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Disorder such as impurities and dislocations in Weyl semimetals drives a quantum critical point (QCP)
where the density of states at the Weyl point gains a nonzero value. Near the QCP, the asymptotic low-energy
singularities of physical quantities are controlled by the critical exponents ν and z. The nuclear spin-lattice
relaxation rate, which originates from the hyperfine coupling between a nuclear spin and long-range orbital
currents in Weyl fermion systems, shows intriguing critical behavior. Based on the self-consistent Born
approximation for impurities, we study the nuclear spin-lattice relaxation rate 1/T1 due to the orbital currents
in disordered Weyl SMs. We find that (T1T )−1 ∼ E 2/z at the QCP where E is the maximum of temperature T
and chemical potential μ(T ) relative to the Weyl point. This scaling behavior of (T1T )−1 is also confirmed by
the self-consistent T -matrix approximation, where a remarkable temperature dependence of μ(T ) could play an
important role. We hope these results of (T1T )−1 will serve as an impetus for exploration of the disorder-driven
quantum criticality in Weyl materials.

DOI: 10.1103/PhysRevB.101.155103

I. INTRODUCTION

In condensed-matter physics, the Weyl Hamiltonian de-
scribes an effective model of gapless systems where the inver-
sion or time-reversal symmetry is broken, known as a Weyl
semimetal (SM) [1]. Among many candidates, a family of
TaAs-type materials is a typical example of Weyl SMs [2–6].
Since the discovery of these materials, the unusual galvano-
magnetic transport has attracted much attention. When the
electric and magnetic field is applied in parallel, the negative
magnetoresistance is predicted due to the chiral anomaly
[7,8]. In TaAs-type Weyl SMs, the negative magnetoresis-
tance was experimentally observed [9–12]. Similar studies
were carried out on thermoelectric transport. A large positive
contribution proportional to the square of the magnetic field
was predicted in the longitudinal thermal conductivity when
the temperature gradient and magnetic field is applied in
parallel [13].

Besides these transport properties, nuclear magnetic res-
onance (NMR) in Weyl SMs shows unusual dependence of
the nuclear spin-lattice relaxation time T1 on temperature
T . In general, the inverse of T1T detects local fluctuations
of a magnetic field produced at a nuclear spin site by the
surrounding electrons [14]. It is usually scaled as the square
of the density of states, called the Korringa relation [15,16].
Since the density of states in Weyl SMs is proportional to
the square of the energy around the Weyl point, a naive
power counting based on the Korringa relation expects that
(T1T )−1 ∼ max[μ(T )4, T 4], where μ(T ) is the chemical po-
tential measured from the Weyl point. However, recent nuclear
quadrupole resonance (NQR) experiments on TaP revealed
that (T1T )−1 ∼ max[μ(T )2, T 2] in Weyl SMs with remark-
able temperature dependence of μ(T ) [17,18]. This unusual
scaling had been predicted as an orbital effect in (T1T )−1

which originates from the hyperfine coupling between a nu-
clear spin and long-range orbital currents of Weyl fermions
[19,20]. The importance of the temperature dependence of
μ(T ) in gapless systems was also pointed out in relation to
the Hall coefficient observed in α-(BEDT-TTF)2I3 [21–23].

In the past, orbital magnetism has been studied extensively
in Dirac materials, which are narrow-gap electron systems de-
scribed by the Dirac Hamiltonian [24,25]. The large diamag-
netism of bismuth-antimony alloys Bi1−xSbx demonstrated a
significant contribution from the interband matrix element of
the current operator [26,27]. Recently, it was shown to be a
counterpart of the inverse of the charge renormalization factor
in quantum electrodynamics [28]. Furthermore, (T1T )−1 in
Dirac electron systems was found to be proportional to T 2 due
to the orbital effect when temperature is higher than the band
gap [20]. This finding partly explains the temperature depen-
dence of 1/T1 observed in the β-detected NMR experiment on
Bi0.9Sb0.1 [29].

Following the work by Lee and Nagaosa, we consider the
relaxation of nuclear spins due to local fluctuations of the
Biot-Savart magnetic field produced by the orbital current
[30]. This is equivalent with the relaxation of nuclear spins
from the orbital hyperfine coupling [19,31]. Since the fluctu-
ation of currents is related to the conductivity, this approach
allows us to use the field theoretical method for disordered
systems. The nuclear spin-lattice relaxation is written in terms
of the transverse conductivity σT(q, ω) with a wave vector q
and frequency ω as

1

T1T
= 4kB

3
γ 2

n μ2
0

∫
d3q

(2π )3

1

q2
Re σT(q, ω0), (1)

where γn, μ0, and ω0 are the gyromagnetic ratio of a nucleus,
the vacuum permeability, and the nuclear Larmor frequency,
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FIG. 1. Schematic energy-disorder phase diagram for disordered
Weyl SMs.

respectively. For Dirac electron systems with an electronic
charge −e, effective mass m∗, and half band gap 	, Eq. (1)
leads to [32]

1

T1T
=2πkB

3
γ 2

n μ2
0e2c∗4h̄3

×
∫ ∞

−∞
dE

[
−∂nF(E )

∂E

]
D2(E )

E2
ln

2(E2 − 	2)

|E |ω0
, (2)

where nF(E ) = [e(E−μ)/kBT + 1]−1 is the Fermi distribution
function and D(E ) is the density of states. In the low-electron
density limit of μ → 	 with μ > 	, Eq. (2) corresponds to
the result for free electron gas [33], which shows the usual
scaling (T1T )−1 ∼ D2(μ) ∼ μ − 	 (except the logarithmic
dependence). On the other hand, Eq. (2) provides the result
for Weyl SMs in the gapless limit of 	 → 0 with fixing c∗ ≡√

	/m∗, which shows the unusual scaling (T1T )−1 ∼ E2 with
E the maximum of T and μ [19]. We thus see that the origin
of the unusual scaling is attributed to the gapless structure of
the density of states. It is, however, known that the density
of states in gapless systems is sensitive to the presence of
disorder such as impurities and dislocations. Then a natural
question arises: How does the scaling behavior of (T1T )−1

change by introducing the disorder?
The disorder-induced quantum critical point (QCP) exists

in d-dimensional gapless systems with a dispersion Ek ∝
kα under the short-ranged disorder [34–37]. When d < 2α,
the gapless structure of the density of states disappears by
infinitesimal disorder. When d > 2α, on the other hand, it
is robust against weak disorder below the critical strength,
leading to the disorder-driven QCP. Since d = 3 and α = 1
for Weyl SMs, disordered Weyl SMs have the QCP [38–55].
Here, we should note that the critical behavior is correct
only up to rare-event effects [39,40]. In Fig. 1, we present
a schematic energy-disorder phase diagram, showing three
different regimes distinguished by the energy dependence of
the density of states. In regime I, the energy dependence of
the density of states are dominated by the QCP. Regime II cor-
responds to weakly disordered systems at low energy, where
the power law is qualitatively equivalent with clean systems.
In regime III, the density of states becomes nonzero at the
Weyl point. The frequency and temperature dependencies of
the optical conductivity in these regimes were theoretically
predicted in addition to the thermodynamic properties [52,53].

