B into Eq. (25) and
performing the imaginary-time integral, we find the partition
function for the 4d CPN−1 model acquires the anomalous
phase as

Z[K + dθ, A, B] = Z[K, A, B] exp

(
− i

2π

∫
M3

dθ (1) ∧ B(2)

)
.

(76)

6This is because this gauge field is associated with the quotient part
of the 0-form symmetry PSU(N )F . However, if we take a twisted
boundary condition by PSU(N )F in the x1 direction, this yields a
new ZN symmetry and allows us to introduce a ZN 1-form gauge
field B(1) analogous to K (1) [71]. However, we do not consider the
special boundary condition here and focus on the compactification
with the periodic one.

This phase factor takes exactly the same form as the
PSU(N )F × U(1)M anomaly in the 3d CPN−1 model. In addi-
tion, when the spatial manifold is given by M3 = S1 × RP 2,
Eq. (40) with the decomposition (75) results in the anomalous
phase factor of the partition function:

Z[K + dθ,w2] = Z[K,w2] exp

(
− i

2π

∫
M3

dθ (1) ∧ πw2

)
.

(77)
This matches the R × U(1)M anomaly in the 3d CPN−1

model. The same discussion also works in the presence
of the monopole deformation, and the finite-temperature
CPN−1 model possesses the PSU(N )F × (Zn)M and R ×
(Zn)M anomalies as the zero-temperature one.

It is worthwhile emphasizing that both the PSU(N )F ×
U(1)[1]

M and R × U(1)[1]
M mixed anomalies survive at any

temperature. This indicates that the system still stays in the
nontrivial phase even in the high-temperature limit, where the
imaginary-time direction is not visible, and the space-time
manifold effectively reduces to the 3d one. However, it is also
important to note that the CPN−1 model is a cutoff theory
with an ultraviolet cutoff—in particular, one can manifestly
see the nonlinear one as a cutoff theory. As a result, at higher
temperature than the ultraviolet cutoff, the field theoretical
description will break down, and we do not know the fate of
the ’t Hooft anomalies. This property directly affects our sub-
sequent discussion on the finite-temperature phase diagram of
the CPN−1 model.

B. Possible phase structure

Based on the persistence of the ’t Hooft anomalies in the
finite-temperature CPN−1 model, we discuss its consequence
to the phase diagram and thermal phase transition. Here we
present possible simple phase structures consistent with the
anomalies by restricting ourselves to the symmetry breaking
scenarios discussed in Sec. IV.

While the system cannot reside in the trivial phase in the
regime where the CPN−1 model description is applicable, we
need to take account of the fact the 4d CPN−1 model is a
field theory formulated with a UV cutoff denoted by �cutoff

(e.g., the inverse lattice constant of spin systems). Above
the cutoff, the CPN−1 model fails to describe underlying
quantum many-body systems, and our anomalies and anomaly
matching argument could break down (see also the discussion
given in Sec. VI).

In the simplest scenarios, the Néel and U(1) spin
liquid/VBS phases persist up to the temperature T ∼ �cutoff

as shown in Figs. 2(a) and 2(b). When T > �cutoff , the system
could undergo a transition to a trivial gapped phase because
the description by the CPN−1 model is no longer valid above
the cutoff scale.

We shall consider a more nontrivial scenario. First, suppose
the model be in the Néel phase at zero temperature and the
Néel order be destroyed at some temperature below the cutoff.
We define that temperature as TNéel. After the transition, the
model must be in the U(1) spin liquid/VBS phase because
the anomalies forbid a trivial gapped phase. We introduce the
temperature TMag, at which the model becomes the U(1) spin

155113-12



GLOBAL ANOMALY MATCHING IN THE … PHYSICAL REVIEW B 101, 155113 (2020)

FIG. 2. Possible scenarios for the finite temperature phase diagram consistent with the anomalies In the first two examples, the Néel and
U(1) spin liquid (SL)/VBS phases persist up to T ∼ �cutoff , while the last two show the cases with TNéel = TMag and TNéel > TMag, respectively.

liquid/VBS phase.7 In general, TMag can be different from
TNéel, but the anomalies yield the important constraint for the
transition temperatures:

TNéel � TMag. (78)

This is because our simplified assumption on the possible
phases does not allow a temperature window TNéel < T <

TMag, between which a trivial phase could appear.8 This sce-
nario is schematically shown in Fig. 2(d). In a special case
where the equality in Eq. (78) holds, the system may de-
velop a critical behavior analogous to the deconfined quantum
criticality [50–52], or show a first-order phase transition [see
Fig. 2(c)].

