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Doping-induced disorder and conductivity anisotropy in the spin density wave state of iron pnictides
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We examine the role of doped impurity atoms on the conductivity anisotropy of the spin-density wave state in
iron pnictides. The conductivity is calculated in a self-consistent spin-density wave state with random impurities
in a two-orbital model. We find that the increase in impurity concentration leads to an increased suppression of
conductivity in both the antiferromagnetic and ferromagnetic directions. However, the conductivity anisotropy is
larger in comparison to the Drude-weight anisotropy in the hole-doped regions. The difference between the two
is explained in terms of the anisotropic scattering by the impurities. We demonstrate the effect of the anisotropic
impurity scattering by calculating the modulation in the density of states introduced by a single impurity. It is also
shown that an increase in the Drude-weight anisotropy with changing carrier concentration, which results mainly
from the reconstructed band characteristics, may be directly linked to a similar anisotropy in the density-of-states
modulation caused by the impurity atom.
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I. INTRODUCTION

Anisotropic electronic properties in iron-based supercon-
ductors have been a recurrent theme since the time they were
discovered. While anisotropy is naturally expected in the
(π, 0) spin-density wave (SDW) state with broken fourfold
symmetry, its presence in the paramagnetic nematic as well
as in the superconducting state has remained one of the long-
standing issues.

The signature of electronic anisotropy in the metallic SDW
state is obtained through various experiments such as transport
measurement [1–4], optical conductivity [5], angle-resolved
photoemission spectroscopy (ARPES) [6,7], and scanning
tunneling microscopy (STM) [8–14].

As revealed in the transport measurements, the direction
with antiferromagnetic (AFM) spin arrangements is more
conducting than the ferromagnetic (FM) direction, a behavior
remarkably in contrast with what is expected according to the
double-exchange mechanism [15]. The ratio of conductivities
in the two directions can be as large as ≈2. The anisotropy
continues to exist in the doped sample exhibiting the SDW
state and also in the nematic phase without any long-range
order [16].

Quasiparticle interference (QPI), probed by the STM mea-
surements, can shed light on the nature of impurity scattering
and hence on the conductivity anisotropy. Experiments show
that the QPI patterns are highly anisotropic and appear nearly
one dimensional in the SDW state, nematic phase, and su-
perconducting state. The modulation in the local density of
states (LDOS) is stronger along the AFM direction of the
SDW state or along the a axis in the nematic phase with
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orthorhombic symmetry. Recent work suggests that the orbital
splitting between the dxz and dyz orbitals may be crucial in
explaining the quasi-one-dimensional nature of QPI patterns.

An insight into the charge dynamics [5] was provided by
the theoretical investigation of optical conductivity within the
mean-field methods [17–19] as well as by a combined local-
density approximation plus dynamical mean-field theory [20].
The in-plane anisotropy was traced to the orbital-weight dis-
tribution along the reconstructed Fermi surfaces, which are
elliptical in shape [21].

Transport properties in the SDW state have been studied
using the memory-function approach [22] and methods based
on semiclassical theory [23]. However, the origin of resistivity
anisotropy as well as of the doping dependence remains
controversial [24,25]. The roles of two important factors are
highly debated, namely, the doping-induced (i) disorder and
(ii) reconstructed band. An impurity may form elongated
magnetic droplets that will enhance the anisotropy [23,26,27]
while the interference between scatterings is also expected to
play an important role [28]. The features associated with the
band structure including the ellipticity of the electron pockets
and the Dirac point in the vicinity of the Fermi level were
emphasized. The roles of other factors such as critical spin
fluctuations have been also investigated [29].

Despite the considerable progress in understanding the
anisotropy in electronic properties, it is not clear how the
Drude-weight anisotropy and the highly anisotropic QPI
patterns are interlinked. Does an anisotropic QPI imply an
anisotropy in the Drude weight or conductivity? The answer
can provide an important insight into the role of more than
one impurity distributed randomly.