In this paper, we study the nuclear spin-lattice relaxation
rate due to orbital currents in disordered Weyl SMs using
the self-consistent Born approximation (SCBA) for impuri-
ties. For the critical exponents z = 2 and ν = 1 within the
SCBA, we find that our result is in agreement with the
scaling relation of (T1T )−1. At EF = 0, the nuclear spin-lattice
relaxation rate is scaled as (T1T )−1 ∼ T 2/z, (T1T )−1 ∼ T 2,
and (T1T )−1 ∼ (W − Wc)2ν in the regimes I, II, and III, re-
spectively, where we denote the disorder strength as W and
its critical value as Wc. We also discuss the relationship to the
one-loop renormalization group (RG) analysis, which gives
z = 1.5 [49]. When the Weyl points are away from the Fermi
energy, deviations from these behaviors are elucidated with a
special emphasis on the temperature dependence of μ(T ). In
particular, we show that a remarkable temperature dependence
of μ(T ) caused by impurities amplifies an additional feature
of (T1T )−1 with a low-temperature upturn in the regime II,
which is consistent with the recent NQR experiment on TaP
[17,18].

The organization of this paper is as follows. In Sec. II, we
introduce the SCBA for a pair of Weyl nodes with the opposite
chirality. In Sec. III, the impurity-averaged transverse conduc-
tivity is derived as a function of a wave vector q. To derive
the vertex correction in a gauge-invariant manner, we employ
the conserving approximation for the SCBA. We find that the
vertex correction leads to quantitative changes in (T1T )−1 but
does not affect the critical behavior. In Sec. IV, the nuclear
spin-lattice relaxation rate is computed numerically. We also
predict the scaling relation of (T1T )−1 from the dimensional
analysis, which is in agreement with the SCBA. In Secs. V
and VI, we discuss the effect of the particle-hole asymmetry
within the self-consistent T -matrix approximation (SCTA)
and its implication in experiments. In the final section, we
provide a summary of this paper.

II. MODEL HAMILTONIAN AND THE
DISORDER-DRIVEN QUANTUM CRITICALITY

A. Model

We consider a pair of Weyl nodes with the opposite chiral-
ity. For 2N nodes, we simply need to multiply our result by a
factor of N . With random disorder potential, the Hamiltonian
H = H0 + HD is given as follows:

H0 =
∑

a=L,R

∫
dkψ

†
k,aχah̄c∗k · σψk,a, (3)

HD =
∑

a,b=L,R

∫
dkψ

†
k,auabψk,b, (4)

where c∗ is the Fermi velocity, σi are the Pauli matrices, and
L/R stands for left/right chiral modes with χL/R = ±1. The
intravalley scattering is assumed to be isotropic (|uLL|2 =
|uRR|2). In addition, the intervalley scattering uLR = u∗

RL is
introduced. We should note that a similar model was discussed
in graphene [56–60].

If the range of the impurity potential is much shorter
than the lattice constant, the intervalley scattering becomes
important. In contrast, it is suppressed for the potential with its
range comparable to the lattice constant. Following Ref. [56],
we consider the short-range scatters (|uLR|2 = |uLL|2) and
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FIG. 2. Feynman diagram for the self-energy of a Weyl point
with left chirality with the short-range scatters (|uLR|2 = |uLL|2)
and the long-range scatters (|uLR|2 = 0). The subscript L/R implies
the chirality.

the long-range scatters (|uLR|2 = 0). In both limiting cases,
we assume that the range of the impurity potential is much
smaller than the typical electron wavelength.

In the SCBA, the self-energy is obtained by solving the
following self-consistent equation (Fig. 2):

R
a (ω) = ni

h̄2

∑
k

∑
b=L,R

|uab|2GR
b (k, ω), (5)

where the the subscript a denotes the chirality L/R, ni is the
impurity concentration, and GR

a is the retarded Green’s func-
tion after disorder averaging. The disorder-averaged Green’s
function is defined as

GR
a (k, ω) = [

ω + μ/h̄ − χac∗σ · k − R
a (ω)

]−1
. (6)

We should note that the self-energy takes the same form
for both short-ranged and long-ranged scatters. Assuming
R(ω) = R

I (ω)σ0 with σ0 denoting the identity matrix el-
ement, the self-consistent equation is simplified to

R
I (ω) = ni(|uLL|2 + |uRL|2)

h̄2

∫
dk3

(2π )3

[
ω̃R

(ω̃R)2 − c∗2k2

]
= W ω̃R f (ω), (7)

where ω̃R = ω + μ/h̄ − R
I (ω). Since the momentum inte-

gration in the above equation is divergent, we introduce the

cutoff factor k2
c

k2
c +k2 to take account of the finite band width.

The dimensionless impurity strength W and the function f (ω)
are defined as follows:

W = niEc

2π2h̄3c∗3
(|uLL|2 + |uRL|2), (8)

f (ω) =
∫ ∞

0

K2dK

K2 + 1

1

�̃2
R − K2

= −π

2

1

1 − i�̃R
, (9)

where the energy cutoff is Ec = h̄c∗kc and the dimensionless
quantities are �̃R = h̄ω̃R/Ec and K = h̄c∗k/Ec. The self-
consistent solution is obtained as

�̃R = 1
2 (iδ + � + sgn(�)

√
4i� + (iδ + �)2), (10)

with δ = W/Wc − 1, Wc = 2/π is the critical impurity
strength, and � = (h̄ω + μ)/Ec. The density of states

D(ω) is

D(ω) = − 1

h̄π

∑
a=L,R

∑
k

Im tr
[
GR

a (k, ω)
]

= − 2E2
c

(π h̄c∗)3
Im[�̃R f (ω)]. (11)

At � = 0, we have a simple criterion for the criticality as
�̃R = iδ for δ > 0 and �̃R = 0 otherwise.

B. Critical exponents in the SCBA

The disorder-induced quantum criticality is characterized
by universal critical exponents. Near the QCP in disordered
Weyl SMs, the density of states acts as the order parameter
that is described by the critical exponents z and ν. The
dynamical exponent z relates the correlation length ξ and the
characteristic energy scale �0 as �0 ∼ ξ−z. At the QCP, the
correlation length diverges as ξ ∼ δ−ν .

From the scaling of the density of states, the density of
states at the QCP is [37,38,55]

D(�, δ = 0) ∼ �
d
z −1, (12)

where d is the spatial dimension of the system. Above the
QCP, the density of states becomes finite even at Weyl nodes.
At � = 0, it is given as

D(� = 0, δ > 0) ∼ δ(d−z)ν . (13)

Below the criticality, the density of states for � 	 1 has the
same energy dependence as Weyl SMs without disorder.

The solution of Eq. (5) matches with the result of the
saddle-point solution in the limit of N → ∞ valleys. Thus, the
critical exponents in the SCBA are given by z = 2 and ν = 1

[61]. At the QCP (δ = 0), �̃R ∼ (1 + i)
√

�
2 for � → 0. The

density of states for small � is

D(�) ≈ E2
c

π2(h̄c∗)3

√
�

2
, (14)

leading to z = 2. In Fig. 3(a), the density of states against
Fermi energy EF is plotted near the critical point W = Wc.
At the critical point, the gradient of density of states at
Weyl points is divergent, showing the root-squared energy
dependence. Similarly, the density of states at � = 0 for δ > 0
is given by

D(δ) ≈ E2
c

π2(h̄c∗)3
δ. (15)

Hence, ν = 1.