C. Large-N phase diagram of CPN−1 nonlinear sigma model

In order to demonstrate the actual realization of the ’t Hooft
anomaly, we here consider the finite-temperature CPN−1

nonlinear sigma model. The genuine CPN−1 nonlinear sigma
model is defined by the following Lagrangian

L = |Daz|2 + λ(|z|2 − N/g2), (79)

where z ≡ (z1, . . . , zN )t denotes a normalized N-component
complex scalar field, whose normalization constraint |z|2 =
N/g2 is imposed by the auxiliary field (Lagrange multiplier) λ.
Note that the dimensionful coupling g2 is fixed in the large-N
limit. Though we do not put the Maxwell term, the model
enjoys the same symmetries as our CPN−1 linear model
and also suffers from the same ’t Hooft anomalies. Thus
the anomaly matching argument presented above can also be
applied to this model.

Let us then show that the large-N phase diagram indeed
realizes the plausible scenarios given in the previous section.
For that purpose, we use the effective action in the leading

7Note that TNéel and TMag are analogous to the temperatures for CP
symmetry breaking and deconfinement in the pure Yang-Mills theory
at θ = π , respectively [23]. See also similar discussions for other
gauge theories [20,25,27,32].

8Nevertheless, it should be emphasized that the anomaly matching
itself does allow TNéel < TU(1)SL if the system shows an exotic phase
matching all the ’t Hooft anomalies in the temperature window
TNéel < T < TU(1)SL. It is interesting to investigate such an exotic
scenario but beyond the scope of this paper.

large-N expansion given by

�[z, λ, a] =
∫ β

0
d4x[|Daz|2 + λ(|z|2 − N/g2)]

+ NTr ln
( − D2

a − λ
)
. (80)

Then, assuming the homogeneous values for λ(x) = λ0,
z(x) = z0 = (

√
Nv0, 0, · · · , 0) and a = 0, we obtain the sim-

plified expression for the effective potential V (v0, λ0) ≡
�[z0, λ0, a = 0]/(NβV ) as

V (v0, λ0) = λ0
(
v2

0 − 1/g2
)

+
∫ � d3k

(2π )3

[
ω(k)

2
+ T ln(1 − e−ω(k)/T )

]
,

(81)

with ω(k) ≡
√

k2 + λ0. Note that we employed a 3-
momentum cutoff regularization so that the momentum inte-
gral is performed within |k| < � ≡ �cutoff . In the following,
we rescale all the dimensionful quantities by the cutoff scale
� such that ḡ ≡ g�, v̄0 ≡ v0/�

2, λ̄0 = λ0/�
2, T̄ ≡ T/�.

The resulting large-N phase diagram from the effective
potential (81) is shown in Fig. 3. When we consider the zero-
temperature limit, we find the critical coupling ḡcr ≡ 4π sep-
arating the Néel and U(1) spin liquid phases. When g > gcr, λ

acquires a nonvanishing expectation value showing the U(1)
spin liquid phase, and nonvanishing condensate 〈z〉 for g < gcr

indicates the Néel order. When one increases temperature, the
value of the critical coupling decreases. We emphasize that
its phase structure fits in the scenarios discussed previously at
any coupling g, which shows the consistency with the anomaly
matching at finite temperature.9

VI. SUMMARY AND DISCUSSION

In this paper, we have specified the ’t Hooft anomalies
in the CPN−1 model (or the N-flavor Abelian Higgs model)
in D space-time dimensions with D � 3 and applied them
to constrain its low-energy dynamics. Our investigation has
revealed that the CPN−1 model possesses the two mixed

9In the U(1) spin liquid phase, we have an emergent gapless photon
even though the original action does not contain the Maxwell term
(see e.g., Ref. [72] for an interpretation of this emergent photon as a
hidden local gauge boson).
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FIG. 3. A large-N phase diagram of the CPN−1 nonlinear sigma
model. The Néel and U(1) spin liquid phases are separated by the
critical line.