In this paper, we address the above questions. In particular,
we examine the interplay between the roles of band structure
and the doped impurity atoms in the conductivity anisotropy.
We consider isotropic impurity scatterers, the presence of
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which in the SDW state is treated self-consistently. Our main
finding is that the doping of impurity atoms suppresses the
conductivity in both the AFM and FM directions. However,
the ratio of the conductivities in the two directions is very
sensitive to the way the electrons are scattered as seen in
the anisotropy of QPI patterns. The conductivity anisotropy
increases in the doped regions where the QPI patterns are
highly anisotropic. It is also larger than the Drude-weight
anisotropy in the doped regions.

II. ROLE OF THE BAND STRUCTURE

We consider the model Hamiltonian based on the two
d orbitals dxz and dyz [30]. The kinetic-energy part of the
Hamiltonian is

H0 = −
∑
〈i,j〉

∑
〈μ,ν〉

∑
σ

tμν

ij d†
iμσ

djνσ + H.c., (1)

where d†
i,μ,σ

(di,μ,σ ) is a creation (destruction) operator for an
electron at site i in the μth orbital with spin σ . The elements
tμν

ij represent the intra- and interorbital hopping parameters
from the μth orbital of site i to the νth orbital of site j. μ

and ν are the two dominant iron 3d orbitals at the Fermi
level namely, dxz and dyz. The energy is set in the unit of the
intraorbital hopping parameter for the dxz orbital.

The on-site Coulomb interaction terms responsible for the
ordering phenomena in this class of materials are given by

Hint = U
∑

i,μ=1,2

niμ↑niμ↓ +
(

U ′ − J

2

) ∑
i

ni1ni2

− 2J
∑

i

Si1 · Si2 + J
∑
i,σ

d†
i1σ

d†
i1σ̄

di2σ̄ di2σ . (2)

The first and second terms represent the intra- and interorbital
Coulomb interactions, respectively. Here, niμ = ∑

σ niμσ with
niμσ = d†

iμσ
diμσ . The third term describes Hund’s coupling

where the operator Sp
iμ = ∑

α,β d†
iμα

σ
p
αβdiμβ with p = x, y, z.

The fourth term corresponds to the pair-hopping energy. We
set U ′ = U − 2J and J = J ′ for the interaction to be rotation
invariant.

For simplicity, we consider the SDW state with tetragonal
symmetry. It is worthwhile to note that the SDW state is
accompanied with an orthorhombic distortion instead, which,
however, is very small: δ = (a − b)/(a + b) ≈ 0.003 [1,31].
Thus, the approach adopted here for the SDW state being con-
sidered in the tetragonal symmetry is not a bad approximation
when compared with the one with a tiny orthorhombic dis-
tortion. The approach is consistent with several earlier works
[32]. We consider the following mean-field Hamiltonian in the
SDW state originating from the Fermi-surface nesting:

HSDW =
∑
kσ

�
†
kσ

(
ε̂k + N̂ sgn(σ̄ )
̂

sgn(σ̄ )
̂ ε̂k+Q + N̂

)
�kσ

=
∑
kσ

�
†
kσ

ĤMF�kσ . (3)

For simplicity, we have considered the magnetization to be
along the z direction. sgn(σ̄ ) is −/+ for the spins pointing
along the positive/negative z direction. The new electron field

operator is defined as �
†
kσ

= (φ†
kσ

, φ
†
k+Qσ

) with the ordering

wave vector Q = (π, 0). φ
†
k↑ = (d†

k1↑, d†
k2↑). The elements of

matrices 
̂ and N̂ are

2
11 = Um11 + Jm22,

2
22 = Um22 + Jm11,

2
12 = Jm12 + (U − 2J )m21 (4)

and

2N11 = Un11 + (2U − 5J )n22,

2N22 = Un22 + (2U − 5J )n11,

2N12 = Jn12 + (4J − U )n21. (5)

The charge densities and magnetizations are given by

nμν =
∑
kσ

〈
d†

kμσ
dkνσ

〉
, mμν =

∑
kσ

〈
d†

kμ̄σ
dkνσ

〉
sgn(σ ). (6)

Here, d†
kμ̄σ

= d†
k+Qμσ

with the bar over orbital indices indi-
cating the momentum shift of Q = (π, 0). The momentum
summation over k is carried out in the reduced Brillouin zone.

