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Ab initio phonon self-energies and fluctuation diagnostics of phonon anomalies: Lattice instabilities
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We present an ab initio approach for the calculation of phonon self-energies and their fluctuation diagnostics,
which allows us to identify the electronic processes behind phonon anomalies. Application to the transition-
metal-dichalcogenide monolayer 1H-TaS2 reveals that coupling between the longitudinal-acoustic phonons and
the electrons from an isolated low-energy metallic band is entirely responsible for phonon anomalies such
as the mode softening and associated charge-density waves observed in this material. Our analysis allows us
to distinguish between different mode-softening mechanisms including matrix-element effects, Fermi-surface
nesting, and Van Hove scenarios. We find that matrix-element effects originating from a peculiar type of
Dirac pseudospin textures control the charge-density-wave physics in 1H-TaS2 and similar transition metal
dichalcogenides.
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I. INTRODUCTION

Different states of electronic quantum matter are often
tightly linked to lattice degrees of freedom. Examples include
superconductivity, periodic lattice distortions and charge-
density waves (CDWs), metal-insulator transitions, and ne-
matic, magnetic, “stripe,” or excitonic order across vastly
different material classes ranging from cuprate [1–5] and
Fe-based high-temperature superconductors [6–8] to hydride
compounds [9–11]. Disentangling the interplay of lattice and
electronic degrees of freedom has remained a formidable
challenge in many cases.

Phonon anomalies and mode softening are often an in-
dicator of instabilities of the electronic system. However,
the question of whether and which electronic processes are
responsible for a given phonon anomaly is the source of
many controversies in the literature. Often suggestions for
very different mechanisms such as matrix-element effects
[12], Fermi-surface nesting [13], or Van Hove scenarios [14]
are made for a phonon anomaly in one and the same ma-
terial [15–17]. Unambiguously distinguishing between such
mechanisms is complicated and has typically required the
combination of experimental probes of lattice and electron
dynamics [18,19] with theoretical modeling [20].

Here, we present ab initio calculations of phonon self-
energies, and we introduce the concept of fluctuation diagnos-
tics [21,22] to the domain of lattice dynamics. This scheme
can distinguish between different strong- and weak-coupling
effects and combinations thereof in the context of phonon
anomalies in a quantitative and material-specific way.

One prototypical class of materials hosting phonon anoma-
lies are the hexagonal polytypes of the layered group-V
transition metal dichalcogenides (TMDCs) [23]. Bulk and

monolayer [Fig. 1(a)] are denoted by 2H- and 1H-MX2, where
M stands for Nb or Ta and X for S or Se. Temperature-
dependent phonon-mode softening and CDWs are ubiquitous
in these materials, but explanations have remained contro-
versial for several decades, and suggestions include strong-
coupling arguments based on matrix elements [12,24–37] or
local chemical bonding [38–43] as well as weak-coupling
arguments based on Fermi-surface nesting [13,44–49] or Van
Hove scenarios [14,50,51]. Our phonon-self-energy calcu-
lations and fluctuation diagnostics for monolayer 1H-TaS2

reveal that coupling between the longitudinal-acoustic (LA)
phonons and the electrons from an isolated low-energy metal-
lic band [Figs. 1(b) and 1(c)] is entirely responsible for
the mode softening and associated CDWs observed in this
material. A combination of imperfect Fermiology conditions
and matrix-element effects resulting from Dirac pseudospin
textures is pinpointed as the cause of the CDW phase diagram
of 1H-TaS2 and similar TMDCs.

II. BARE AND SCREENED PHONONS

A general Hamiltonian describing systems of interacting
electrons and phonons reads

H = Hel + Hel-el + Hph + Hel-ph (1a)

and contains one-body electron terms Hel, the Coulomb inter-
action Hel-el, pure phonon terms Hph, and the electron-phonon
interaction Hel-ph. The necessity to account simultaneously for
the complexity of the single-particle electronic wave functions
and the difficulties arising from the interactions present in H
render realistic descriptions of solid-state systems notoriously
complicated. One way to proceed and to gain insights in
practice is via material-realistic low-energy Hamiltonians,
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FIG. 1. Crystal and electronic structure of 1H-TaS2. (a) Top and side view of the crystal structure. (b) Orbitally resolved band structure and
density of states. The active subspace with the isolated low-energy metallic band is highlighted in yellow. (c) Fermi surface, orbital character,
and group velocity of the low-energy band.

where the electronic degrees of freedom accounted for in H
are restricted to some low-energy subspace, often also dubbed
correlated subspace, target subspace, or active subspace. We
will adopt the latter nomenclature. In the presented case of
1H-TaS2, we take as a natural choice for the active subspace
the electronic states of the low-energy band highlighted in
Fig. 1(b), where spin-orbit coupling is disregarded for sim-
plicity. A discussion of spin-orbit-coupling effects is given in
Appendix D.

Then, all quantities entering H have to be partially renor-
malized to account for the elimination of the higher-energy
degrees of freedom [52,53]. More precisely, the phonon ener-
gies entering

Hph =
∑
qν

ωqν b†qν bqν (1b)

and the electron-phonon couplings in

Hel-ph =
∑

qνkmn

gqνkmn [b†−qν + bqν] c†k+qm ckn (1c)

are partially renormalized from the viewpoint of a full first-
principles Hamiltonian and “bare” from the viewpoint of the
model.

Directly experimentally observable are the fully renormal-
ized quantities, which can be obtained by either solving the
model Hamiltonian H [Eqs. (1)] or by direct treatment of
the full system from first principles. For instance, density-
functional perturbation theory (DFPT) [54] yields the (in
practice approximate) fully renormalized phonon dispersions
and electron-phonon couplings from first principles.