C. Chemical potential at finite temperatures

Since the nuclear spin-lattice relaxation rate 1/T1 is mea-
sured against temperatures, the temperature dependence of
chemical potential is important. In this section, we consider
the effect of impurity on the chemical potential at finite
temperatures. Assuming that a total number of charge carriers
is conserved in two bands forming a Weyl cone, we obtain the
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FIG. 3. (a) The density of states in the SCBA against Fermi
energy EF = μ(T = 0). (b) Chemical potential against tempera-
tures for EF/Ec = 10−2. A dashed line corresponds to the clean
system. The impurity strength for both plots are set at W/Wc =
0.9 (blue), 1.0 (red), and 1.1 (green) from the bottom.

temperature-dependent chemical potential μ(T ). The particle
and hole numbers are given as

n =
∫ ∞

0
dE nF(E )D(E ), (16)

p =
∫ 0

−∞
dE (1 − nF(E ))D(E ). (17)

The change in the total carrier number from T = 0 to T = T ′
is given by

δN = (n − p)|T =T ′ − (n − p)|T =0

=
∫ ∞

−∞
dE nF(E )D(E ) −

∫ EF

−∞
dE D(E ), (18)

where EF = μ(T = 0) is the Fermi energy. In our calculation,
chemical potential is numerically computed by keeping δN =
0 with the renormalized density of states under impurity.
The integration over energy is taken for a finite width scaled
by temperatures, neglecting a small contribution from high-
energy regions.

Short-ranged scatters

= + +

Long-ranged scatters

= +

FIG. 4. Feynman diagram for the vertex function of a left chiral
mode with the short-range scatters (|uLR|2 = |uLL|2) and the long-
range scatters (|uLR|2 = 0). The subscript L/R implies the chirality.

In Fig. 3(b), chemical potential is plotted against temper-
atures near the critical point. In the SCBA, the density of
states is symmetric about Weyl nodes. As a result, chemical
potential moves toward Weyl points as the temperature in-
creases. For weak disorder strength, the temperature depen-
dence is almost identical with the clean system, showing a
large decrease below kBT/EF ∼ 1. As the impurity strength
approaches the critical value, the change in chemical potential
becomes smaller.

III. TRANSVERSE CONDUCTIVITY

A. Formulation

In this section, we obtain the static conductivity tensor
σi j (q) for the disordered Weyl fermion systems, whose trans-
verse part will be used for computation of 1/T1 in the next
section. By applying the standard Feynman diagrammatic
technique based on the Kubo formula to our systems, the
conductivity tensor is given by

σi j (q) = e2c∗2

h̄
Re

∑
|k|<kc

∑
a=L,R

∫ ∞

−∞

dω

2π

(
−∂nF(ω)

∂ω

)

× Tr
[
σiG

R
a (k−, ω)�RA

a, j (ω ; q)GA
a (k+, ω)

− σiG
R
a (k−, ω)�RR

a, j (ω ; q)GR
a (k+, ω)

]
, (19)

where k± = k ± q/2. Here the current vertex function is de-
fined as χac∗�αβ

a, j (ω ; q) with a = L/R, where the superscript
α, β stands for R/A in relation to the retarded/advanced
Green’s functions. As in the previous section, we take a
smooth cutoff procedure for a wave-number cutoff kc as

∑
|k|<kc

−→
∫

d3k

(2π )3

k2
c

|k|2 + k2
c

. (20)

1. Conserving approximation

To preserve gauge invariance, we introduce a conserving
approximation corresponding to the SCBA with special care
about the wave-number cutoff kc of the k summation. The
Bethe-Salpeter equation for the vertex function �

αβ
a, j (ω ; q) is
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then given by (Fig. 4)

�
αβ
a, j (ω ; q) = σ j + ni

h̄2

∑
|k|<kc

∑
b=L,R

χa|uab|2χb

× Gα
b (k−, ω)�αβ

b, j (ω ; q)Gβ

b (k+, ω). (21)

Here the Green’s functions Gα
a (k±, ω) in Eqs. (19) and (21)

are redefined so as to incorporate an effect of the wave-number
cutoff kc as

Gα
a (k±, ω)=[

ω+μ/h̄−χac∗σ · k±−α
a (ω; ±q/2)

]−1
,

(22)

where the self-consistent equation for the self-energy correc-
tion α

a (ω; ±q/2) is given by

α
a (ω; ±q/2) = ni

h̄2

∑
|k|<kc

∑
b=L,R

|uab|2Gα
b (k±, ω). (23)

It is, here, emphasized that the self-consistent equation for
α

a (ω) in Sec. II is modified as Eq. (23), so the self-energy
correction α

a (ω; ±q/2) in the conductivity tensor becomes
dependent on q. This modification of the self-consistent equa-
tion is necessary to preserve gauge invariance for the theory
with a finite cutoff kc.

Now we consider the Bethe-Salpeter equation given by
Eq. (21). Because any 2 × 2 matrix can be written as a
linear combination of the Pauli matrices σi and the identity
matrix σ0 = I2×2, the vertex function �

αβ
a, j (ω; q) is expanded

as �
αβ
a, j (ω; q) = ∑3

ν=0 σν�
αβ
a,ν j (ω; q), where the expansion co-

efficient is given by

�
αβ
a,ν j (ω; q) = 1

2 Tr
[
σν�

αβ
a, j (ω; q)

]
. (24)

Then we can write Eq. (21) as

�
αβ
a,μ j (ω ; q) = δμ j + niEc

2π2h̄3c∗3

∑
b=L,R

|uab|2

×
3∑

ν=0

�
αβ

b,μν
(ω; q)�αβ

b,ν j (ω ; q), (25)

where the dimensionless function �αβ
a,μν (ω; q) that includes

only the self-energy corrections is defined as

�αβ
a,μν (ω; q) = π2h̄c∗3

Ec

∑
|k|<kc

Tr
[
σμGα

a (k−, ω)σνGβ
a (k+, ω)

]
.

(26)

In the following, we give explicit expressions for the self-
energy corrections and the vertex functions to obtain the
wave-number-dependent conductivity.

2. Self-energy corrections

To obtain the function �αβ
a,μν (ω; q), we assume that the

solution of Eq. (23) is given by

α
a (ω; ±q/2) = α

I (ω; q/2)σ0 ± χac∗q · σ

2

× [
Zα

L (ω; q/2) − 1
]
. (27)

Then we can write the Green’s function, Eq. (22), as

Gα
a (k±, ω) = [ω̃α − χac∗σ · (k ± q̃α/2)]−1, (28)

where ω̃α = ω + μ/h̄ − α
I (ω; q/2) and q̃α = Zα

L (ω; q/2) q.
Substituting Eq. (28) into Eq. (26), we find �αβ

a,μν (ω; q) has
the form as

�
αβ

a,i0(ω ; q) = �
αβ

a,0i(ω ; q) = χa
qi

q
�̃

αβ

L (ω ; q), (29)

�
αβ
a,i j (ω ; q) = qiq j

q2
�

αβ

L (ω ; q) +
(

δi j − qiq j

q2

)
�

αβ

T (ω ; q)

+ iχaεi jk
qk

q
�̃

αβ

T (ω ; q), (30)

where εi jk is the Levi-Civita tensor and the expressions for
�̃

αβ

L/T, �
αβ

L/T are given in Appendix A.

