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Variation of shear moduli across superconducting phase transitions
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We study how shear moduli of a correlated metal change across superconducting phase transitions. Using
a microscopic theory we explain why for most classes of superconductors this change is small. The Fe-based
and the A15 systems are notable exceptions where the change is boosted by five orders of magnitude. We show
that this boost is a consequence of enhanced nematic correlation. The theory explains the unusual temperature
dependence of the orthorhombic shear and the back-bending of the nematic transition line in the superconducting
phase of the Fe-based systems.
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I. INTRODUCTION

An important topic in high-temperature superconductivity
is to understand the interplay between superconducting and
nematic orders. The issue arises naturally for the Fe-based
systems for which the two orders are ubiquitously present
[1–12]. The relevance of nematicity to understand the pseudo-
gap state of the cuprates is currently under active investigation
as well [13–21].

One reason for this interplay can be fluctuations of the two
orders, and the effect of nematic fluctuations on superconduc-
tivity has been studied theoretically [22–28]. Experimentally,
two different trends have been reported. In NaFe1−xCoxAs an
increase in T = 0 penetration depth near a nematic quantum
critical point (QCP) has been inferred [29]. But for FeSe1−xSx

the superconducting transition Tc is unaffected by the nematic
QCP [30–32]. A second cause of the above interplay can be a
third degree of freedom such as antiferromagnetic fluctuations
which can enhance nematic correlation, but which are them-
selves suppressed in a singlet superconductor [33]. What is
less examined is the effect of the superconducting order itself
on the nematic properties of electrons in solids. The goal of
the current paper is to study the last from a microscopic point
of view.

For such a study a shear strain of a suitable symmetry is
an appropriate nematic order parameter, even if the nematic
transition is driven by electronic spin and orbital fluctuations
[34,35]. This is because, due to electron-strain coupling, the
nematic transition at temperature Ts itself manifests as a
structural instability. Consequently, tracking the change in the
shear elastic constant cs(T ) across Tc is a practical method to
study the interplay. For simplicity we restrict our study to the
case where Tc > Ts.

More concretely, for T ∼ Tc, the free energy per unit
volume involving the shear strain us and the superconducting
order parameter � can be written as

F = (cs/2)u2
s + (a/2)|�|2 + (b/4)|�|4 + (λ/2)u2

s |�|2. (1)

Here � has dimension of energy, while (a, λ) have that of
density of states (DOS), a = a0(T − Tc), and b > 0. The
fourth term, which captures the interplay, describes how the
shear elastic constant is modified across Tc. In the above
we assumed that � belongs to a one-dimensional irreducible
representation of the unit cell point group, and that there is no
second nearly critical symmetry channel for superconductiv-
ity [4,5,36].

From Eq. (1) it follows that cs(T ) itself is continuous
at Tc, but its temperature derivative jumps at Tc with the
jump given by (dcs/dT )T +

c
− (dcs/dT )T −

c
= λa0/b. In other

words, cs(T ) has a kink at Tc which encodes information about
the interplay parameter λ. The magnitude of this kink can be
quantified by δcs/|cm

s |, where δcs ≡ λ�2
0 ∼ cs

s − cm
s . Here cs

s
is the zero-temperature elastic constant in the superconducting
phase, cm

s is inferred from the T = 0 extrapolation of cs(T ) in
the metal phase, and �0 ≡ �(T = 0).

A literature search reveals that in most known classes
of superconductors the ratio δcs/|cm

s | is “small” and is
of order 10−6. Examples include conventional Bardeen-
Cooper-Schrieffer (BCS) systems [37,38], cuprates such as
La2−xSrxCuO4 at various dopings (see Figs. 7 and 8 in
Ref. [39]), and heavy fermion systems UPt3 and URu2Si2

[40,41]. From an Ehrenfest-type thermodynamic argument it
is known that δcs/|cm

s | is related to the ratio between the
superconducting condensation energy and the Fermi energy,
which is typically small [42,43]. This provides a simple
way to understand this small ratio without a microscopic
analysis.