Partially screened phonon dispersions and electron-phonon
couplings can be obtained from the constrained density-
functional perturbation theory (cDFPT) [53]. Analogously
to the constrained random-phase approximation (cRPA) [52]
to partially screened Coulomb interactions, cDFPT excludes
polarization processes taking place inside the active sub-
space from the screening of phonon dispersions and electron-
phonon couplings. In the following, we distinguish fully from
partially screened quantities by a tilde (∼) on top of symbols

for the former, and we refer to them as “screened” and “bare”
for brevity.

Selected bare (cDFPT) and screened (DFPT) phonon dis-
persions are shown in Fig. 2(a). The bare phonon dispersion
of 1H-TaS2 (middle), which excludes screening intrinsic to
the active subspace, is smooth in reciprocal space indicat-
ing correspondingly short-range force constants, and it does
not show any Kohn anomalies [55] or dynamical lattice
instabilities. In contrast, the screened phonon dispersion of
1H-TaS2 (left) shows strong Kohn anomalies, softening, and
instabilities in the LA phonon branch in extended regions
of the Brillouin zone (BZ). The instability regions include
the wave vector q = 2/3 M associated with the 3 × 3 CDW
observed in bulk [24,50,56–60] and thin 1H-TaS2 [61,62]. The
leading instability in the screened dispersion as signaled by
the (in absolute value) largest imaginary phonon energy is
indeed close to q = 2/3 M. As the bare phononic system is
dynamically stable and has a smooth LA dispersion in contrast
to the screened one, renormalization processes taking place
inside the low-energy band must be fully responsible for the
mode softening and the CDW physics observed in 1H-TaS2.

While the bare phonon dispersion is not directly experi-
mentally observable, screening due to the low-energy band
can be suppressed also in experiment, for instance by effec-
tive doping. If the low-energy band is completely filled, no
intraband screening processes are possible. Such a situation
is realized in group-VI TMDCs such as 1H-WS2, which
is isostructural to the undistorted high-temperature phase of
1H-TaS2 and has one additional electron per primitive cell
but otherwise a similar electronic band structure. As seen
in Fig. 2(a), the screened phonon dispersion of 1H-WS2

(right) is indeed very similar to the bare phonon dispersion of
1H-TaS2 (middle). Thus, studies of isostructural compounds
with different filling of the electronic bands present a route
toward experimental estimates of bare phonon dispersions.

III. AB INITIO PHONON SELF-ENERGIES

There are two different ways to calculate screened phonon
dispersions: first, with DFPT, and second, by approximately
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FIG. 2. (a) Phonon dispersions of 1H-TaS2 (DFPT, cDFPT) and 1H-WS2 (DFPT). (b) Bare phonon dispersion of 1H-TaS2 from cDFPT
compared to screened ones from DFPT and according to Eqs. (2) (cDFPT phonon energies renormalized a posteriori with the adiabatic
phonon self-energy). The two screened dispersions are identical, showing that Eqs. (2) provide the exact link between cDFPT and DFPT.
(c) LA diagonal matrix element of the phonon self-energy, squared-energy change of the (predominantly) LA phonon band, and bare electronic
susceptibility of 1H-TaS2.

solving the model Hamiltonian H . In the latter case, the
experimentally observable lattice dynamics is encoded in the
screened phonon Green function.

In the adiabatic approximation, the changes in phonon nor-
mal modes and energies induced by electron-phonon coupling
can be obtained from the renormalized dynamical matrix

ω̃2
qμν = ω2

qνδμν + 2
√

ωqμωqνΠqμν, (2a)

which follows from the bare dynamical matrix ω2
qνδμν , here

written in its eigenbasis labeled by μ and ν, and a correction
determined by the phonon self-energy

Πqμν = 2

N

∑
kmn

g∗
qμkmn

f (εk+qm) − f (εkn)

εk+qm − εkn
g̃qνkmn. (2b)

Here, ε and f are electronic band energies and occupations,
m and n label the electronic bands that constitute our active
subspace, the factor of 2 comes from the spin degeneracy,
and N is the number of k points summed over. The electron-
phonon coupling g appears in both bare and screened form and
reads [63]

(
g̃

)

qνkmn = 1√
2ωqν

∑
i

eqiν
1√
Mi

〈k+qm|
(

∂̃V
)

∂uqi
|kn〉, (2c)

where the combined index i runs over the three Cartesian
displacement directions of each atom, e is an eigenvector
of the bare dynamical matrix, M is the atomic mass, and
∂V is the change of the self-consistent Kohn-Sham potential
upon an atomic displacement ∂u. For detailed information on
Eqs. (2), we refer to Ref. [64], in particular Sec. V A. We note
that the coupling g is a complex quantity that contains a priori
arbitrary phase factors from the electronic eigenstates at k and
k + q. Therefore, care has to be taken that a consistent gauge
is applied when obtaining g and g̃ from independent cDFPT
and DFPT calculations. We address this problem by fixing the
gauge in a localized basis of Wannier functions, which as an
additional advantage allows for the Fourier interpolation to
arbitrary q and k resolutions [65].

We calculated the phonon self-energy [Eq. (2b)] for the
case of 1H-TaS2 and renormalized the bare phonon disper-
sions obtained from cDFPT accordingly [Eq. (2a)]. A com-
parison of the bare phonon dispersion to the screened ones
as obtained from DFPT and from the phonon self-energy is
shown in Fig. 2(b). We see that both screened dispersions are
the same throughout the BZ path. Indeed, the approximations
involved in the DFPT calculation (adiabaticity and a semilocal
exchange-correlation functional) can be shown to be equiv-
alent to Eqs. (2) [53]. Exchange-correlation effects beyond
RPA only enter through the difference between g and g̃.