3. Vertex functions

Here, we obtain the expressions for vertex functions, which
do not vanish for q > 0 in general. The solution of Eq. (25)
can be obtained in the same form as Eqs. (29) and (30) to find

�
αβ

a,i0(ω ; q) = �
αβ

a,0i(ω ; q) = χa
qi

q
�̃

αβ

L (ω ; q), (31)

�
αβ
a,i j (ω ; q) = qiq j

q2
�

αβ

L (ω ; q) +
(

δi j − qiq j

q2

)
�

αβ

T (ω ; q)

+ iχaεi jk
qk

q
�̃

αβ

T (ω ; q). (32)

By virtue of the Ward identity, the longitudinal vertex func-
tions �

αβ

L (ω ; q) and �̃
αβ

L (ω ; q) are directly related to the
self-energy correction, Eq. (27), as

�RR
L (ω ; q) = ZR

L (ω; q/2), (33)

�̃RR
L (ω ; q) = 0, (34)

�RA
L (ω ; q) = ReZR

L (ω; q/2), (35)

�̃RA
L (ω ; q) = − 2i

c∗q
ImR

I (ω; q/2). (36)

On the other hand, the transverse vertex functions �
αβ

T (ω ; q)
and �̃

αβ

T (ω ; q) cannot be determined from the Ward identity.
They are given in terms of �

αβ

T (ω ; q) and �̃
αβ

T (ω ; q) as

�
αβ

T (ω ; q) = [
1−W �

αβ

T (ω ; q)
]/[[

1−W �
αβ

T (ω ; q)
]

× [
1−W−�

αβ

T (ω ; q)
]−WW−�̃

αβ

T (ω ; q)2
]
,

(37)

�̃
αβ

T (ω ; q) = W �̃
αβ

T (ω ; q)
/[[

1−W �
αβ

T (ω ; q)
]

× [
1−W−�

αβ

T (ω ; q)
]−WW−�̃

αβ

T (ω ; q)2
]
,

(38)

where W− is given by

W− = niEc

2π2h̄3c∗3
(|uLL|2 − |uLR|2). (39)
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4. Wave-number-dependent conductivity

By using Eqs. (24) and (26), we write the conductivity
tensor, Eq. (19), as

σi j (q) = e2Ec

2π3h̄2c∗

∫ ∞

−∞
dω

(
−∂nF(ω)

∂ω

)

×
∑

a=L,R

3∑
μ=0

Re
[
�RA

a,iμ(ω; q)�RA
a,μ j (ω ; q)

−�RR
a,iμ(ω; q)�RR

a,μ j (ω ; q)d
]
, (40)

Substituting Eqs. (29)–(32) into this equation, we find the
conductivity tensor has the form

σi j (q) = qiq j

q2
σL(q) +

(
δi j − qiq j

q2

)
σT(q). (41)

It is to be noted that the term including εi jk similar to the third
terms in Eqs. (30) and (32) vanishes by taking the summation
with respect to the chirality a = L/R. Then we obtain the
transverse conductivity σT(q) as

σT(q) = σunit

∫ ∞

−∞
dω

(
−∂nF(ω)

∂ω

)
Re

[
�RA

T (ω ; q)�RA
T (ω; q)

− �RR
T (ω ; q)�RR

T (ω ; q) + �̃RA
T (ω ; q)�̃RA

T (ω ; q)

− �̃RR
T (ω ; q)�̃RR

T (ω ; q)
]
, (42)

and the longitudinal conductivity σL(q) by replacing the sub-
script T by L in Eq. (42). Here σunit has the dimension of
conductivity as

σunit = e2Ec

π3h̄2c∗ . (43)

B. Results

As derived in Appendix B, an approximate solution of
Eq. (23) for q/kc 	 1 are given by Eq. (27) with

�̃R(ω) = 1
2 (iδ + � + sgn(�)

√
4i� + (iδ + �)2), (44)

ZR
L (ω) = 1 − W−π (i + 2�̃R(ω))

πW−[i + 2�̃R(ω)] − 12i[i + �̃R(ω)]2
, (45)

where δ = W/Wc − 1, �̃R = h̄ω̃R/Ec and � = (h̄ω + μ)/Ec.
Since we are interested in the q dependence of the transverse
conductivity σT(q) for q/kc 	 1, we take Eqs. (44) and (45)
as the self-energy corrections. Here, ω̃R in Eq. (28) is the
same as in the previous section. However, there is an important
correction in q̃R for the long-range scatters with W− �= 0. To
elucidate the difference between short-range and long-range
scatters, we perform an explicit calculation of �

αβ

T (ω ; q)
and �̃

αβ

T (ω ; q) given by Eqs. (A3) and (A4), respectively.
The transverse conductivity σT(q) is obtained from evaluating
Eq. (42) together with Eqs. (37) and (38).

Figure 5(a) shows the q dependence of transverse conduc-
tivity at T = 0 K and EF/Ec = 10−2 for short-range and long-
range scatters. The behavior of σT(q) is essentially identical
for both cases at various disorder strengths. In the weak disor-
der regime (W/Wc = 0.1), it is peaked at q = 0 and converges
to zero near q = 2kF. The long-ranged scatters shows a longer
tail at q > 2kF than the short-ranged scatters due to the shift

0.5 1. 1.5 2. 2.5 3.0.0

0.1

0.2

0.3

0.4

0.5
(a)

(b)

2 4 6 8 10

- 0.2

0

0.2

0.4

FIG. 5. Plot of (a) the transverse conductivity σT(q) and (b) the
ratio 	σT/σT at T = 0 and EF/Ec = 10−2 for short-range scatters
(solid lines) and long-ranged scatters (dashed lines). The disorder
strength is taken at W/Wc = 0.1 (blue), 0.3 (red), 0.6 (green), and
1.0 (orange) from (a) bottom and (b) top.

in q by ZR
L (ω). As the impurity strength is increased, the

sharp peak at q = 0 is broadened and it acquires a longer
tail for q > 2kF. At the QCP (W/Wc = 1.0), the transverse
conductivity becomes constant for q 	 kc. In this regime, the
negative contribution of the vertex correction results in the
smaller transverse conductivity for the long-ranged scatters at
q ∼ kF.

