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Numerical computation of spin-transfer torques for antiferromagnetic domain walls
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We numerically compute current-induced spin-transfer torques for antiferromagnetic domain walls, based on
a linear response theory in a tight-binding model. We find that, unlike for ferromagnetic domain-wall motion,
the contribution of adiabatic spin torque to antiferromagnetic domain-wall motion is negligible, consistent with

previous theories. As a result, the nonadiabatic spin-transfer torque is a main driving torque for antiferromagnetic
domain-wall motion. Moreover, the nonadiabatic spin-transfer torque for narrower antiferromagnetic domain
walls increases more rapidly than that for ferromagnetic domain walls, which is attributed to the enhanced spin

mistracking process for antiferromagnetic domain walls.

DOLI: 10.1103/PhysRevB.101.144431

I. INTRODUCTION

Antiferromagnetic spintronics has recently attracted con-
siderable interest because of the immunity against external
magnetic fields and the potential for high-frequency dynamics
[1-3]. Antiferromagnets produce no stray field and do not
couple to external magnetic fields when the field is lower
than a threshold for the spin-flop transition [4,5] because of
zero magnetic moment. This feature is advantageous for high-
density device integration. Moreover, in contrast to ferro-
magnets, the resonance frequency of antiferromagnets for the
zero wave-vector mode is related to the exchange interaction,
which results in terahertz magnetic excitations [6,7] and may
find use in terahertz spintronic devices [8—11]. For domain-
wall dynamics, it was predicted that spin-orbit torques en-
able much faster antiferromagnetic domain-wall motion than
the ferromagnetic counterpart [12,13]. This fast domain-wall
dynamics is caused by the complete decoupling between
the domain-wall position and domain-wall angle because the
gyrotropic coupling is proportional to the net spin density
[14-18], which is zero in antiferromagnets.

Antiferromagnets can also be electrically manipulated by
conventional spin-transfer torques in the absence of spin-
orbit interaction [19-32]. Previous studies on conventional
spin-transfer torques can be classified into two groups. The
first group [19-25] is for spin-valve-like structures in which
an antiferromagnet is interfaced with a normal metal and
the spin-transfer torque consists of dampinglike and field-
like components through real and imaginary spin-mixing
conductances at the antiferromagnet/normal-metal interface

“kj_lee @korea.ac.kr

2469-9950/2020/101(14)/144431(8)

144431-1

[24,33]. The second group [25-32] is for continuously vary-
ing antiferromagnetic spin textures such as domain walls
for which the spin-transfer torque consists of adiabatic and
nonadiabatic torques. An ab initio study [25] computed the
adiabatic spin torque for a domain wall in an antiferromagnet.
A microscopic calculation based on the Green’s function
formulation of Landauer-Biittiker transport theory [26] re-
ported that nonequilibrium spin density corresponding to the
adiabatic torque for antiferromagnetic spin textures is finite
but does not lead to domain-wall motion. Phenomenological
theories based on spin pumping and Onsager reciprocity
[27,28] predicted that the main driving torque for antiferro-
magnetic domain-wall motion is the nonadiabatic torque. For
antiferromagnetic domain walls, therefore, no microscopic
computation of both torque components on equal footing has
been reported. To understand distinct features of adiabatic and
nonadiabatic spin-transfer torques acting on antiferromag-
netic spin textures, it is important to microscopically compute
these two mutually orthogonal torque components.

For ferromagnetic domain walls, a number of theoretical
[34-46] and experimental studies [47-55] have investigated
the nonadiabaticity 8 of spin currents, a key parameter of
nonadiabatic spin-transfer torque. Different mechanisms of g8
arise depending on the relative length scale of the domain
wall. One mechanism that is independent of the domain-wall
length is caused by spin relaxation [35-37,41-43]. This mech-
anism predicts 8/« ~ 1, where « is the damping parameter,
which is related to the spin relaxation in equilibrium. Another
mechanism that is independent of the domain-wall length is
the intrinsic spin torque due to the perturbation of the elec-
tronic states when an electric field is applied [46]. As domain
walls get narrower than the length scale of spin precession
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around the exchange field, other mechanisms become more
dominant. For narrow domain walls, the conduction electron
spins are unable to follow a rapid change in the magnetization,
i.e., the ballistic spin mistracking, which contributes to the
nonadiabaticity [38—40]. When domain walls are atomically
thin, the reflection of conduction electron spins from the
domain wall becomes non-negliglible, resulting in the mo-
mentum transfer [34]. A recent experiment [56] reported
a large B/a for a domain wall in an antiferromagnetically
coupled ferrimagnet, suggesting that mechanisms beyond the
spin relaxation may take effect in antiferromagnetic domain
walls.