The phonon self-energy is a matrix in the space of atomic
displacement coordinates. The renormalization according to
Eqs. (2) accounts for this full matrix structure. To lowest or-
der, corrections to the bare phonon energies from low-energy
electronic screening are contained in the diagonal components
Πqνν of the phonon self-energy. Figure 2(c) shows a compari-
son of the change �ω2

LA = ω̃2
LA − ω2

LA of the (predominantly)
LA phonon band upon low-energy electronic screening to
the corresponding diagonal matrix element 2ωΠLA,LA in the
eigenbasis of the bare phonons. We see that �ω2

LA and
2ωΠLA,LA show a qualitatively similar q dependence, but
there are also deviations between the two, particularly close
to the K point. This is due to changes in the normal-mode
eigenvectors upon renormalization. Thus, the diagonal part
of the phonon self-energy can serve as a qualitative guide
for the understanding of phonon-renormalization phenomena,
but quantitative calculations must account for its full matrix
structure.

Phonon self-energies, screened, and bare phonon disper-
sions for 1H-TaS2 have also been calculated in Ref. [66],
albeit with a different procedure. While the screened phonon
dispersions in Ref. [66] are similar to those depicted in
Fig. 2(a), the bare phonon dispersions in Ref. [66], which have
not been obtained from cDFPT but were estimated from DFPT
data, differ from those found here by not being smooth but still
displaying a dip at the wave vector associated with the 3 × 3
CDW. Possible origins of this discrepancy are that the analysis
in Ref. [66] has been restricted to the diagonal components
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of the phonon self-energy and that the calculations involved
only screened electron-phonon vertices instead of the required
combination of bare and screened vertices as in Eq. (2b).

Several works, e.g., Refs. [12,33,40,41,67,68], addressed
the renormalization of phonons due to chosen subsets of inter-
action processes, but they had to rely on further, often semiem-
pirical models or assumptions on the shape of the “bare”
phonon dispersion. In this context, partially screened phonons
and electron-phonon couplings from cDFPT as considered
in this work are very helpful, since cDFPT delivers an un-
ambiguous bare starting point. Additionally, when analyzing
nonadiabaticity [69–75], cDFPT can provide a well-defined
adiabatic starting point together with the correct coupling for
nonadiabatic correction terms.

IV. FLUCTUATION DIAGNOSTICS OF PHONON
SELF-ENERGIES

We seek to understand unambiguously how the electrons
renormalize the phonon dispersion. The expression for the
phonon self-energy makes this possible: Each summand in
Eq. (2b) quantifies how much specific electronic states con-
tribute to the phonon self-energy and allows us to identify
the mechanism responsible for the phonon renormalization. A
similar kind of “fluctuation diagnostics” has previously been
applied in correlated electron systems to identify antiferro-
magnetic correlations as the mechanism responsible for the
pseudogap in the Hubbard model [21].

The phonon self-energy as approximated by Eq. (2b) is a
BZ, band, and spin sum of electronic fluctuations

χ0
qkmn = f (εk+qm) − f (εkn)

εk+qm − εkn
(3a)

weighted by the coupling matrix elements, for which we now
adopt a symmetrized, Hermitian representation [76],

g2
qμνkmn = g∗

qμkmn · g̃qνkmn + g̃∗
qμkmn · gqνkmn

2
. (3b)

By analyzing

Πqμνkmn = g2
qμνkmn · χ0

qkmn (3c)

as a function of electronic momenta k and k + q, we can per-
form “fluctuation diagnostics” and identify which fermionic
fluctuations contribute most dominantly to the phonon self-
energy. Furthermore, by comparison of Π to χ0 and g2 we
can directly distinguish purely electronic band-structure and
“Fermiology” effects from matrix-element effects.

One can similarly quantify the contribution of electronic
states from a certain energy range to the phonon renormaliza-
tion. Considering a single band for brevity,

Π (�) = 2

A

∫
d2k Πk Θ (|εk| − �) Θ (|εk+q| − �) (4a)

with the BZ area A accounts only for fermionic modes with
energies outside of an energy window [−�,+�] around the
Fermi level. In the renormalization-group spirit, this corre-
sponds to integrating out all electrons outside of the energy
window. The full result of the calculation is recovered by

letting � → 0. The derivative

∂�Π (�) = − 2

A

∫
d2k Πk [δ(|εk| − �) Θ (|εk+q| − �)

+ Θ (|εk| − �) δ(|εk+q| − �)] (4b)

then quantifies the contributions of electronic states with
energies from the shell |εk| = � to Π [77].

Matrix-element effects, Fermi-surface nesting, and Van
Hove scenarios as possible causes of phonon-mode softening
manifest markedly differently in the fluctuation diagnostics.
For a generic d-dimensional system, in the absence of any
Fermi-surface anomalies like nesting, Π (�) remains finite
as � → 0. On the other hand, Fermi-surface nesting, as
realized in one-dimensional systems for qc = 2kF [78] or
also in higher-dimensional systems for parallel sheets of the
Fermi surface linked by some nesting vector qc, leads to
diverging Πqc

(�) ∼ ln |�| and ∂�Πqc
(�) ∼ 1/� [79]. We

expect the same kind of divergences in so-called Van Hove
scenarios, where the Fermi level is at the energy of Van Hove
singularities (VHS) in the electronic density of states, e.g., for
wave vectors qc = qVHS connecting two saddle points [14] as
found in 1H-TaS2. In turn, nesting and Van Hove scenarios can
be clearly distinguished in k-space fluctuation diagnostics by
dominant contributions to Π originating from line segments in
the case of nesting and being centered around the Van Hove
points in the latter case. The role of the matrix elements is
seen by comparing χ0 to Π .