We first examine the Drude-weight anisotropy in the SDW
state, which can reveal the role of Fermi-surface reconstruc-
tion and the orbital-weight redistribution in the conductivity
anisotropy. The Drude weight can be obtained as the ω → 0
limit of the optical conductivity, i.e. [33,34],

Dα

2π
= 1

2N

∑
k

T α
ll (k)θ (−εlk ) − 1

N

∑
k,l 	=l ′

| jαll ′ (k)|2
εl ′k − εlk

× θ (−εl ′k )θ (εlk ). (7)

θ is the step function, εlk is the single-particle energy in the
SDW state, and the integer l denotes the band number. We
also note

T α
ll =

∑
μν

T α;μν

ll =
∑
μν

∂2tμν (k)

∂k2
x

c∗
kμl ckνl ,

jαll ′ = −
∑
μν

jα;μν

ll ′ = −
∑
μν

∂tμν (k)

∂kx
c∗

kμl ckνl . (8)

ckμl is the unitary matrix element between the orbital μ and
band l in the ordered state.

Figure 1(a) shows the orbital contributions to the overall
density of states (DOS) at the Fermi level. The contributions
from the dxz and dyz orbitals are nearly the same in the
electron-doped region but differ significantly within a large
window of the hole-doped region. This indicates that the max-
imum in the anisotropy may shift into the hole-doped region.
The asymmetry about zero doping can arise as the sizes of the
hole and electron pockets change differently on doping holes
and electrons. Similar anisotropy for conductivity in the hole-
and electron-doped region was noted in the paramagnetic
phase using spin fluctuations [29]. It is to be noted that the
chemical potential for zero doping in the two-orbital model
corresponds to the half filling n = 2, which is different for
the models involving more than two orbitals. But a closer
look at the reconstructed Fermi surface in the SDW state
(Fig. 2) for different band filling shows that the band filling
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FIG. 1. (a) The orbital-resolved density of states in the self-
consistently obtained SDW state at the Fermi level. The intraor-
bital Coulomb interaction U = 3.5 and Hund’s coupling J = 0.25U .
(b) The Drude weights Dx along the x (antiferromagnetic) direction,
Dy along the y (ferromagnetic) direction, and their ratio Dx/Dy

as a function of doping. (c, d) Drude-weight anisotropy for var-
ious orbital-splitting strengths −δ

∑
i(d

†
ixzdixz − d†

iyzdiyz) explicitly
included in the Hamiltonian for two different intraorbital Coulomb
interactions.

n ≈ 1.9 appears to reproduce the experimental Fermi surface
better for the undoped SDW state. As also observed in the
ARPES measurements, the pockets closer especially to the
high-symmetry point � can be easily noticed.

Figure 1(b) shows the Drude weights Dx and Dy along the
AFM and FM directions, respectively, calculated as a function
of doping. Both Dx and Dy get reduced on moving from
the hole-doped region towards the electron-doped region.
Interestingly, the ratio Dx/Dy exhibits a maximum in the hole-
doped region near n ≈ 2, a behavior remarkably similar to
the more sophisticated three- and five-orbital model [35]. The
ratio decreases on either side of n ≈ 2, thus being inconsistent
with the experiments on the electron-doped side.

From the structure of Eqs. (7) and (8), the individual
contributions due to the intra- and interorbital hopping can
also be analyzed. We have checked that as one moves from
the hole- to the electron-doped region the contribution due to
the intraorbital hopping of the dxz orbital, which is larger along
the ferromagnetic direction, decreases so that on reaching the
electron-doped region its contribution becomes larger along
the antiferromagnetic direction. This can be understood from
the orbital content along the Fermi surface and Fermi velocity.
For electron doping and the dxz orbital dominated regions of
Fermi surfaces, Fermi velocity along kx is larger than along ky

over a significant portion [Figs. 2(a)–2(f)]. Exactly the oppo-
site behavior is exhibited by the dyz orbital as expected. On the
other hand, the interorbital hopping contribution continues to
decrease from the hole- to the electron-doped region.