However, there are two classes of superconductors, namely,
the Fe-based [33,44–47] and the A15 systems [48–50], for
which this ratio is “large” with δcs/|cm

s | ∼ 10−1. Clearly, this
increase of δcs/|cm

s | by five orders of magnitude compared
to the standard behavior cannot be understood purely from
thermodynamics, and a microscopic approach is needed. With
this motivation, here we develop such a microscopic theory
of the coupling λ that encodes the interplay between the two
orders.
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Our main results are the following. First, we show that in
systems with negligible nematic correlation λ/NF is small,
where NF is DOS at Fermi level. This is due to a cancellation
of the low-energy electronic contribution that is not imposed
by symmetry. We show that this cancellation is related to the
general property that the quadrupolar charge susceptibility of
an electronic system remains approximately unchanged be-
tween its metallic and superconducting phases. This explains
the small ratio of δcs/|cm

s | for most superconductors. Second,
we show that for systems with large nematic correlation length
ξ � l , where l is the interatomic distance, the parameter λ

is boosted by (ξ/l )4. This accounts for the five orders of
magnitude increase in δcs/|cm

s | seen in the A15 and the Fe-
based systems. Together, these two results provide a broad
and unifying principle to understand δcs/|cm

s | across various
families of superconductors. Third, we show that the sign
of λ, that controls cooperation or competition between the
two orders, is nonuniversal and that it depends on the band
structure.

II. MICROSCOPIC THEORY

Our main message can be illustrated by considering a one-
band metal in a tetragonal lattice. The relevant elastic constant
can be written as

cs(T ) ≡ c0 − α2χn(T ). (2)

Here c0 is the modulus of the bare elastic medium, which
we assume to be temperature independent, and α is the
electron-strain interaction energy, such that in the presence of
a finite strain the electron dispersion changes as εk → ε̃k =
εk + αushk. To be concrete we take us to be the orthorhombic
strain that transform as (x2 − y2), in which case hk ∼ cos kx −
cos ky. The precise nature of the shear mode and the associated
form factor is unimportant. Likewise, the spatial symmetry of
� (i.e., s, p, or d wave) plays no role, and we take it as s wave
for simplicity. The quantity χn ≡ limq→0 χn(q, ω = 0), where
χn(q, 0) is the static nematic susceptibility of the electrons.
Thus, the role of the lattice variables is simply to probe the
electronic properties, in particular how χn changes across Tc.

At this point it is convenient to distinguish the two situa-
tions discussed in the following subsections.

A. Away from nematic instability

When the system is far away from nematic/orthorhombic
instability the nematic correlation length is negligible, and
therefore χ s/m

n (q, 0) ≈ 
s/m
n (q, 0), where 
s/m

n (q, 0) is the
bare nematic susceptibility. We added superscripts (s, m) to
denote superconducting and metallic phases, respectively. In
the superconducting phase the bare nematic susceptibility is


s
n(q, 0) = − 2

βV

∑
ωn,k

f 2
k,q[Gk+q(iωn)Gk(iωn)

− Fk+q(iωn)Fk(iωn)],

where β is inverse temperature, V is volume, fk,q ≡
(hk + hk+q)/2 is the nematic form factor, Gk(iωn) =
−(iωn + εk )/(ω2

n + E2
k ), Fk(iωn) = �/(ω2

n + E2
k ), and Ek =

(a)

k

−k

k

k
hk hk

(b)

k

−k

−k

k
hk

hk

FIG. 1. Diagrammatic representation of the coupling λ that con-
trols the interplay between superconducting and nematic orders;
see Eq. (1). λ is a four-point function with two particle-hole (open
circles) vertices with nematic form factor hk and two particle-particle
(closed circles) vertices; see Eq. (3). Solid lines are electron Green’s
functions. k = (k, ω) denote momentum and frequency.

√
ε2

k + �2. An overall factor two is due to spins. The equiva-
lent expression for 
m

n (q, 0) is obtained by setting � = 0.
Equations. (1) and (2) give λ = −(α2/2)[∂2χ s

n/(∂|�|2)]|�|=0.
Thus, λ is a four-point function that can be obtained from

m

n (0, 0) by inserting two particle-particle vertices (see
Fig. 1). This leads to the microscopic expression

λ = λ0 ≡ −2α2

βV

∑
ωn,k

h2
k

[
2G0

k(iωn)3G0
k(−iωn)

+ G0
k(iωn)2G0

k(−iωn)2
]
, (3)

with G0
k(iωn)−1 ≡ iωn − εk. The above frequency sum is

simple to perform. We define the B1g density of states as
NB1g (ε) ≡ (1/V )

∑
k h2

k δ(ε − εk ), and we get

λ0 = −α2

2

∫ ∞

−∞
dεNB1g (ε)

d2

dε2
[tanh(βε/2)/ε].