V. FLUCTUATION DIAGNOSTICS OF LA-PHONON-MODE
SOFTENING AND CDW FORMATION IN 1H-TaS2

The CDW physics of 1H-TaS2 is associated with softening
of LA phonon modes in the undistorted phase toward dynam-
ical lattice instabilities. As shown in Sec. II, this softening
is entirely due to coupling of the phonons to the electrons
from the active subspace in Fig. 1(b). In the following, we
identify which processes inside this active subspace contribute
most dominantly to the phonon-mode softening for pristine
(Sec. V A) and doped 1H-TaS2 (Sec. V B). Only the LA
diagonal elements of 2ωg2 and 2ωΠ in the eigenbasis of the
bare phonons are shown. The prefactor of 2ω cancels with the
prefactor in Eq. (2c). Most subscripts are omitted for brevity.
All computational parameters are listed in Appendix C.

A. Pristine 1H-TaS2

The wave vector associated with the 3 × 3 CDW in pristine
1H-TaS2, i.e., at the chemical potential μ = 0, is q = 2/3 M.
The fluctuation diagnostics of the corresponding phonon self-
energy 2ωΠ [Fig. 3(a)] reveals that the dominant contri-
butions to 2ωΠ are peaked in distinct regions of k space:
The Fermi surface (contour) of undoped 1H-TaS2 consists
of three hole pockets encircling �, K, and K′, respectively.
The strongest contributions to 2ωΠ originate from regions
where the original pocket around K approximately touches
the pocket around K′, shifted by −q, and vice versa. There are
two such regions of touching K and K′ pockets (intervalley
processes) and two regions of touching K and shifted K
pockets or touching K′ and shifted K′ pockets (intravalley
processes) in the BZ. While all four of these regions contribute
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FIG. 3. Momentum-resolved fluctuation diagnostics of LA-
phonon-mode softening at q = 2/3 M (left) and q = M (middle) in
undoped 1H-TaS2 as well as at q = 0.58 K (right) at Van Hove filling
(chemical potential μ = −119 meV). The k-dependent contributions
to the phonon self-energy 2ωΠ , the bare electronic susceptibility χ0,
and the coupling matrix elements 2ωg2 are shown color-coded. Solid
(dashed) lines indicate the Fermi surface (shifted by the respective q
vectors).

to the bare electronic susceptibility χ0 [Fig. 3(b)], only the two
regions associated with the intervalley coupling contribute
significantly to the phonon self-energy 2ωΠ [Fig. 3(a)]. The
coupling matrix elements 2ωg2 [Fig. 3(c)] filter out these two
of the four regions of (approximately) touching hole pockets.

One might be tempted to explain the contributions to 2ωΠ

from the two remaining regions with touching K and K′
pockets in terms of nesting. However, our results rule out
such a nesting scenario: As a first indication already seen in
Fig. 2(c), q dependencies in χ0 are much less pronounced than
those in 2ωΠ , which is opposite to the expectation of a log-
arithmically divergent χ0 in a nesting scenario. 2ωΠ shows
a pronounced extremum for q = M, while χ0 shows signif-
icantly smaller and opposite variations. The k-resolved fluc-
tuation diagnostics of 2ωΠ at q = M [Fig. 3(d)] shows that
dominant contributions come again from K and K′ pockets,
which are now slightly overlapping rather than approximately
touching and clearly not nested at q = M. Indeed, there is
nesting for the hole pocket around � which contributes to χ0

[Fig. 3(e)]. However, the resultant approximate divergence is
logarithmic, thus already weak on the level of χ0, and fully
masked by matrix-element effects in the phonon self-energy.
Consequently, matrix-element effects clearly dominate here.

A basic and widely used model [33,80] of the interaction
between electrons and LA phonons assumes that gqk ∼ (vk −
vk+q) · q, which suggests that coupling is most effective if the
group velocities vk = ∇kεk and vk+q of the coupled electronic
states are opposed to each other and parallel to q. Interestingly,

those regions with strong (suppressed) electron-phonon cou-
pling identified by our analysis [Figs. 3(c), 3(f), and 3(i)] are
characterized by group velocities mainly orthogonal (parallel)
to the phonon momentum q, which is exactly opposite to the
expectation from the model. The reason for this deviation
is the massive-Dirac-fermion nature of the low-energy-band
states and associated pseudospin textures, as will be explained
in Sec. VI B.

B. Doping dependence and Van Hove scenarios

Charge doping is known to affect CDW instabilities by
shifting the ordering wave vectors and suppressing or sup-
porting CDW order in many materials from high-Tc supercon-
ductors [4] to TMDCs [44,81–84] and 1H-TaS2 in particular
[62,66,85,86]. We studied the dependence of the LA phonon
mode on charge doping in the phonon-self-energy formalism
[Eqs. (2)] by changing the electronic chemical potential μ

in the model Hamiltonian H . In doing so, we disregard
changes in the screened coupling g̃. This approximation is
justified by the small relative difference between g and g̃
in the undoped case. A comparison of phonon self-energies
and resulting screened phonon dispersions for hole doping
(μ = −119 meV), the charge-neutral system (μ = 0), and
electron doping (μ = 91 meV) is given in Fig. 4. In line with
former theoretical results [66] and experiments [62], we find
that electron doping pushes the wave vector of the leading
lattice instability toward the M point. Hole doping of μ =
−119 meV, on the other hand, shifts the instabilities further
away from M and also lets additional “fragile” instabilities be-
tween � and K emerge, which depend very sensitively on the
thermal broadening kBT of the electronic Fermi distribution
function. At smallest temperatures kBT ≈ 1 meV, the leading
instabilities occurring in the phonon dispersions [Fig. 4(a)]
coincide with the extrema of the corresponding phonon self-
energies [Fig. 4(b)]. The latter are fully determined by the
Fermiology conditions of touching K and K′ pockets and
(approximately) superimposed Van Hove points over the
whole range of doping levels. However, these extrema are
by no means isolated points of enhanced/divergent phonon
self-energies but embedded in extended q-space regions with
appreciable mode softening.