Second, we consider the q dependence of the vertex cor-
rection. The transverse conductivity is separated into the
contribution from the bare vertex (�i = σi) and the full vertex
function

σT(q) = σ
(0)
T (q) + 	σT(q), (46)

where the transverse conductivity with the bare vertex is given
by

σ
(0)
T (q) = σunit

∫ ∞

−∞
dω

(
−∂nF(ω)

∂ω

)
× Re

[
�RA

T (ω ; q) − �RR
T (ω ; q)

]
. (47)
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In Fig. 5(b), the ratio 	σT/σT is plotted for short-range
scatters and long-range scatters, respectively. For the short-
ranged scatters, the vertex correction vanishes at q = 0. This
is because �RA/RR

T (q) = 1 for the short-ranged scatters and
�̃RA/RR

T (ω ; q = 0) = 0. Also, the effect of positive contribu-
tions for q > 2kF is limited as the transverse conductivity
is vanishingly small. At the QCP, the vertex correction is
negligible for q 	 kc. In contrast, the vertex correction is
important for the long-ranged scatters, showing negative con-
tributions as the disorder strength is increased. At the QCP,
the vertex correction accounts for approximately −20% of σT

for q 	 kc.

IV. NUCLEAR SPIN-LATTICE RELAXATION RATE

As mentioned in Sec. I, the nuclear spin-lattice relaxation
rate 1/T1 due to orbital currents is generally related to the real
part of the dynamical transverse conductivity σT(q, ω0) with
the nuclear Larmor frequency ω0. It is, however, noted that
the present systems with disorder have a finite damping rate
1/τ (ω) = −2Im[R(ω)]. For ω0τ (ω0) 	 1, the dynamical
conductivity can be approximated by the static conductivity as
Re σT(q, ω0) ≈ σT(q). From Eq. (1), the nuclear spin-lattice
relaxation rate is given by

h̄

T1kBT
= 2γ 2

n μ2
0 h̄

3π2

∫ ∞

0
dq σT(q)

q2
c

q2 + q2
c

, (48)

where we introduce a smooth cutoff procedure with qc = 2kc.
By substituting Eq. (48) for σT(q), we compute (T1T )−1 for
the disordered Weyl fermion systems and elucidate its critical
behavior near the QCP.

A. Numerical results

In the previous section, we have shown that the difference
between the short-ranged and long-ranged scatters on σT(q)
is resulted from the self-energy and the vertex correction.
To confirm that it does not affect the critical behavior, we
compare the nuclear spin-lattice relaxation rate for both cases
at T = 0. In the following, the parameters are fixed as Ec =
1.0 eV, c∗ = 104 m/s, and γn = 267.5 × 106 s−1T−1.

In Fig. 6(a), the nuclear spin-lattice relaxation rate is plot-
ted as a function of the Fermi energy at T = 0. While there is
no significant difference in (T1T )−1 between the short-ranged
and long-ranged scatters below the QCP, their difference
becomes visible above the QCP. At the QCP, (T1T )−1 is
proportional to EF for both scatters for small EF. The small
difference between the short-ranged and long-ranged scatters
results from the cancellation of the negative vertex correction
by the self-energy correction ZR

L (ω) after performing the
integration. In addition to the energy dependence, the nuclear
spin-lattice relaxation rate scales with the disorder strength,
as shown in Fig. 6(b). We find that (T1T )−1 is proportional
to (W − Wc)2 in the limit of EF = T = 0, although it deviates
from the quadratic dependence away from the QCP.

Since the critical behavior is the same for both the short-
ranged and long-ranged scatters, we consider the nuclear spin-
lattice relaxation rate under the long-ranged scatters at finite
temperatures. First, the nuclear spin-lattice relaxation rate at
EF = 0 is considered. In this case, the chemical potential does

- 0.10 - 0.05 0.00 0.05 0.10

0.002

0.004

0.006

0.008

(a)

(b)

0.7 0.8 0.9 1.0 1.1 1.2 1.30.000

0.001

0.002

0.003

0.004

0.005

FIG. 6. The nuclear spin-lattice relaxation rate (T1T )−1 at T = 0
(a) against the Fermi energy and (b) against the disorder strength
for short-range scatters (solid lines) and long-ranged scatters (dashed
lines). In (a), the disorder strength is taken at W/Wc = 0.4 (blue), 0.7
(red), 1.0 (green), and 1.3 (orange) from bottom. In (b), the Fermi
energy is taken at EF = 0 (blue), 1 meV (red), 5 meV (green), and
10 meV (orange) from bottom.

not depend on the temperature. In Fig. 7(a), we plot (T1T )−1

as a function of temperatures for different impurity strengths,
which shows the critical behavior of the nuclear spin-lattice
relaxation rate. As the impurity strength increases, the tran-
sition from (T1T )−1 ∝ T 2 to T occurs at lower temperatures.
At the QCP, the nuclear spin-lattice relaxation rate is linearly
proportional to the temperature from T = 0. Above the QCP,
the density of states at the Weyl point becomes finite, so
(T1T )−1 becomes roughly constant.

Second, we consider the nuclear spin-lattice relaxation
rate for EF �= 0. In Fig. 7(b), we present the temperature
dependence of (T1T )−1 at EF = 10 meV. At low temperatures,
(T1T )−1 is constant regardless of the impurity strength. For
kBT ∼ μ(T ) ∼ EF/2, (T1T )−1 initially shows a decrease fol-
lowed by an increase with the strong temperature dependence.
This upturn in (T1T )−1 is caused by the shift in chemical
potential [18]. Above kBT ∼ EF/2, it shows the transition

155103-7



HIROSAWA, MAEBASHI, AND OGATA PHYSICAL REVIEW B 101, 155103 (2020)

5 10 50 100

10-4

10-3

5 10 50 100

10-7

10-6

10-5

10-4

10-3

(a)

(b)

FIG. 7. The nuclear spin-lattice relation rate (T1T )−1 against
temperatures for long-ranged scatters (a) at EF = 0 and (b) EF =
10 meV, respectively. The impurity strength W is taken between 0.4
and 1.3 with increase by 0.05. In (a), the dashed line represents the
asymptotic expression Eq. (61) with C1 = 4.0 and C2 = 3.8.

from the T 2 dependence for weakly disordered systems to the
T -linear behavior at the QCP.

Our result shows that the temperature dependence of
(T1T )−1 reflects the scaling property at the disorder-induced
QCP for small EF. This is clearly illustrated in the
temperature-disorder phase diagram (Fig. 8). The color code
represents the exponent κ (T ) of the temperature in (T1T )−1 at
EF = 0, which is estimated as

κ (T ) = − lim
	T →0

ln T1T |T +	T − ln T1T |T
ln(T + 	T ) − ln T

. (49)

Below the QCP, (T1T )−1 is roughly described by the quadratic
function with respect to T for a wide range of temperatures
(regime II). Only in a narrow region near the QCP is the linear
dependence in the temperature found (regime I). Above the
QCP, the finite density of states leads to the constant value of
(T1T )−1 (regime III).

0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.000

0.002

0.004

0.006

0.008

0.010

0

0.5

1.0

1.5

2.0

FIG. 8. Temperature-disorder phase diagram obtained by the
SCBA. The color code indicates the exponent of (T1T )−1 with respect
to the temperature at EF = 0, defined as κ (T ) in the main text. The
boundary between three regimes is estimated from κ (T ) (dashed
line).