We also examined the consequence of an explicit or-
bital splitting term −δ

∑
i(d

†
ixzdixz − d†

iyzdiyz) introduced in the
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FIG. 2. The Fermi surfaces in the (π, 0) SDW state for (a) hole
doping xh = 0.1, (b) xh = 0.0, and electron doping (c) xe = 0.1 with
the predominant orbital densities, where U = 3.5 and J = 0.25U .
The reference for doping is the band filling n = 2.0 which is assumed
to correspond to zero doping. The Fermi velocities along the Fermi
surfaces for (a)–(c) are shown in (d)–(f), respectively. The length of
the arrows in (d)–(f) is proportional to the magnitude of the Fermi
velocity.

original Hamiltonian [Eqs. (1) and (2)]. Note that the order
parameters are calculated self-consistently for the SDW state
in the presence of the orbital-splitting term. Drude weight for
different δ is shown in Figs. 1(c) and 1(d) for two interactions
U = 3.5 and 3.1, respectively. A larger U corresponds to
a larger value of magnetic moment and a significant Fermi-
surface reconstruction. Therefore the effect of δ in the con-
ductivity anisotropy is suppressed. On the other hand, for a
smaller U and therefore for a smaller magnetic moment, δ

introduces a significant anisotropy as can be noticed from
Fig. 1(d).

III. SINGLE IMPURITY SCATTERING
AND DENSITY-OF-STATES MODULATION

In the following, we examine the role of a single impurity
in introducing change in the electronic state. This can prove to
be very useful in understanding the nature of scatterings. Es-
pecially, the possible link between the conductivity anisotropy
and the anisotropic impurity scattering may be unraveled. To
achieve this objective, the impurity effect is treated within the
t-matrix approximation. The change in the DOS because of a
nonmagnetic impurity atom can be obtained as in Ref. [32].

The change in the DOS is given by

δρ(q, ω) =
∑

α

δρα (q, ω) = i

2π

∑
kα

gα (k, q, ω) (9)
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with

g0(k, q, ω) = Tr δĜ(k, k′, ω) − Tr δĜ∗(k′, k, ω),

g1(k, q, ω) =
∑
μ�2

[
δGμ,μ+2(k, k′, ω) − δG∗

μ,μ+2(k′, k, ω)
]
,

g2(k, q, ω) =
∑
μ�2

[
δGμ+2,μ(k, k′, ω) − δG∗

μ+2,μ(k′, k, ω)
]

(10)

and corresponding LDOS modulation can be obtained as

δρ(ri, ω) = 1

N

∑
q

[
δρ0(q, ω)eiq·ri + δρ1(q, ω)ei(q−Q)·ri

+ δρ2(q, ω)ei(q+Q)·ri

]
. (11)

Here, q = k − k′. The superscript * denotes the complex
conjugate. The change in the Green’s-function matrix due to
a single nonmagnetic impurity is

δĜ(k, k′, ω) = Ĝ0(k, ω)T̂ (ω)Ĝ0(k′, ω), (12)

where the mean-field Green’s function is given by

Ĝ0(k, ω) = [(ω + iη)Î − ĤMF(k)]−1. (13)

The mean-field Hamiltonian ĤMF(k) is defined in the orbital
basis [Eq. (3)]. The t matrix is obtained as

T̂ (ω) = [1̂ − V̂ Ĝ(ω)]−1V̂ . (14)

Î is a 4×4 identity matrix.
The momentum averaged Green’s function is defined as

Ĝ(ω) = 1

N

∑
k

Ĝ0(k, ω) (15)

while the impurity matrix

V̂ = Vimp

(
1̂ 1̂
1̂ 1̂

)
. (16)

1̂ is the 2×2 identity matrix.
Figures 3(a)–3(c) show the contours of constant energy

(CCEs) for the quasiparticle excitation energy ω = 0 for
various band fillings n = 1.95, 2.00, 2.05, where U = 3.2 and
J = 0.25U . The nature of the QPI patterns can be understood
with the help of vectors which connect different portions of
the CCEs. The spectral density varies along the CCEs, thus
the scattering vectors connecting the regions with a large
spectral density will dominate the scattering process. Since
we are considering only the intraorbital scattering processes,
the scattering vectors connecting the portions dominated by
the same orbital will lead to the dominant patterns in the QPI.