Fluctuation diagnostics (Fig. 5) reveals the mechanisms
behind the doping dependencies found in Fig. 4: While the
filter determined by the electron-phonon coupling remains the
same regardless of the doping level [blue-shaded regions in
Fig. 5(a)], electron doping shrinks the hole pockets around K,
K′, and �. Correspondingly, touching or partially overlapping
K and K′ pockets are realized for CDW wave vectors larger
than q = 2/3 M. For μ = 91 meV, q = M leads to touching
K and K′ pockets. Therefore, contributions to 2ωΠ are corre-
spondingly enhanced at M, while the mode softening at q =
2/3 M is weaker in this electron-doped case. Hence, nearly
overlapping hole pockets and corresponding contributions to
χ0 are necessary for effective mode softening. If the instability
at M in this case was a pure nesting effect, one should find
a logarithmic divergence in the energy-resolved fluctuation
diagnostics in Π (�) and a corresponding 1/� divergence
in ∂�Π (�). As one can see from Fig. 5(b), we do not find
such divergences for the electron-doped case at q = M nor
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FIG. 4. (a) LA phonon dispersion and (b) q-dependent LA
phonon self-energy (−2ωΠ ) at different chemical potentials μ. At
μ = −119 meV, the VHS is at the Fermi level; at μ = 0, we have
no doping; at μ = 91 meV, we have touching K and K′ pockets
for q = M. The dispersion is shown for different broadenings kBT ,
the phonon self-energy only for kBT = 1 meV. Special q points are
marked in cyan, where FSK and VHS stands for touching K and K′

pockets and superimposed saddle points, respectively.

for the undoped case at q = 2/3 M (cf. Appendix A). Thus,
sufficiently large matrix elements of the electron-phonon
coupling and sufficiently large albeit finite bare electronic
susceptibilities are of central importance in both cases. This
finding is in line with Refs. [87–90].

For an electronic chemical potential of μ = −119 meV
one realizes “Van Hove doping,” i.e., hole doping such that
the electronic VHS at k = 0.58 K and symmetry-equivalent
k points are directly at the Fermi level. In this situation, it is
possible to realize phonon-mode softening as put forward in
the so-called Van Hove scenario [14], where low-energy elec-
tronic fluctuations from the vicinity of VHS yield diverging
contributions to the bare electronic susceptibility and possibly
to the phonon self-energy. However, the situation in 1H-TaS2

at Van Hove doping is intricate: There are dynamical lattice
instabilities in large parts of the BZ, particularly between �

and K. For most unstable parts of the �-K section, one has
imperfect nesting. The notable exception is qVHS = 0.58 K,
which realizes a Van Hove scenario on top of imperfect
nesting. For this q vector there are sizable contributions to χ0

from the vicinity of the VHS [Fig. 3(h)]. Also the electron-
phonon matrix elements are nonzero in the vicinity of the
matched VHS [Fig. 3(i)]. Thus, at sufficiently small ener-
gies, the VHS-induced logarithmic divergence in χ0 manifests

also in 2ωΠ [Fig. 3(g)]. That becomes more obvious in the
energy-resolved fluctuation diagnostics [Fig. 5(b)]: We find
divergences ∂�Π ∼ 1/� and Π ∼ ln � as expected in the
Van Hove scenario (cf. Appendix A). However, in absolute
numbers, very small energy scales have to be reached for the
Van Hove contribution to dominate over more conventional
effects (e.g., imperfect nesting and matrix-element effects):
That can be seen from the dependence of the screened phonon
dispersions on electronic broadening in the VHS-doped case
[Fig. 4(a)]. qVHS clearly defines the leading instability only for
electronic temperatures below kBT ≈ 1 meV, while instabili-
ties in large parts of the BZ exist already at kBT = 25 meV.

Taken together, our fluctuation diagnostics confirms that
Fermiology alone is insufficient to understand the phonon
renormalization. The matrix-element filter provided by the
electron-phonon coupling in its interplay with the Fermiology
determines the phonon self-energies and mode softening in
1H-TaS2.

VI. TIGHT-BINDING AND DIRAC MODEL OF
ELECTRON-PHONON COUPLING IN 1H-TaS2

To obtain a microscopic understanding of the matrix-
element effects, we calculate the electron-phonon coupling
for a nearest-neighbor tight-binding (TB) model, following
two widely used approaches by Varma et al. [33,80], and we
compare it to the ab initio results. We find that the momentum
dependence of the electron-phonon coupling results from
the multiorbital nature of the active subspace and can be
understood in terms of pseudospin textures of massive Dirac
fermions.

A. Tight binding

We consider a nearest-neighbor TB model

Hαβ

k = ε
αβ

0 +
6∑

n=1

tαβ
n eiank (5)

with the bond vectors an and orbital indices α and β. The
on-site energy ε0 and the hopping tn are specified in Appendix
B. As seen in Fig. 6(a), the resulting band structure fits the
reference from density-functional theory (DFT) quite well,
particularly the low-energy band.