’t Hooft anomalies: one between the PSU(N )F flavor and
U(1)[D−3]

M magnetic symmetries, and the other between the
U(1)[D−3]

M magnetic and R reflection symmetries. We have
also clarified the condition for these anomalies to survive
in the presence of the charge-n magnetic object, which
breaks the U(1)[D−3]

M symmetry down to its discrete subgroup
(Z[D−3]

n )M (see Tables I and II for a summary). Thanks to
the ’t Hooft anomaly matching, the latter indicates that the
CPN−1 model cannot have a unique gapped ground state
even if one considers any PSU(N )F -breaking perturbations
preserving the R and U(1)[D−3]

M symmetries. For the case
of N = 2, typical perturbations are the staggered Zeeman
magnetic field, the easy-axis (easy-plane) potential, and the
Dzyaloshinskii-Moriya interaction:

V (nα ) =
∑

α

Hαnα +
∑

α

μαnαnα

+
∑
α,β,γ

κα
i εαβγ nβ (∂in

γ + (κi × n)γ ). (82)

We list up the perturbations in Table III according to sym-
metry breaking patterns. All the terms except the staggered
Zeeman field preserve the magnetic symmetry and two of
the reflection symmetries, and thus cannot result in a unique

TABLE III. Symmetry properties of PSU(2)-breaking perturba-
tions for the CP 1 model in the D space-time dimension. Here © (×)
represents the perturbation preserves (completely breaks) the sym-
metry, and “→ SO(2)x” (“→ O(2)x”) means the flavor symmetry is
broken to its SO(2)x (O(2)x) subgroup generated by σ x .

PSU(2)F R1(∼ T ) R2 R3 · · · RD U(1)[D−3]
M

Hα=x → SO(2)x × × × · · · × ©
μα=x → O(2)x © © © · · · © ©
κα=x

i=2 → O(2)x © × © · · · © ©

gapped ground state. Furthermore, considering possible sym-
metry breaking scenarios, we have explicitly shown how our
’t Hooft anomalies are saturated in the low-energy effective
theories in the Néel, U(1) spin liquid, and valence bond
solid phases. As an application of the anomaly matching,
we have discussed the finite-temperature phase diagram of
the (3 + 1)d CPN−1 model, where the anomalies involving
1-form magnetic symmetry survives under the circle (thermal)
compactification.

While we have specified the ’t Hooft anomalies in the
CPN−1 model—an effective field theoretical model of the
SU(N ) spin systems—it is an interesting issue to investigate
their possible realizations in the lattice model. One may
naively expect that they could still survive in the underlying
lattice model as intrinsic (or Lieb-Shultz-Mattis type) anoma-
lies showing projective representations of the corresponding
symmetries. If this is the case, the specified ’t Hooft anomalies
could restrict possible low-energy dynamics of the underlying
lattice model beyond the regime where the field theoretical
description breaks down. Nevertheless, this is not always the
case, as shown in Ref. [17]; a so-called emergent anomaly is
present only in the field theoretical model in sharp contrast to
an intrinsic (Lieb-Shultz-Mattis type) one present even at the
lattice scale. This discrepancy is possible because we cannot
trace the field theoretical RG flow back to the UV lattice scale.
From the practical viewpoint to study the lattice model, the
intrinsic anomaly is more robust and gives stronger constraints
than the emergent anomaly. Therefore it is quite important
to figure out a field theoretical ’t Hooft anomaly belongs to
which class of them, intrinsic or emergent.

We here discuss whether the R × (Zn)M anomaly in
the (2 + 1)d model is still present or not in an underlying
spin model. Since our R × (Zn)M anomaly is its higher-
dimensional generalization of the intrinsic R × C anomaly
in the 2d CPN−1 model studied in Ref. [18], it is natural to
expect ours also belongs to the intrinsic one. To clarify this,
considering a lattice model with half-integer spins, we shall
ask whether it is possible to place the spin on each site without
spoiling the symmetries. Note that a half-integer spin has
the doubly-degenerated ground state when the time-reversal
symmetry is respected (i.e., the Kramers degeneracy) due
to the time-reversal anomaly. To respect the time-reversal
symmetry—corresponding to the reflection symmetry in
our setup—we employ a construction using the Haldane
spin chain: a (1 + 1)d SPT phase composed of integer
spins and possessing the spin-1/2 at its edge. Thanks to the
cancellation between the bulk and edge contributions, the
Haldane spin chain is free from the time-reversal anomaly.
The edge spin-1/2 degrees of freedom enable us to formulate
a problem whether we can put the Haldane spin chains on
(2 + 1)d lattice links appropriately without spoiling the (Zn)M