In this paper, we compute nonequilibrium spin density
based on a linear response theory in a tight-binding model.
From the computed nonequilibrium spin density that is de-
fined at each sublattice, we calculate local and effective spin-
transfer torques, which can be decomposed to adiabatic and
nonadiabatic torques. Here local spin-transfer torque is a
torque exerting on a spin moment at each sublattice whereas
effective spin-transfer torque is obtained by integrating local
spin-transfer torque over the antiferromagnetic domain-wall
profile. Therefore, the effective spin-transfer torque is the
experimentally measurable quantity. We find that the effec-
tive adiabatic torque is zero for antiferromagnetic domain
walls. On the other hand, the effective nonadiabatic torque

J

is large and increases significantly as the domain-wall width
decreases.

The paper is organized as follows. In Sec. II, we present
a linear response theory to compute the local spin-transfer
torque at sublattices of an antiferromagnetic domain wall.
In Sec. III, we present a continuum approximation of the
equations of motion of an antiferromagnetic domain wall and
describe how to obtain the effective spin-transfer torques in-
tegrated over the antiferromagnetic domain wall profile from
the local spin-transfer torques. In Sec. IV, we show numerical
results of the local and effective spin-transfer torques for anti-
ferromagnetic domain walls and compare the results with ones
for ferromagnetic domain walls. Finally, Sec. V concludes this

paper.

II. MICROSCOPIC APPROACH TO COMPUTE
SPIN-TRANSFER TORQUES

For an antiferromagnet, we consider two sublattices, A and
B, alternating in the x direction along which the magnetization
profile has a texture (i.e., domain wall) and an electric field is
applied. We model a magnetic system with random impurities
under an external electric field as H = Zk[Ho(k) + Vimp 4
H (K, t)], where VI™ is the impurity potential and k is a
wave vector in the transverse direction and

_ e(k)og— As0 -m; 0 Cia(k)
Ho(k)—Z(CL(k) CjB(k))< 0 4 4 E(k)UO_ABU'miB> (C:;(k))
—ty Y_[C],(K)ooCis(k) + Cly(K)ooCir1a(K)] — 1 Y [ChK)ooCia (k) + C, , (K)o Cip(K)], ¢))

where A, is an exchange strength at an atomic sublattice
(n = A, B), m;;, is the unit vector along the magnetic moment
at a sublattice 7 in the ith cell, #5 is a hopping energy between
sublattices, o is the vector of the Pauli spin matrices, and
0p is a 2 x 2 identity matrix. Because our model assumes
alternating sublattices in the x direction, we consider the
nearest-neighbor hopping between two sublattices. We spec-

J

(

ify creation operators with Cjn(k) = (Cfm(k), Cfn i(k)) at a
sublattice 7 in the ith cell with spins (1 or | ) and annihilation
operators with C;, (k) = (Cip1(k), Gy ¢(k))T, respectively. We
assume that, along the transverse directions (i.e., the y and z
directions), the system keeps a periodic structure so quantum
states in these transverse directions are described by a wave
vector k = (ky, k;) and eigenenergy e(k) = —2¢y(cos kyd +
cos k.d), where d is the atomic spacing.
HY(K, t) describes the external electric field,

ile|tyd R
Ho k1) = — 'h” > % AiIC] (K)o Cin(k) + Cl(K)0oCipr.a(K)]
l|€|t[-]d ~ t +
p ZX -A(D[CpK)aCia(k) + Cyy 4, (K)o Ci (K], @)
[
where A;(t) = —XEsinw,t/w, is a vector potential with by [57]
the electric field £ in the x direction. For a DC case,
Tinp = A,,mi,,(t) X Ss(t)in

we set a frequency w, to be zero at the final stage of
x calculation.

By integrating out electronic degrees of freedom {CT, C}
on the Keldysh contour, a local spin torque at a site in is given

= Aymyy (1) Y Trgin{(—ihG = (k: 1o )i y.  (3)
k
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Here, G=(Kk;¢) is a lesser Green’s function of the full Hamil-
tonian, G(k, 1) = [ihd, — HO(k) — VI™P — (K, r)]~!, and
the nonequilibrium spin density is determined by a linear
part of a full Green’s function on a vector potential A(z) as
8siy(t) = Y ok Tropin{ —iR(GH™G)=(k; )0}, where G = [E —
H® — vimP]=1 is the unperturbed Green’s function averaged
over impurities.