B. Asymptotic expressions

From the numerical calculation, (T1T )−1 is shown to be
linear in the temperature near the QCP. To extract the exact
temperature dependence, we derive the expression for the
short-ranged scatters without the vertex correction, which is
written as

h̄

T1kBT
= 2γ 2

n μ2
0Ec

3π2c∗

∫ ∞

−∞
dω

(
−∂nF(ω)

∂ω

)∫ ∞

0
dQ σ

(0)
T (q),

with the expression for σ
(0)
T (q) given in Eq. (47) and Q =

q/kc. We should note that the scaling of (T1T )−1 at the QCP
is not affected by the vertex correction and the additional
self-energy correction ZR

L (ω). This is confirmed by comparing
the obtained expression with the numerical results.

For convenience, we shift Kx by Kx + Q
2 in Iαβ

n (K ) of
Eq. (A3) and introduce new integration variables K ′ and x′.
The transverse component is rewritten as

�
αβ

T (ω ; q) =
∫ ∞

0

K2dK

1 + K2

∫ ∞

0

K ′2dK ′

1 + K ′2
[
�̃α�̃βIαβ

0,0 (K, K ′)

− Iαβ

2,0 (K, K ′) − QIαβ

1,0 (K, K ′)
]

× δ(Kx−K ′x′+Q). (50)

Here, the expressions for the integrals are defined as

Iαβ
n,m(K, K ′) = KnK ′m

∫ 1

−1
xndx

∫ 1

−1
x′mdx′

× δ[K2(1 − x2) − K ′2(1 − x′2)](
�̃2

α−K2
)(

�̃2
β −K ′2) . (51)
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Taking the integration over Q, the second term is canceled out
by the third term and we obtain∫ ∞

0
dQ �

αβ

T (ω ; q) =
∫ ∞

0

K2dK

1 + K2

∫ ∞

K

K ′2dK ′

1 + K ′2

× �̃α�̃βIαβ

0,0 (K, K ′), (52)

where

Iαβ

0,0 (K, K ′) =
2Arcsinh

(
K√

K ′2−K2

)
KK ′(�̃2

α−K2
)(

�̃2
β −K ′2) . (53)

1. Weak disorder

In the weak disorder regime (W 	 Wc), the imaginary part
of the Green’s function G(k, ω) is strongly peaked around
h̄c∗k = h̄ω with its width proportional to the imaginary part
of the self-energy. Thus, we can simplify the integral by intro-
ducing the Dirac delta function −π Im[�̃R]δ(K ′ − Re[�̃R]),
where ω̃R = ω + i

2τ
. Under this approximation, the leading

order term is obtained as∫ ∞

0
dQ �

αβ

T (ω ; q) =πRe[�̃R]Im[�̃R] �̃α�̃β

16 (�̃2
β −ω2)

× (π + 2i ln |ω|τ )2. (54)

We should note that the above integral is convergent in the
limit of the infinite momentum cutoff. This is expected as
the momentum cutoff is not necessary for a clean system.
Substituting the above expression, the nuclear spin-lattice
relaxation rate is derived as

h̄

T1kBT
= γ 2

n μ2
0e2

6π3c∗2

∫ ∞

−∞
dω

(
−∂nF (ω)

∂ω

)
ω2 ln |ω|τ. (55)

For a Weyl electron system without disorder, (T1T )−1 ∝
T 2 ln(2kBT/h̄ω0) with ω0 denoting the nuclear Larmor fre-
quency [19,20,28]. In Eq. (55), the nuclear Larmor frequency
is replaced with the scattering rate 1

2τ
= Im[ω̃R] = W

Wc

h̄ω2

Ec
. The

equivalent result was obtained in metallic systems [33]. At
μ = 0, it is derived as

h̄

T1kBT
= 2π

(
γnμ0ekBT

6π h̄c∗

)2(
ln

2EcWc

kBTW
− 1.05

)
. (56)

Thus, the T 2 dependence of (T1T )−1 holds under weak disor-
der. However, the logarithmic term is different from the clean
system as the temperature T appears in the denominator.

2. QCP

The SCBA solution at the QCP (W = Wc) is given by ω̃R =√
Ecω
2h̄ (1 + i) for small ω. In this case, we cannot simplify

the integral by assuming the small imaginary part in the
self-energy. After evaluating the integral over K and K ′, the
leading order term is obtained as∫ ∞

0
dQ �RA

T (ω ; q) = π2ω2τ 2

8

[
−C1 − C2 ln ωτ

+ iπ

2
+ ln 2

]
, (57)

∫ ∞

0
dQ �RR

T (ω ; q) = iπ2ω2τ 2

8
[−C1 − C2 ln ωτ

+ iπ − ln 2]. (58)

Here, there is a diverging term in the integral, so we need a
momentum cutoff for convergence. Since it was not possible
to obtain a simple analytical form of the diverging term, the
coefficients were estimated as C1 = 1.75 and C2 = 4.0 by the
numerical fitting. The integral of nondiverging terms is eval-
uated without the cutoff. The nuclear spin-lattice relaxation
rate is derived as

h̄

T1kBT
= e2γ 2

n μ2
0Ec

24π3h̄c∗2

∫ ∞

−∞
dω

(
−∂nF(ω)

∂ω

)
× |ω|(π + ln 2 − C1 − C2 ln ωτ ). (59)

Substituting 1
2τ

= Im[ω̃R] =
√

Ecω
2h̄ , the expression for μ = 0

is obtained as

h̄

T1kBT
= πEckBT ln 2

24

(eγnμ0

π h̄c∗
)2

(60)

×C2

(
ln

2Ec

kBT
− 2C1

C2
− 0.653 + 2π + 2 ln 2

C2

)
.

(61)

Therefore, (T1T )−1 is proportional to T ln Ec
kBT with the con-

stants C1 and C2 dependent on the choice of momentum cutoff.
In Fig. 7(a), Eq. (61) is plotted with C1 = 4.0 and C2 = 3.8
(dashed line), which is in good agreement with the numerical
result. Therefore, the temperature dependence of (T1T )−1 at
the QCP is correctly described by Eq. (61).

C. Scaling of (T1T )−1 near the QCP

The scaling of the conductivity with the system size (L)
is derived as σ ∼ L2−d in a d-dimensional system [52,53].
This is also obtained from the RG analysis [36]. Since the
transverse conductivity is integrated over q, we obtain

h̄

T1kBT
(δ,�) = L1−d G

(
L

δ−ν
,

�

δνz

)

= δ(d−1)νF

(
L

δ−ν
,

�

δνz

)
, (62)

where G and F are the universal scaling functions, δ =
W/Wc − 1 and � = max[μ(T ), kBT ]/Ec.

At the QCP (δ = 0), the expression for (T1T )−1 should be
independent of δ. Thus, it is scaled as

h̄

T1kBT
(δ = 0,�) ∼ �

d−1
z . (63)

Above the QCP, the nuclear spin-lattice relaxation rate be-
comes finite even at a Weyl point. At � = 0, it is given by

h̄

T1kBT
(δ > 0,� = 0) ∼ δ(d−1)ν . (64)
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Given z = 2 and d = 3 for the SCBA, we obtain
(T1T )−1 ∼ T at the QCP. Therefore, the scaling analysis is
consistent with the present result within the SCBA. In this
special case, the nuclear spin-lattice relaxation rate is pro-
portional to the square of density of states. Generally, there
is no simple relationship between the orbital contribution
of (T1T )−1 and the density of states at the QCP. On the
other hand, the critical exponents are obtained as z = 1.5 and
ν = 1 in the one-loop RG calculation [49]. The numerical
calculations of the critical exponents were also performed,
yielding z ≈ 1.5 and ν ≈ 1 [51,55]. Substituting z = 1.5, we
predict (T1T )−1 ∼ T

4
3 at the QCP. Thus, there is no significant

difference from the SCBA result except for a slight modifica-
tion in the exponent.