lattice rotation symmetry. In this construction, the system
has no time-reversal anomaly because the contributions from
the links saturate the time-reversal anomalies on the sites.
However, corresponding to the R × (Zn)M anomaly, the
above time-reversal-respecting construction may not work if
we impose the site-centered rotational symmetry.10

10This type of argument appears in Refs. [47,48] as a generalization
of the LSM theorem. See also Ref. [73] for related work.
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(a) (b) (c)

FIG. 4. Construction of spin models on the (a) rectangular, (b) square, and (c) honeycomb lattices. A blue thick line represents the Haldane
chain hosting a spin 1/2 (a red arrow) at each edge. We never realize the spin at the rotation center (a red disk) as an edge of the Haldane chain
on the first two lattices, while we can on the last lattice.

Let us consider a system on the rectangular lattice as a
simple example. In this case, we have to place the Haldane
chains so that the system is invariant under π rotation. As
shown in Fig. 4(a), an isolated spin 1/2 necessarily appears
at the rotation center. Thus we never construct the spin 1/2
system on the rectangular lattice by placing the Haldane
chains respecting the rotational symmetry. Likewise, such an
isolated spin 1/2 must exist, and the system is anomalous
on the square lattice [see Fig. 4(b)]. On the other hand, the
Haldane chains completely saturate it, and no anomaly exists
on the honeycomb lattice, as shown in Fig. 4(c). This is
because the time-reversal anomaly is a Z2 anomaly, and an
odd number of one-half spins are anomalous. This observation
is also consistent with the construction of a trivial gapped
ground state in a spin-1/2 system on the honeycomb lattice
[74,75]. All these results are consistent with Table II, implying
the presence of the R × (Zn)M anomaly at the lattice scale.
We thus conclude that our R × (Zn)M anomaly is not an
emergent anomaly but an intrinsic one.

Although we restrict ourselves to the R × (Zn)M anomaly
in the (2 + 1)d model above, it is also interesting to ask
whether and how ’t Hooft anomalies in the (3 + 1)d model are
present in the corresponding lattice model. Since the magnetic
symmetry in the (3 + 1)d CPN−1 model is a 1-form symme-
try, there could be such a discrete 1-form symmetry even in the
lattice model, and a related Lieb-Shultz-Mattis type anomaly.
Its identification can yield a further constraint on the finite-
temperature phase diagram because the intrinsic anomaly
prohibits the lattice model from being trivial beyond the cutoff
�cutoff . Furthermore, taking account of the persistence of
(3 + 1)d ’t Hooft anomalies at finite temperature, one can
also ask whether there is an associated transport phenomenon
or not. Recent developments of quantum field theory in local
thermal equilibrium enable us to investigate this [76–83], and
it is interesting to pursue possible manifestation of the ’t Hooft
anomaly in transport phenomena. These are left for future
work.
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APPENDIX: DERIVATION OF EQ. (10)

We here provide a derivation of Eq. (10) as is discussed in
Ref. [18]. For that purpose, let us look for a condition imposed
on 	. Applying the above transformation twice, we get

z(x) → 		∗z(x), (A1)

z†(x) → z†(x)(		∗)†, (A2)

a(x) → a(x). (A3)

Since Rμ is a Z2 symmetry, 		∗ must be an element of
the SU(N ) center and thus 		∗ = e2π ik/NIN (k = 0, . . . , N −
1).11 This condition leads to 	 = e2π ik/N	t . As a result of this
equation and its transpose, we obtain 	 = (e2π ik/N )2	, which
leads to e2π ik/N = ±1. We thus have only 	 = +	t for odd N
but 	 = ±	t for even N .

11Note that we can choose 	 ∈ U(N ) more generally. Then, 		∗

is allowed to be an element of the U(N ) center, 		∗ = eiθ with
θ ∈ [0, 2π ). However, taking its determinant yields eiNθ = 1, coming
back to the SU(N ) case.
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