We expand NB1g around the Fermi energy as NB1g (ε) ≈
NB1g (0) + εN ′

B1g
(0) + (ε2/2)N ′′

B1g
(0) + · · · , where primes

imply derivatives with respect to energy. Remarkably, the
term proportional to NB1g (0), which is the contribution
from the low-energy excitations, vanishes. Since the term
proportional to N ′

B1g
(0) is trivially zero, the first nonzero

contribution is proportional to N ′′
B1g

(0). We get

λ0 = −α2N ′′
B1g

(0){log[/(2T )] + C1}, (4)

where C1 ≡ γ − 3/2 − log(π/4), γ is the Euler constant, and
 is a high-temperature cutoff. The logarithmic temperature
dependence above has the same origin as the familiar log(T )
dependence of the particle-particle susceptibility in BCS the-
ory.
The cancellation of the low-energy electronic contribution is
important, and consequently it is useful to understand better
its physical origin. Clearly, the cancellation is not dictated by
any symmetry. Instead, it is a consequence of the property
that the bare quadrupolar charge susceptibility of electrons
remains nearly unchanged across a metal to superconductor
transition. This can be demonstrated by the following calcula-
tion.
The frequency sum in the expression for 
s

n(0, 0) gives


s
n(0, 0) = 1

V

∑
k

h2
k

∂

∂εk

[
εk

Ek
tanh

Ek

2T

]
.
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If we neglect the energy dependence of the B1g density of
states NB1g (ε), which is appropriate for the low-energy elec-
tronic contribution, after the energy integral we get


s
n(0, 0)low = 
m

n (0, 0)low = 2NB1g (0). (5)

In the above the subscript “low” implies the low-energy
contribution. In other words, from the perspective of the low-
energy electrons 
s

n(0, 0) is independent of �. This property
is reminiscent of that of the uniform charge susceptibility
∂n/∂μ, where n is the electron density and μ the chemical
potential. It is known that the Thomas-Fermi screening length,
which is controlled by the uniform charge susceptibility,
remains practically unchanged when a metal turns into a
superconductor [51]. The above discussion implies that if

s

n(0, 0) is expanded around 
m
n (0, 0) in powers of |�|2,

order by order the prefactors would be zero if we neglect the
energy dependence of NB1g (ε). The coupling λ0 in Eq. (3) is
related to the prefactor at order |�|2 in this expansion.
The above low-energy cancellation has the following conse-
quences. First and most importantly, we conclude that for su-
perconductors with negligible nematic correlation δcs/|cm

s | ∼
(Tc/EF )2, where EF is the Fermi energy. This follows from the
estimate N ′′

B1g
(0) ∼ NF /E2

F , and by estimating the electron-
phonon interaction energy α as the geometric mean of the
typical electronic and elastic energy scales, i.e., (α2NF /cs) ∼
1 [52]. For renormalized Fermi liquids such as the heavy
fermions, in Eq. (3) the bare G0

k(iωn) has to be replaced
by the quasiparticle propagator G̃k(iωn)−1 ≡ (iωn/Z − εk ),
where Z < 1 is the quasiparticle weight. This gives λ0 ∼
Z4α2ÑF /Ẽ2

F , where the tilde implies renormalized quanti-
ties. Since ẼF ∼ ZEF , and ÑF ∼ NF /Z , we get δcs/|cm

s | ∼
Z (Tc/EF )2. In other words, compared to conventional super-
conductors, δcs/|cm

s | for heavy fermions is further reduced
by a factor of Z . Thus, the above estimation, backed by a
microscopic calculation, explains the order of magnitude of
δcs/|cm

s | reported for most known superconductors, the Fe-
based and the A15 systems being exceptions. Second, the
sign of λ0, which governs whether the two orders cooperate
or compete, is nonuniversal, and it depends on the sign of
N ′′

B1g
(0). Third, due to the absence of the low-energy contri-

bution the coupling λ ∼ λ0 is nearly temperature independent.
This is consistent with the weak T dependence of χn of several
Fe-based systems at doping away from the nematic instability
[53–55].