V. PARTICLE-HOLE ASYMMETRY

While the particle-hole symmetry is conserved in the
SCBA, higher order perturbations break this symmetry. In this
section, we discuss the effect of particle-hole asymmetry with
the the SCTA, which takes account of characteristic higher
order corrections with respect to impurity potential uab.

A. Critical exponents in the SCTA

The self-consistent equation for the SCTA is given by

R
a (ω) = ni|uaa|

h̄

⎛
⎝1 −

∑
b=L,R

|uab|
h̄

∑
k

GR
b (k, ω)

⎞
⎠

−1

, (65)

where the subscript a denotes the chirality. We define the
impurity concentration and impurity potential as n̄i = a3

cni

and ū = (|uLL| + |uRL|)/a3
cEc, where the effective lattice

constant ac = 2π/kc is introduced. Similarly to the SCBA, the
self-energy has an identity matrix element satisfying

SCTA(ω) = n̄iū

h̄(1 − 4π ū�̃R f (ω))
, (66)

with the expression of f (ω) given in Eq. (9) and �̃R =
h̄ω̃R/Ec. Here, the chemical potential is shifted so ω̃R = ω +
(μ + n̄iūEc)/h̄ − R

I (ω). We should note that the impurity
concentration n̄i needs to be small for justifying the SCTA. For
long-ranged disorder, the impurity concentration is multiplied
by 1

2 . The self-consistent solution is derived as

�̃R =1

2

(
� + δ

(2π ū2 − i)

±
√

4�(2π ū2 − i) + [�(2π ū2 − i) + δ]2

(2π ū2 − i)

)
, (67)

where δ = n̄i/n̄c − 1. Similar to the SCBA, the critical impu-
rity concentration is defined at which the imaginary part of the
self-energy becomes finite. At the QCP (n̄c = Wc/4π ū2), the
solution for � 	 1 is given by

�̃R =
√

2�

−2i + π ū
. (68)

(a)

(b)
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FIG. 9. (a) The density of states and (b) the nuclear spin-lattice
relaxation rate (T1T )−1 at T = 0 are plotted against the Fermi energy
EF at the QCP. For both plots, the impurity potential is fixed at ū ≈
0.6. The other parameters are the same as in Fig. 6.

Above the QCP at � = 0, it is given by

�̃R = 2δ(π ū + 2i)

4 + π ū2
. (69)

Thus, the critical exponents are identical with the SCBA
(z = 2, ν = 1). In the limit of ū → 0, Eq. (67) turns into the
solution for the SCBA.

Using the solution for the SCTA, we study the critical
behavior under the strong impurity potential. The impurity
potential is fixed at ū ≈ 0.6, giving the critical impurity con-
centration n̄c ≈ 0.14. In Fig. 9(a), the density of states against
the Fermi energy is calculated at the QCP. The difference from
the SCBA is that the density of states is not symmetric about
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the Weyl point. Thus, the particle-hole symmetry is broken
under the strong impurity potential, although the square root
singularity is still obtained at the QCP. Above the QCP, the
density of states at the Weyl point is suppressed by ū2 in
the denominator of Eq. (69). We also confirm that the the
nuclear spin-lattice relaxation rate is linearly proportional to
the temperature at the QCP as in the SCBA. This is illustrated
in Fig. 9(b), showing the linear dependence of (T1T )−1 with
respect to the Fermi energy at T = 0 for small EF. Here, we
ignore the vertex correction and the q-dependent self-energy
for simplicity.

B. Enhanced upturn in (T1T )−1

In the previous section, we show that the higher order
contributions in impurity scattering result in the particle-hole
symmetry breaking. This is particularly important at finite
temperatures, as it modifies the temperature dependence of
the chemical potential. We should note that the particle-hole
symmetry is recovered in the unitary limit as we can ignore
unity in the denominator of Eq. (66) in the limit of ū → ∞
[60].

Within the SCBA that preserves the particle-hole sym-
metry, the chemical potential moves toward Weyl points.
Under strong impurity potential, this behavior is significantly
modified to compensate for the imbalance of the density of
states. In Fig. 10(a), the chemical potential is plotted against
temperatures at EF = ±10 meV. As the density of states is
larger for EF < 0 [Fig. 9(a)], the chemical potential tends
to increase with the temperature. This results in an upturn
of μ(T ) for EF > 0 and a reverse of the sign for EF < 0.
The important point is that the shift of μ(T ) at low temper-
atures is strongly enhanced for EF < 0 compared to the clean
limit.

As discussed in Sec. IV A, the nuclear spin-lattice relax-
ation rate (T1T )−1 shows the upturn at kBT ∼ EF/2 due to
the shift of chemical potential toward the Weyl point. Under
the strong impurity potential, the overshooting of μ(T ) above
the Weyl point may happen as a result of the particle-hole
asymmetry. This leads to the enhancement in the upturn
of (T1T )−1. In Fig. 10(b), the low-temperature behavior of
(T1T )−1 is shown at EF = −10 meV and n̄i/n̄c = 0.3. We
find that it drops by half from T = 0 to T ∼ 40 K before the
uprising of the T 2 term, which is much larger than the upturn
of (T1T )−1 in a clean system.

VI. DISCUSSION

In this section, we discuss the recent NQR experiment of
TaP, where (T1T )−1 shows a T 2 behavior above T ∗ = 30 K
and a T −1/2 behavior (or an upturn) below T ∗ [17]. This
experiment is for a pure sample and thus the strength of
disorder should be much weaker than the critical strength
(regime II). While the high temperature T 2 behavior was
explained by the relaxation due to orbital currents in the Weyl
nodes [17,19], there are two scenarios for the origin of the
low-temperature upturn.

The first scenario is the conventional Korringa process of
parabolic bands (E ∝ k2) which are related to neither the Weyl
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0.02

(a)

(b)

0 20 40 60 80

3.×10-5

6.×10-5
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FIG. 10. (a) Chemical potential against temperatures within the
SCTA for EF = ±10 meV. The impurity concentration is set at
n̄i/n̄c = 0.3 (blue), 0.6 (green), 0.9 (red) from the Weyl point. The
dashed lines show the result of clean systems. (b) Plot of (T1T )−1 at
low temperatures for n̄i/n̄c = 0.3 and EF = −10 meV.

nodes nor linear bands (E ∝ k). In Ref. [17], the origin of the
upturn was speculated to be correlation among electrons in the
parabolic bands. Since the impurity effect only results in
the broadening of parabolic bands, the low-temperature up-
turn is expected to be almost unchanged even if a small
amount of impurities is introduced in this scenario.