A. Linear response approximation

We treat the external electric field perturbatively because
the energy change between adjacent atoms, |e|Ed, is much
smaller than the hopping energy, ty. Along this scheme, the
lesser Green’s function of the system is written as [58]

Gy (kit) = —ik(C], (K, )Ciy (K, 1))

—l.lh[p“”(k) +p k1) + -]

Here density matrices p™ denote the orders of H®' and are
defined by

“

in,i'n’"

p (k) = 2i / dE f,(E)GC(k, E),
T

Pk, 1) = — f dEdwe™™ f,(E)
27

x [GR(K, E +ho)U (0)GE (K, E)
+ Gk, E)U(0)G*(k, E —hw)], %)

where f, is the Fermi-Dirac distribution function, G®* are re-
tarded and advanced Green’s functions averaged over impuri-
ties with G = GF — G* and U (w) = 1/Q27i) [ dtH™ (1 )e™"
is Fourier component of 7' (¢) for time. p®)(k) is a density
matrix in equilibrium whereas p"(k, ¢) is the nonequilibrium
one modified by the external electric field. Then, within the
linear response approximation, we set the nonequilibrium spin
density as

Ssiy(t) =Y _ Trgin{oply, (k, 1)}, (6)
k

B. Calculation of Green’s functions

When a domain wall is present in a magnetic lattice with-
out impurities, the retarded (g®) and advanced (g") Green’s
functions associated with H° are given by

gf(k, E) = [(E +i8)1 — H' ()],
g'(k, E) = [(E — i)l — H'®)]' = [g°k, E)IT, (7)

with § a positive infinitesimal. Here, H°(k) is the unperturbed
Hamiltonian with a transverse state k and has an infinite
dimension because the cell index i runs —oo to 0o. However,
its inverse matrix is readily obtained because H°(k) is a
4 x 4 block-tridiagonal matrix as seen from the Hamiltonian
of Eq. (1).

Now let us confine our attention to the region extended
over the domain wall. When the electric field is applied,
electron densities are modified due to the hopping interaction
given by H*'. Namely, §s; is determined by contributions
from various neighboring cell i’ as indicated from Egs. (5).
A weight of its contribution is determined by the Green’s

function between i and i’ and is approximately given by
gl oc e7¢li=7I where a decay constant ¢ is proportional to
the level broadening § [59]. Therefore, as a level broadening
becomes larger, the nonequilibrium spin density is contributed
from nearer atomic sublattices. By assuming a large level
broadening due to impurity scattering discussed in the next
section, we consider a finite region but still large enough to
compass the domain wall, say the number of N, cells. We
truncate out the remaining regions ranging over —oo < i < 0
and N < i < oo, whose effects are incorporated into the
Green’s functions with self-energies > LR [58,59]. Therefore,
the Green’s functions for the interested region that includes
the domain wall are given by

gk, E) = [(E +i8)1 — H'(k) — ZHE) — =RE)N,
gk, E) = [g"k, E)I'. (8)

As aresult, g4 (k, E) have a dimension of 4N, x 4N that
are tractable numerically.

C. Impurity scattering

We average the Green’s functions over impurity configura-
tions [60,61]. The corresponding self-energy in the coordinate
representation is given by

S, ' E) = GR(r, ¥ E)(VI™(r), VIP(r)),  (9)

where (VI™P(r), VI™P(r')) is the correlation function of im-
purities and G® is a retarded Green’s function averaged over
impurities. For random and short-ranged impurities with a
screening length 1/ky, the correlation function is found to be
proportional to [60,62]

. . 1 /
(VIR E)VITP(E)) oc eI (10)
indicating that ™ is also a short-ranged function. Assuming
such short-ranged impurities, we set

. V2
TIP(E) = 8 —> Rk, E), 11
() 47[2;9”( ) (11)

where Vj is an impurity-impurity correlation strength and a
summation over k means that the impurity self-energy is also
local over the transverse directions. Thus, by including the
self-energy from impurity, the Green’s function forms the
Dyson equation,

> gtk BN - BB GF (k E) = 1748, (12)

i

with a 4 x 4 identity matrix 1***. A solution of the equation is
not trivial due to a self-consistency of G® and requires a large
computation burden. For simplicity, because the modification
of electronic structure by external fields occurs mainly near
the chemical potential, we take into account the self-energy at
the chemical potential u in a whole energy as