B. Near a nematic instability

The above considerations need modification if the system
is in the vicinity of a nematic instability and the nematic cor-
relation length ξ � l , where l is the interatomic distance. For
the sake of simplicity we assume that the nematic instability
is a Pomeranchuk transition, i.e., spontaneous deformation
of the Fermi surface. Accordingly, we postulate the presence
of an interaction HI = −(g/2)

∑
q On(−q)On(q), with g > 0

having a dimension of inverse DOS, and where On(q) ≡
1√
V

∑
k,σ fk,qc†k+q,σ

ck,σ , is the quadrupolar charge operator.
Such a phenomenological interaction has been widely used
to study nematic instability in metals [8,22,25,27,35,56]. In
this case the increase of the nematic correlation length ξ (T )
with lowering temperature can be described using random

phase approximation, and the nematic susceptibility can be
written as χ i

n(q, 0) = 
i
n(q, 0)/[1 − g
i

n(q, 0)], where i =
(s, m). As in the case away from the nematic instability, we
have λ ∝ [∂2χ s

n/(∂|�|2)]|�|=0, and taking into account that
∂
s

n(0, 0)/∂|�| = 0 due to gauge invariance, we conclude

λ = λrenorm ≡ λ0(ξ/l )4, (6)

where (ξ/l )2 = 1/[1 − g
m
n (0, 0)]. From the above equation

we deduce the following. (1) Close to a nematic instability
g
m

n ∼ 1, or equivalently ξ � l . Elastoresistivity measure-
ments in Fe-based systems have shown an increase of χn

by a factor 100 [2]. Since, χn ∼ (ξ/l )2, we get ξ/l ∼ 10.
Therefore λ and eventually δcs/|cm

s | can be boosted by at least
four orders of magnitude, even though the bare coupling λ0

is small. Note that the identification that electronic nematic
correlation is significant in the A15 systems is an important
conclusion of our study. The behavior of cs(T ) below Tc

in the A15 systems was understood in Ref. [57] using a
model [58] with a particular dispersion that disagrees with
later band structure results [59]. No such special dispersion
is assumed in our theory. (2) In the metal phase the nematic
susceptibility χm

n (T ) ∝ (ξ (T )/l )2 ∼ NF /(T − T0). Here T0

is the nematic transition temperature of the electron-only sub-
system, with T0 = Ts − α2NF /c0 � Ts. This implies that the
renormalized λ has power-law temperature dependence with
λrenorm ∝ (ξ (T )/l )4 ∝ 1/(T − T0)2. This is to be contrasted
with case (a) where the bare coupling λ0 has weak logarithmic
T dependence.

The enhancement of λ implied by Eq. (6) has the following
two consequences.

1. cs(T ) across superconducting Tc

Since χm
n (T ) ∝ 1/(T − T0) while λrenorm ∝ 1/(T − T0)2

has a stronger T dependence, it is clear that, for λ0 above a
positive threshold, the softening of cs(T ) in the metal phase
will turn into a hardening in the superconducting phase.
This can be illustrated from the following phenomenological
modeling. We write cs(T )/c0 = 1 − a0P(T )/[1 − b0P(T )],
where a0 ≡ α2NF /c0 and b0 ≡ gNF are constants, and P(T )
is the dimensionless bare nematic polarization. In the metallic
phase we postulate P(T � Tc) = /(T + T1), with T1 � Tc

such that P(T ) is weakly T -dependent around Tc. As noted
above, in the superconducting phase the bare polarization has
an additional term proportional to λ0�(T )2. We assume the
mean-field scaling �(T )2 = �2

0(1 − T/Tc), and we write the
bare interplay coupling λ0 in terms of a dimensionless param-
eter t2 ≡ λ0�

2
0/(α2NF ). This implies P(T � Tc) = /(T +

T1) − t2(1 − T/Tc). It follows that, for sufficiently large and
positive t2 > Tc/(Tc + T1)2, the elastic constant cs(T ) starts
hardening immediately below Tc, as seen in electron and holed
doped BaFe2As2 [33,44,46,47]. On the other hand, for t2 < 0
(or equivalently λ0 < 0) the elastic softening enhances in the
superconducting phase. It is likely that this latter trend is
relevant for FeSe1−xSx at large doping where Tc > Ts [60].
These two trends are illustrated in Fig. 2, for which we use
a0 = 0.22, b0 = 49.8, T1/ = 50, Tc/ = 0.2, while t2 =
1.3 × 10−4 and t2 = −0.2 × 10−4 for the red (dark) and green
(light) lines, respectively. For intermediate values of t2 the T
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0.6 1.0 1.4 1.8
T/TC

0.4

0.5

0.6

cs(T)/c0

FIG. 2. Kink in the T dependence of the shear elastic constant
cs(T ) at a superconducting transition Tc. The system is close to a
nematic instability, and the nematic correlation length increases with
lowering T . For sufficiently large λ0 > 0 the elastic constant hardens
immediately upon entering the superconducting phase (red/dark
line), as seen in the Fe-based systems. For λ0 < 0 the elastic constant
softens more rapidly in the superconducting phase (green/light line).
The dashed line is the extrapolation of the metallic behavior.

dependence of cs(T ) interpolates between these two limiting
behaviors.

2. Back-bending of Ts(x) in the superconducting phase

As noted above, for λ0 greater than a positive threshold
the shear modulus cs(T ) hardens for T � Tc (red/dark line
in Fig. 2). An immediate consequence of this behavior is
the back-bending of the nematic/orthorhombic transition line
Ts(x) in the superconducting phase, as shown in Fig. 3. Here
x is a hypothetical tuning parameter that, in practice, can be
related to doping or pressure. To illustrate the back-bending
we consider the same model of P(T ) as above, and we intro-
duce an x dependence to the temperature scales T1(x)/ =
49.02 + 1.3x and Tc(x)/ = 0.22 − 2.44(x − 0.6)2, and to
the parameter t2(x) = 3 × 10−3[Tc(x)/]2. Thus, in this
model Tc(x) has a domelike structure, and the Ts(x) is linearly
decreasing with x. The two transition lines meet at x = 0.6,
and if the interplay is ignored Ts(x) continues the trend
(dashed lines Fig. 3) in the superconducting phase. However,
once the interplay is taken into account, the hardening of cs(T )
for T < Tc implies that there cannot be a nematic transition
for x > 0.6 in the superconducting phase. Moreover, since
the hardening increases with lowering T , it necessarily im-
plies that Ts(x) back-bends in the superconducting phase, as
reported in electron-doped BaFe2As2 [61].

III. SUMMARY

To summarize, we examined the thermodynamic signa-
tures of the interplay between superconducting and nematic

Ts(x)

Tc(x)

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

T/

FIG. 3. Back-bending of the nematic transition line (solid blue
line) Ts(x) in the superconducting phase (shaded light yellow) due to
strong interplay between the two orders. The blue dashed line is the
hypothetical nematic transition if the interplay is ignored.

instabilities. In particular, we studied microscopically the
properties of the coupling λ between the two orders; see
Eq. (1). This is related to how the shear elastic constant cs(T )
changes across a superconducting transition. We explained
why in most systems λ (in suitable unit) is small and nearly
temperature independent, which leads to δcs/|cm

s | ∼ 10−6 as
seen in most classes of superconductors. The situation is dif-
ferent if, due to an imminent nematic instability, the nematic
correlation length ξ � l , where l is the interatomic distance.
In this case λ ∝ [ξ (T )/l]4 has strong T dependence, and it
can be boosted by several orders of magnitude. This leads to
large δcs/|cm

s | ∼ 10−1, as seen experimentally in the Fe-based
and A15 superconductors. If the bare coupling λ0 is above a
positive threshold, it leads to hardening of cs(T ) for T � Tc

and to the back-bending of the nematic transition line in the
superconducting phase, as seen in doped BaFe2As2. Finally,
we predict that the nematic susceptibility χn(T ) of the A15
systems will show a Curie-Weiss-type increase with lowering
T . This can be verified using electronic Raman response and
elastoresistivity techniques.
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