QPIs are shown in Figs. 3(d)–3(f). The QPI pattern is
elliptical in shape for n = 1.9, which results from the large
electron pocket around (π, 0). This is in a good qualitative
agreement with the experiments. As the electron concentra-
tion increases, the electron pocket around (π, 0) splits in two
parts. These parts move away from each other [Fig. 3(b)]. The
split pockets together with the pockets around � lead to the

(g) n = 1.95

-0.005

0.005

(h) n = 2.0 (i) n = 2.05

(d) n = 1.95

-0.1 0.4

(e) n = 2.0

-0.1 0.3

(f) n = 2.05

-0.05 0.3

(a) n = 1.95 (b) n = 2.0 (c) n = 2.05

FIG. 3. (a), (b), and (c) show the constant energy surfaces for
band fillings n = 1.95, 2.00, and 2.05, respectively for ω = 0. (d)–(f)
and (g)–(i) show the corresponding density-of-states modulation in
the momentum and real space, respectively. The units of momentum
space plots are in π/a with range [−1, 1]. The real-space plots
are in the units of a with range [−40, 40]. Local density-of-states
modulation is shown for 80 × 80 lattice size, with the impurity atom
located at the center. Note that the actual calculation has been done
for 300 × 300 lattice size.

QPI pattern in Fig. 3(e). It can be noted that the pattern is
dominated by the growing pockets around � in the electron-
doped region.

Figures 3(g)–3(i) show the density-of-states modulation in
the vicinity of impurity atoms. The calculation is carried out
for 300 × 300, but the results are shown for 80 × 80 with the
impurity atom at the center for the sake of better visibility.
When n = 1.9, we find that the modulation is stronger along
x (the AFM direction) with wavelength 8aFe−Fe in compar-
ison to y. aFe−Fe is the distance between nearest-neighbor
iron atoms. Interestingly, though the modulation wavelength
along x agrees well with the STM measurements for the
electron-doped Ca(Fe1xCox )2As2, the strongest modulation
occurs along angle π/4 with positive x. On the other hand,
for n = 2.0, the strongest modulation occurs along x. Finally,
there is no clear modulation along either x or y in the electron-
doped region n ≈ 2.05.

Although the single impurity treatment does provide a use-
ful insight into understanding the scattering mechanism and
especially the role of the band structure, the doped compound
contains more than one impurity. Therefore, the interference
between the scattering events from multiple impurities may
present a different picture altogether. In the next section, we
numerically diagonalize the finite system with multiple impu-
rities to capture any interference effect between the impurities
beyond the one impurity problem.
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IV. MORE THAN ONE IMPURITY ATOM
AND CONDUCTIVITY ANISOTROPY

In the following, we examine the conductivity anisotropy
of the SDW state in the presence of multiple impurities. The
effect of the doped impurity atom potential is incorporated as

Himp = Vimp

∑
i,μ,σ

δii′d
†
iμσ

diμσ (17)

in the Hamiltonian, where i′ corresponds to the lattice sites
which are chemically substituted. Vimp is the impurity poten-
tial or scattering strength, which is taken to be of the order
of the largest interaction U in the system. The number of
impurity atoms is chosen to correspond to the band filling
with n = 2 as a reference for zero doping. For instance,
n = 2.05 corresponds to the 5% impurity atoms. Since the
doped sites occur randomly while preparing the samples in
the experiments, in accordance with it, the doping sites are
selected at random in the calculation as well.

The mean-field decoupling of the interaction part yields the
real-space Hamiltonian in the presence of randomly located
impurity atoms:

Hμν

ijσ = tμν

ijσ + δijδμν

[
δii′Vimp + 5J − U

2
niμ

+ 1

2
sgn(σ̄ )

(
Umiμ +

∑
μ 	=ν ′

Jmiν ′

)]
. (18)

Here, the charge density is niμ = ∑
lσ |ul

iμσ |2 f (εlσ ) with ul
iμσ

being the element of the unitary matrix diagonalizing the
Hamiltonian matrix for Nx × Ny lattice sites. Magnetization
miμ = niμ↑ − niμ↓ for each of the orbitals is determined self-
consistently by diagonalizing the Hamiltonian. The interor-
bital terms involving niμν and miμν are neglected for simplicity
as their contribution is negligibly small. sgn(σ ) is +/− for the
spins pointing along the positive/negative z direction.