In Appendix B we briefly review how to derive an ap-
proximate expression for the corresponding electron-phonon
coupling [80]. Transforming Eq. (B5) into the band eigenbasis
of Hk and Hk+q yields

gqνkmn ∼
∑

l

(
Aml

qkvln
k − vml

k+qAln
qk

) · eqν, (6)

where vmn
k = ∑

αβ (U αm
k )∗ (∇kHαβ

k )U βn
k is the velocity opera-

tor in the band basis and Amn
qk = ∑

α (U αm
k+q)∗ U αn

k is a unitary
matrix which describes the overlap of the lattice-periodic
part of band state n at k with band state m at k + q. Here,
Uk is the matrix of right eigenvectors of Hk which fulfills∑

αβ (U αm
k )∗ Hαβ

k U βn
k = εknδmn.

Another widely used approximation [cf. Eqs. (A.11) and
(A.12) of Ref. [80] and Eq. (2) of Ref. [33]] neglects the off-
diagonal matrix elements of the velocity operator in the band
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FIG. 5. (a) Momentum- (k-) and (b) energy-resolved fluctuation diagnostics of LA-phonon-mode softening in 1H-TaS2 as a function of
charge doping (the electronic chemical potential μ) at q = 2/3 M, M, and K. The blue-, gray-, and orange-shaded regions in panel (a) indicate
k points with significant contributions to the phonon self-energy, the bare electronic susceptibility, and the electron-phonon coupling as defined
in Eqs. (3).

basis and thus only accounts for the standard electronic group
velocities vnn

k = ∇kεnk,

gqνkmn ∼ Amn
qk

(
vnn

k − vmm
k+q

) · eqν . (7)

In Figs. 6(b) and 6(c) we show the k-dependent coupling
of the LA phonons with the low-energy band for q = 2/3 M
within the approximations of Eqs. (6) and (7). According to
(c)DFPT [Fig. 3(c)] there are only two spots in the vicinity of
K and K′ where the coupling is large. Equation (6) reproduces
the structure of the coupling found in (c)DFPT qualitatively
[Fig. 6(b)]. However, the simplified Eq. (7) does not capture

FIG. 6. (a) Electronic band structure from the TB model [Eq. (5)]
compared to DFT, (b) the resulting k-resolved coupling 2ωg2 of
LA phonons with the low-energy band for q = 2/3 M according
to Eq. (6), and (c) the corresponding simplified coupling defined in
Eq. (7).

the relevant physics, as the resulting coupling is much weaker
and has its maximum in the hole pocket around � [Fig. 6(c)].
Therefore, intraband variation of orbital characters and the full
matrix structure of the velocity operator must be decisive in
determining the electron-LA-phonon coupling.

B. Massive Dirac fermions

Both the TB model and the first-principles calculations
(Sec. V A) suggest that the coupling between electrons and
LA phonons is strong when the group velocities of the elec-
tronic states are (largely) orthogonal to the phonon momen-
tum q. This is exactly opposite to the expectation from Eq. (7).
To understand the origin of this behavior, we resort to an even
simpler model and describe the low-energy band of 1H-TaS2

around K and K′ in terms of massive Dirac fermions [91]:

HD = v0(τ pxσx + pyσy) + �

2
σz. (8)

Here, τ = ±1 is the valley index, which selects between
regions around K and K′ [Fig. 1(c)], v0 is an effective velocity
playing the role of the speed of light in the relativistic Dirac
equation, and � is the band gap. The Pauli matrices σi with
i ∈ {x, y, z} act on pseudospinors χτ p from a space of two Ta
d orbitals: The upper (lower) component of χτ p describes the
d orbitals with orbital angular momentum m = 0 (m = 2τ ).
The eigenvalues of HD at momentum p relative to K or K′ are

εp = ±
√

�2/4 + v2
0 p2, as shown in Fig. 7(a).

The velocity operator resulting from the Dirac Hamiltonian
[Eq. (8)] is

vD = ∇pHD = v0(τexσx + eyσy). (9)
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FIG. 7. (a) Electronic band structure from a model of massive Dirac fermions compared to DFT. (b, c) Dirac pseudospin texture of the
lower band around (b) K and (c) K′. (d) The resulting intervalley electron-phonon coupling strength 2ωg2 for q = 2/3 M exhibits a clear
maximum halfway between K and K′ − q.

This operator describes the change in both eigenvalues and the
change in eigenvectors of HD. As in relativistic quantum the-
ory, the Dirac velocity operator is independent of k = K(′) + p
inside either valley. Therefore, the intravalley electron-phonon
coupling according to Eq. (6) vanishes. Thus, the massive-
Dirac-fermion nature of the quasiparticles and the resultant
pseudospin-momentum coupling causes the smallness of the
matrix elements of the electron-phonon coupling associated
with intravalley scattering, as seen in Figs. 3(c) and 6(b).

Regarding the intervalley coupling, we first note that the
operator vD has contributions perpendicular and parallel to
the equal-energy contours of HD [92], resulting from the
pseudospin-momentum coupling intrinsic to the Dirac equa-
tion [Eq. (8)]. Hence, the Dirac velocity operator vD is very
different from the naive expectation for the group velocity
vk = ∇kεk = v2

0 k/εk, which only describes the change in
energy eigenvalues and always points perpendicular to the
equal-energy contours.

The rotation of pseudospins in the lower band around K
and K′ indeed gives rise to a velocity component parallel
to the equal-energy contours. This allows, generically, for
intervalley coupling between electrons and LA phonons at
arbitrary angles between equal-energy contours and phonon
momentum q, in contrast to the simplified model of Eq. (7).
For the specific analysis of intervalley scattering in TMDCs,
one has to be careful since in the model of Eq. (8) the orbital
character associated with one of the pseudospin components
changes from m = +2 to −2 when going from K to K′.