On the other hand, the low-temperature upturn might orig-
inate from temperature dependence of the chemical poten-
tial μ(T ) associated with the presence of the Weyl node.
However, μ(T ) arising from an ideal Weyl band struc-
ture leads to an upturn which is too small to explain
the experiment. Okvátovity et al. postulated that the en-
tire band structures of TaP alters μ(T ) to enhance the up-
turn and proposed a phenomenological model of chemical
potential to reach a good agreement between theory and
experiment [18,62].

To observe the impurity effect, further research is required
with the controlled doping. From the result in Sec. V B, we
predict that the impurity effect on the low-temperature upturn
could become significant even below the critical impurity
strength.
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TABLE I. The scaling relation of the nuclear spin-lattice re-
laxation rate (T1T )−1. We denote the characteristic energy as E =
max[kBT, μ(T )] and the impurity strength δ = W/Wc − 1.

SCBA and SCTA Scaling ansatz

Regime I E ln 1/E E
2
z

Regime II E 2 ln 1/E E 2

Regime III δ2 δ2ν

VII. CONCLUSION

We have studied the nuclear spin-lattice relaxation rate
due to orbital currents in disordered Weyl fermion systems,
employing the SCBA. In this paper, two types of the disorder
potential were considered, namely, the short-ranged (interval-
ley and intravalley scattering) and long-ranged scatters (only
intravalley scattering). For both cases, it shows the critical
behavior with the critical exponents z = 2 and ν = 1 in the
SCBA.

The orbital contribution of the nuclear spin-lattice relax-
ation rate is determined by the transverse conductivity, whose
wave-vector dependence was investigated under disorder. The
vertex correction was obtained in a gauge-invariant manner
for general wave vector q, using the conserving approximation
for the SCBA. As shown in Fig. 5, the vertex correction has
a negative contribution for the long-ranged scatters, while it
vanishes at q = 0 for the short-ranged scatters.

Our main result is the scaling relation of the nuclear
spin-lattice relaxation near the disorder-induced QCP. As
shown in Fig. 8, we classified three different regimes from
the temperature dependence of (T1T )−1. For each regime,
the scaling of the nuclear spin-lattice relaxation rate is sum-
marized in Table I. Within the SCBA, we obtained the
asymptotic expression at the QCP as (T1T )−1 ∼ T ln(1/T ).
Although the critical exponents from the one-loop RG anal-
ysis predicts the exponent in (T1T )−1 slightly greater than
the SCBA result [49], our result provides a good physi-
cal picture near the disorder-induced QCP in Weyl fermion
systems.

In addition, we discussed the effect of the particle-hole
asymmetry, employing the SCTA. In regime II under the
strong impurity potential, the temperature dependence of
chemical potential is significantly modified from the particle-
hole symmetric systems. As a result, the low temperature
upturn in (T1T )−1 becomes enhanced. Hence, the impurity
effect could also play an important role in weakly disordered
systems.
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APPENDIX A: EXPRESSIONS FOR SELF-ENERGY
CORRECTIONS

The explicit expressions for �
αβ

L (ω ; q), �̃
αβ

L (ω ; q),
�

αβ

T (ω ; q), and �̃
αβ

T (ω ; q) are obtained as follows:

�
αβ

L (ω ; q) =
∫ ∞

0

K2dK

1 + K2

[(
�̃α�̃β − 1

4
Q̃αQ̃β − K2

)

× Iαβ

0 (K ) + 1

2
(Q̃α − Q̃β )Iαβ

1 (K )

+ 2Iαβ

2 (K )

]
, (A1)

�̃
αβ

L (ω ; q) =
∫ ∞

0

K2dK

1 + K2

[
1

2

(
�̃αQ̃β − �̃βQ̃α

)
Iαβ

0 (K )

+(�̃α + �̃β )Iαβ

1 (K )
]
, (A2)

�
αβ

T (ω ; q) =
∫ ∞

0

K2dK

1 + K2

[(
�̃α�̃β + 1

4
Q̃αQ̃β

)
Iαβ

0 (K )

−1

2
(Q̃α − Q̃β )Iαβ

1 (K ) − Iαβ

2 (K )

]
, (A3)

�̃
αβ

T (ω ; q) =
∫ ∞

0

K2dK

1 + K2

[
1

2

(
�̃αQ̃β + �̃βQ̃α

)
Iαβ

0 (K )

+(�̃α − �̃β )Iαβ

1 (K )
]
, (A4)

where the integrals Iαβ
n (K ) for n = 0, 1, 2 are given by

Iαβ
n (K ) = Kn

∫ 1

−1

dx

2
xn

(
�̃2

α− 1

4
Q̃2

α−K2+KQ̃αx

)−1

×
(

�̃2
β − 1

4
Q̃2

β −K2−KQ̃βx

)−1

. (A5)

In particular, �̃RR
L (ω ; q) = 0 because of IRR

1 (K ) = 0. Here we
introduce dimensionless variables �̃α and Q̃α as

�̃α = h̄ω̃α

Ec
= h̄ω + μ − h̄α

I (ω; q/2)

Ec
, (A6)

Q̃α = q̃α

kc
= Zα

L (ω; q/2)
q

kc
, (A7)

where Ec = h̄c∗kc.

APPENDIX B: APPROXIMATE SOLUTION FOR THE
SELF-ENERGY CORRECTION

Here, we derive the q-dependent self-energy to conserve
the gauge invariance. From Eqs. (23) and (27),

R
I (ω; q/2) = W ω̃R f (ω; q/2), (B1)

ZR
L (ω; q/2) − 1 = W

2g(ω; q/2) + Q̃R f (ω; q/2)

2Q
, (B2)

where ω̃R = ω + μ/h̄ − R
I (ω; q/2), Q = q/kc, and Q̃R =

ZR
L (ω; q/2) q

kc
. To solve the above self-consistent equations,

we expand f (ω; q/2) and g(ω; q/2) for small q. This approxi-
mation is justified as we are interested in the integration of the
transverse conductivity over q, which converges for q 	 kc

under weak disorder. As the disorder strength is increased,
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the transverse conductivity becomes constant with respect to
q. Thus, the q dependence in the self-energy does not affect
the integral for q ∼ kc. The dimensionless functions f (ω; q/2)
and g(ω; q/2) for q 	 kc are given as

f (ω; q/2) =
∫ ∞

0

K2dK

K2 + 1

∫ 1

−1

dx

2

1

�̃2
R − K2 − KQ̃Rx − Q̃2

R
4

= − π

2

1 + i�̃R

1 + �̃2
R

+ O
(
Q̃2

R

)
, (B3)

g(ω; q/2) =
∫ ∞

0

K2dK

K2 + 1

∫ 1

−1

dx

2

Kx

�̃2
R − K2 − KQ̃Rx − Q̃2

R
4

=πQ̃R

12

2 + i�̃R
(
3 + �̃2

R

)
(
1 + �̃2

R

)2 + O
(
Q̃3

R

)
. (B4)

The solution of Eqs. (B1) and (B2) are given in Eqs. (44) and
(45). In this approximation, the identity matrix element R

I is
unchanged.
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