Conductivity is calculated using the Kubo-Greenwood for-
mula

K = Ko

N

∑
αβ

fα − fβ
εβ − εα

|〈α| ĵx|β〉|2δ[ω − (εβ − εα )], (19)

where Ko = πe2/h, f is the Fermi function, and εα is the
energy corresponding to eigenstate |α〉. The charge-current
operators along x and y are

ĵx =
∑

i,r=x,x+y,x−y

∑
μ,ν,σ

−itμν

i,i+r(d†
iμσ

di+rνσ − H.c.),

ĵy =
∑

i,r=y,y+x,y−x

∑
μ,ν,σ

−itμν

i,i+r(d†
iμσ

di+rνσ − H.c.),

(20)

respectively. tμν

ir is the hopping from the orbital μ at site i
to the orbital ν at site i + r. i + r includes the nearest and
next-nearest neighbors (with positive x). x and y are the unit
lattice vectors connecting the nearest neighbors along x and y
directions, respectively.

For the system size 16 × 16, the associated mean energy-
level spacing s is roughly 0.01. Therefore, it is difficult to
obtain a meaningful result for the conductivity when it is
calculated for such a small-sized but moderately correlated

Vimp = 0.0(a) n = 2.05, Vimp = 2.0(b) n = 2.05,

-0.6

-0.3

 0

 0.3

 0.6

 0

 0.2

 0.4

 1.95  2  2.05
n

 (c) 
L = 16

 S(π,0)

Vimp = 0
  1
  2
  4

 0

 0.2

 0.4

 1.95  2  2.05
n

 (d) 
 L = 24

FIG. 4. Magnetic moments in the self-consistent SDW state with
the (a) absence and (b) presence of 5% random impurities (Vimp = 0
corresponds to no impurity scattering or to simply the absence of
impurities). The structure factor S(Q) is shown for the lattice sizes
(c) 16 × 16 and (d) 24 × 24.

system with significant presence of DOS at the Fermi level
as revealed in the ARPES measurements. To circumvent
this problem, we consider the superlattice or replica method,
where a self-consistently obtained state on a lattice of size
16 × 16 is replicated eight times in both the x and y directions.
This can be achieved by using the Bloch theorem, which
yields the twisted or complex boundary conditions. Then, 8 ×
8 = 64 matrices of the size 512 × 512 need to be diagonalized
to obtain eigenenergies for each self-consistent state. This step
leads to a significant increase in the number of energy levels
in the vicinity of the Fermi level as the mean level spacing s
is reduced to ≈ 0.000 15.

The procedure for obtaining the conductivity involves
the following processes. The delta-function broadening δ

in the conductivity calculation for the 128 × 128 system
is chosen to be W /(1282) ≈ 0.0008, where the bandwidth
W = 12. Instead of calculating conductivity at ω = 0, we
choose a very small frequency ω = 0.000 01 ≈ 0.1s. Then,
conductivities are calculated for ten frequencies in the range
[0.1s, 0.1s + δ] with increments of 0.1δ, and thereafter an
average of these conductivities is obtained, which is taken as
the dc conductivity. The conductivity thus obtained is further
averaged over ten different randomly distributed impurity
configurations.

Figures 4(a) and 4(b) show the magnetic order both in
the presence and absence of impurities, respectively. The
collinear magnetic order is modulated significantly in the
vicinity of impurity atoms. But this has only a weak effect on
the structure factor calculated as S(Q) = ∑

ij mimjeiQ·(Ri−Rj ).
We have also investigated the lattice size dependence of the
structure factor; it shows a weak dependence especially near
the size 18 × 18 considered in this paper.
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FIG. 5. The conductivity along the ferromagnetic (a) and anti-
ferromagnetic (b) directions as a function of doping, where Ko =
πe2/h. (c) The ratio of conductivities along the antiferromagnetic
and ferromagnetic directions.

Figure 5 shows the results obtained for the conductivity
using the above procedure. The conductivities in both the FM
[Fig. 5(a)] and the AFM [Fig. 5(b)] directions are quickly sup-
pressed as the number of impurity atoms increases on either
side of zero doping. This is in contrast with the monotonic
Drude-weight behavior along the two directions in the vicinity
of zero doping. For instance, Dx continues to decrease from
the hole- to the electron-doped region. The suppression shows
only a slight increase with the impurity scattering strength in
the small window of Vimp = 1–4 eV.