Let χK and χK′ be pseudospinors belonging to lower-band
states at k = K + p and k + q = K′ + p′ located in the K and
K′ valleys, respectively. That is, χK (χK′ ) is the negative-
eigenvalue eigenvector of HD for τ = +1 (−1) and for mo-
mentum p (p′). Then, the electron-phonon coupling according
to Eq. (6) can be expressed using projection operators P0 on
the m = 0 orbitals:

gqk ∼ χ
†
K′

(
vKP0 − P0vK′

)
χK · eqν . (10)

In the same matrix representation as used in Eq. (8) we have
P0 = (1 + σz )/2, where 1 is the 2 × 2 identity matrix. With

Eq. (9) we then find

gqk ∼ χ
†
K′σxχK (ex + iey) · eqν . (11)

The direction of the phonon eigenvector eqν enters merely as
a phase factor. For the absolute value of the LA coupling, the
angle between the equal-energy contours and q is not decisive.
Instead, the coupling strength is determined by χ

†
K′σxχK and

thus results from the pseudospin textures of the lower-band
states around K and K′ shown in Figs. 7(b) and 7(c) alone.
Contributions to g according to Eq. (11) arise from opposite-
sign pseudospin projections χ†σiχ of χK and χK′ in the y
or z direction and equal-sign pseudospin projection in the
x direction. The z projection of all lower-band pseudospins
is “down,” which does not lead to contributions to g. The
winding of the in-plane pseudospin component is opposite
in the K and K′ valleys [Figs. 7(b) and 7(c)]. The condition
of maximum coupling |g| is fulfilled if χK and χK′ belong
to time-reversed crystal momenta, p = −p′, preferably with
large absolute value. This is realized for k being half-way
between K and the shifted K′ point [Fig. 7(d)], i.e., exactly in
the region where we find enhanced electron-phonon coupling
in (c)DFPT [Fig. 3(c)] and also in the TB model [Fig. 6(b)].
Hence, the momentum-space selection rule for the electron-
phonon coupling, which we identified using fluctuation diag-
nostics, originates from the massive-Dirac-fermion nature of
the low-energy-band states in 1H-TaS2.

VII. CONCLUSIONS

We have presented an ab initio–based scheme for the
calculation of phonon self-energies from material-realistic
low-energy models. This approach allows us to generalize
the idea of fluctuation diagnostics [21] to electron-phonon-
coupled systems and to identify the contributions of the dif-
ferent electronic fluctuation channels to the renormalization
of phonons in complex materials.

Application of this scheme to the model CDW compound
of 1H-TaS2 showed that polarization processes taking place in
an isolated low-energy metallic band are entirely responsible
for the mode softening and CDW physics in this material.
While Fermi-surface effects originating from this band can
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affect the CDW ordering wave vector, we give direct proof
that lattice instabilities in 1H-TaS2 are largely controlled by
electron-phonon-coupling matrix-element effects. The origin
of these matrix-element effects is shown to be the massive-
Dirac-fermion nature, the resultant pseudospin textures, and
associated anomalous intervalley velocity matrix elements of
electronic quasiparticles in the low-energy band of 1H-TaS2.
Thus, the fluctuation diagnostics provides a purely ab initio
way to settle the long-standing debate on the nature of CDW
physics in group-V TMDCs and to reveal its physical origin.

The scheme for the calculation of phonon self-energies and
for performing fluctuation diagnostics outlined here should
be generally insightful to disentangle the interplay of elec-
tronic and lattice degrees of freedom in complex materials.
Promising areas of future application range from materials
like TiSe2, where excitonic physics intertwines with lattice
instabilities [93–100], to strongly correlated electron systems
with coupled lattice, spin, and superconducting phenomena
as take place in Fe-based superconductors [6–8] or in prox-
imity to stripe phases in cuprate high-temperature supercon-
ductors [1–5]. Finally, generalizations beyond the adiabatic
limit should be conveniently possible and allow, e.g., for the
description of phonons in electronic flat-band systems such as
twisted bilayer graphene.
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APPENDIX A: DIVERGENCE IN THE VAN
HOVE SCENARIO

In Sec. V B we state that we find the expected divergences
Π ∼ ln � and ∂�Π ∼ 1/� of the phonon self-energy and
its derivative for small energy-window sizes �. While from
Fig. 5(b) the exact type of divergence does not become
evident, the representation of the data shown Fig. 8 is more
suitable for this purpose.

APPENDIX B: DETAILS OF THE TB MODEL

In the tight-binding model discussed in Sec. VI A, we only
consider transitions between d orbitals localized at neighbor-
ing Ta atoms. The hopping to the nth neighbor at the relative
position an = rn(cos ϕn, sin ϕn) is

tn =
[ rn

a

]λ

Rϕn Mnt0MnR−ϕn , (B1)

where rn = a and ϕn = nπ/3 are bond length and angle, λ =
−5 quantifies the distance dependence of d-d bonds [16,101],
t0 is the hopping in the x direction, M is the reflection y �→ −y,
and R is a rotation about the z axis.

In the basis of complex harmonics dm=0 = dz2 and
dm=±2 = (dx2−y2 ± idxy)/

√
2, we have M = diag(1, σx ) with

FIG. 8. Product of energy-window size � and derivative of
phonon self-energy ∂�Π for all situations shown in Fig. 5(b). Differ-
ent line styles (dotted, dashed, solid) refer to different q points while
different line colors (orange, black, blue) refer to different chemical
potentials. For a diverging ∂�Π ∼ 1/�, the displayed quantity is a
nonzero constant in the limit of small �. As expected, this is only
the case in the Van Hove scenario (solid, blue line). The artefacts in
the grayed-out region where � < 3 meV are due to smearing-related
numerical inaccuracies.

the Pauli matrix σx and Rϕ = diag(1, e2iϕ, e−2iϕ ). The on-site
energy and zeroth hopping read

ε0 = diag(ξ = 1.85, η = 2.30, η) eV,

t0 =
⎡
⎣α = −0.14 γ = 0.34 − 0.27 i γ ∗

γ β = 0.03 + 0.31 i δ = −0.29
γ ∗ δ β∗

⎤
⎦eV.

(B2)

The number of independent parameters has been reduced
using the point symmetries of the crystal. Their given values
have been obtained by fitting to data from DFT.

To analyze the electron-phonon coupling, we rescale the
hopping matrix elements in the distorted structures according
to Eq. (B1). With the neighbor index n of all quantities
understood,

∂t

∂a
= ∂t

∂r

∂r

∂a
+ ∂t

∂ϕ

∂ϕ

∂a

= λt

r

a
r

+
[
∂Rϕ

∂ϕ
R−ϕt + tRϕ

∂R−ϕ

∂ϕ

]
R π

2
a

r2
. (B3)

Starting from the Hamiltonian in Eq. (5), it is straightforward
to derive the formula for the electron-phonon coupling in the
orbital basis [cf. Eq. (2.29) of Ref. [80]],

gqνk = 1√
2ωqνM

∑
n

∂tn
∂an

(eiank − eian(k+q) ) · eqν, (B4)

where M is the atomic mass. Neglecting the ϕ derivatives
in Eq. (B3) and noting that both ∇keiak = iaeiak and ∇at =
λta/a2 are parallel to a, we can rewrite the coupling as [cf.
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Eq. (A.8) of Ref. [80]]

gqνk = −iλ

a2
√

2ωqνM
(vk − vk+q) · eqν, (B5)

where vk = ∇kHk is the velocity operator in the orbital basis.

APPENDIX C: COMPUTATIONAL PARAMETERS

All DFT and DFPT calculations are carried out using
QUANTUM ESPRESSO [102,103]. The modification that is
required for cDFPT is described in detail in Ref. [53]. For the
transformation of the electron energies and electron-phonon
coupling to the Wannier basis, we use WANNIER90 [104] and
the EPW code [65,105].

We apply the generalized gradient approximation (GGA)
by Perdew, Burke, and Ernzerhof (PBE) [106,107] and
use norm-conserving Hartwigsen-Goedecker-Hutter (HGH)
[108,109] pseudopotentials at a plane-wave cutoff of 100 Ry.
Uniform meshes (including �) of 12 × 12 q and 36 × 36 k
points are combined with a Fermi-Dirac smearing of 5 mRy.
For a fixed cell height of 15 Å, minimizing forces and in-plane
pressure to below 1 μRy/Bohr and 0.1 kbar yields a lattice
constant of 3.39 Å.

On the model level, for the DFPT comparison shown in
Figs. 2(b) and 2(c), we use the same meshes and smearings
as stated above. For the q-dependent results shown in Fig. 4,
we use 360 × 360 q and k points together with a Fermi-Dirac
smearing of 1 meV, if not stated otherwise. For the fluctuation
diagnostics for selected q points shown in Figs. 3, 5, 8, and
9, we use 5040 × 5040 k points together with a Fermi-Dirac
smearing of 0.07 meV and a Gaussian smearing of 0.7 meV
for the Θ and δ functions in Eqs. (4). The Fermi level is not
recalculated for each mesh and smearing but kept fixed at the
ab initio value throughout this work.

APPENDIX D: EFFECT OF SPIN-ORBIT COUPLING

We have so far disregarded the spin splitting of the elec-
tronic bands due to spin-orbit coupling (SOC). In the follow-
ing, we will briefly outline how SOC affects our findings.

We include SOC by modifying the electronic Hamiltonian,
where each spin direction is treated separately [110]. In the
basis of real harmonics dz2 , dx2−y2 , and dxy,

H↑,↓
el → H↑,↓

el ±
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦λ. (D1)

We choose a SOC strength λ = 174 meV to reproduce
the splitting of the experimental and theoretical bands in
Ref. [85].

Figure 9(a) shows the resulting modified electron disper-
sion [cf. Fig. 1(b)]. Along �-M, the d bands remain spin-

FIG. 9. Effect of SOC on band structures and fluctuations.
(a) Spin-resolved electronic band structure. (b) Screened phonon
dispersion with and without SOC. (c) Spin- and momentum-resolved
LA phonon self-energy for q = 2/3 M in the undoped case with
(right) and without SOC (left). Solid (dashed) lines indicate the
Fermi surface (shifted by q) for the respective spin direction(s). To
match color scales, the data on the right are multiplied by a factor
of 2.

degenerate. Beyond this line, the bands split with a maximum
splitting of 2λ of the low-energy band at K.

The screened phonon dispersions with and without SOC
according to Eqs. (2) are compared in Fig. 9(b) [cf. Fig. 2(b)].
We note that there is no prefactor of 2 in Eq. (2b) when
the spin is explicitly included in the band summations. As
expected, SOC does not cause qualitative changes in the
phonon dispersion.

This can be explained by the k-space fluctuations diagnos-
tics. In Fig. 9(c), the LA phonon self-energy for q = 2/3 M in
the undoped case is displayed together with the Fermi surface,
both with and without SOC [cf. Fig. 3(a)]. The argument
of touching K and K′ pockets is hardly affected by SOC:
For each spin direction, one pocket shrinks while the other
expands, leaving their overlap region and thus the resulting
phonon self-energy essentially unchanged.
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