Figure 5(c) shows the ratio of conductivities Kx/Ky along
the AFM and FM directions. It can be noticed that Kx/Ky ≈
Dx/Dy for zero doping as expected. Although the shape of
Kx/Ky is almost the same as that of Dx/Dy, Kx/Ky > Dx/Dy in
the hole-doped region. Thus, the scattering due to the impurity
atoms results in an enhancement of conductivity anisotropy of
the SDW state. Moreover, we also find that the ratio increases
on electron doping for larger Vimp.

V. DISCUSSION

The Drude-weight anisotropy gives an important insight
into the anisotropic electronic band structure including the
orbital contents as well as the geometry of the Fermi surface.
The details of QPI structure are also highly dependent on
the reconstructed bands in the SDW state. Therefore, a direct
link between the anisotropic scattering due to a single impu-
rity with isotropic scattering strength and the Drude-weight
anisotropy is naturally expected. As can be noticed that Dx/Dy

is peaked near n ≈ 1.98, where the QPI also shows a strongest
modulation along the AFM direction. In contrast, Dx/Dy ≈
1.0 for n ≈ 2.05, which is consistent with the modulation in
the QPI being strong neither along the AFM nor along the FM
direction [21].

Several aspects of the electronic anisotropy explored in
the two-orbital model can be noticed also in the five-orbital
models [36]. For instance, the behavior of the Drude-weight
anisotropy in the vicinity of n = 2 for zero doping in the
two-orbital model is similar to that in the five-orbital model
for n = 6 (zero doping) [35]. First, the peak in the anisotropy
occurs in the vicinity of zero doping. Secondly, the anisotropy
decreases on both electron and hole doping. The only dif-
ference is that the degree of anisotropy is slightly larger
in the two-orbital model. Therefore, the QPI modulation
along the AFM direction is expected to be stronger in

comparison with the five-orbital model, which is indeed the
case [37].

The presence of orbital splitting between dxz and dyz

orbitals for various pnictides and chalcogenides has been
observed in the high-temperature nematic phase as well as
in the low-temperature superconducting state. Therefore, the
splitting should be also present in the the SDW state. But the
origin of the splitting is different from the one introduced
because of the breaking of fourfold symmetry by the SDW
transition. It is worthwhile to note that the one-dimensional
characteristic of the QPI patterns has been attributed to the
orbital splitting and it will further enhance the Drude-weight
anisotropy.

We find that the nature of conductivity anisotropy in the
presence of multiple impurities is in qualitative agreement
with the behavior of Drude weight and QPI. The higher
Drude-weight anisotropy corresponds to a highly anisotropic
QPI pattern, and both, in turn, indicate a highly anisotropic
conductivity as demonstrated through the current paper. Al-
though our paper is based on the two-orbital model, a similar
behavior of the QPI and Drude-weight anisotropy is obtained
within a more realistic five-orbital model. The calculation of
conductivity anisotropy based on a self-consistent treatment
of more than one impurity is a daunting task within a five-
orbital model. We believe the results obtained here within
the two-orbital model will be qualitatively similar to those
expected in a more sophisticated model. Therefore, our paper
also brings out the limitation of the tight-binding models
in capturing the behavior of the conductivity anisotropy for
electron doping.

VI. CONCLUSIONS

In conclusion, we have examined the conductivity in a self-
consistently obtained spin-density wave state of iron pnictides
when multiple random impurities are present. The conductiv-
ity anisotropy shows a behavior similar to the Drude-weight
anisotropy. However, in order to explain the experimentally
observed conductivity anisotropy quantitatively, it is crucial
to take the effect of the anisotropic scattering by isotropic
impurity into account in a fully self-consistent manner. This
was demonstrated through the quasiparticle interference in
this paper. We find that the increase in the anisotropy on
electron doping cannot be captured even though the random
impurities are treated self-consistently. We argued that a simi-
lar result is also expected in the five-orbital models. Thus, our
paper points out the limitation of tight-binding models in the
electron-doped SDW state.
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