(E) ~ BMP(E)|,_,,
namely, the self-energy independent of energy. We solve the

Dyson equation self-consistently to obtain X™ of Eq. (11)
and obtain the nonequilibrium spin density by using Egs. (5)
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FIG. 1. Domain wall profiles of (a) ferromagnetic and (b) anti-
ferromagnetic domain walls, where d is the atomic spacing and the
domain-wall width Apw is 20d. For the antiferromagnetic domain
wall (b), the components of the staggered n and total M magnetic
moments are shown in (c) and (d), respectively.

and (6). This locally defined nonequilibrium spin density
gives a local spin torque through Eq. (3).

III. EFFECTIVE SPIN-TRANSFER TORQUES ACTING ON
AN ANTIFERROMAGNETIC DOMAIN WALL

To investigate the role of spin-transfer torques in domain-
wall motion, one has to find out the effective spin-transfer
torques, which are obtained by integrating local spin-transfer
torques over the domain-wall profile. This section presents
the equations of motion and associated effective spin-transfer
torques acting on an antiferromagnetic domain wall as fol-
lows.

Local magnetic moment at each  sublattice
in the ith unit cell is assumed to be m; =
sign,](cos @iy Sin 6,y sin @y sin G, cos 6;,)  with n =A, B.
Here, 0;, and ¢;, are polar and azimuthal angles at a sublattice
n in the jth unit cell. We introduce a prefactor sign, to
describe antiferromagnet or ferromagnet (i.e., sign, = 1 and
signy = —1 for antiferromagnet and sign, = signg = 1 for
ferromagnet). We adopt the Walker’s ansatz for a domain wall
profile [63] as

—1 7

Oy = 2tan” Hexpl(X — xi)/Aowl},  din = 7. (13)
where X and Apw are the position and the width of the domain
wall, respectively. For antiferromagnetic domain walls (see
Fig. 1 for a domain wall profile), we introduce the total and
staggered magnetic moments as

_ 1 (. AFM AFM
M; —(miA + my ), n;

=1 AFM _ AFM). (14)

% (mm m;g

The equations of motion for antiferromagnetic domain
walls are obtained with the second-order expansion of small
parameters (d/0x, 0/9t, M, and spin-torque terms). The free
energy U of the system is written as [13,14,64]

a Aon\> on
U= | dx| =M+ = — IM.- — |, 15
fx[zl |+2<8x) + Bx:| (15)

where a (A) is homogeneous (inhomogeneous) exchange pa-
rameter and L is a parity-breaking exchange strength [64,65].
The Euler-Lagrange equation with respect to M and n is given
by

oL 0 ( oL ) _ 0R (16)
M) 3t \aMm)/)  aM®m)’
where the Lagrangian density £ and the Rayleigh function R
are, respectively, given by [14,27,66-69]

L=sn-mxM)—U,
R = souii’, an

with o, the damping parameter for n, and s(= M,/y) the
averaged angular momentum for two sublattices, where M; is
the saturation magnetization and y is the gyromagnetic ratio.
Here, we omit the damping parameter oy for M, which was
predicted to be larger than «y, [70], because it does not affect
the steady-state motion of antiferromagnetic domain wall.

From Egs. (15)-(17), we obtain the equations of motion for
n and M as

1
n=—-fyy xn+t,,
s

. 1
M = —f, x n — 20,0 X N+ Ty, (18)
s

where fyn) is an effective field on M(n), fiy = —aM — Lg—;‘,
f, = Ag%‘ + L%, and Ty and T, are, respectively, spin-
transfer torques acting on M and n, which we define below.

In ferromagnets, the torques can be decomposed to adia-
batic and nonadiabatic components as [34-36]

. om na m
TEM = IFME — TpyIM X o (19)

with 72 and t™, the magnitudes of adiabatic and nonadiabatic
torques. Likewise, the spin-transfer torques in each sublattice
of an antiferromagnet can be written as

9 mAFM 9 mAFM
— 7 A ha AFM x A ,

=T, A A ox
JmAPM JmAFM
5 = T4 a’i — 15 <mg\FM X #) (20)

Using the total and staggered magnetizations, Eqs. (20)
with the second-order expansion of small parameters becomes
[14,27]

. On
Tn = TarMy
na on
T™M = —Tapy X e 21
where
PR el SN e R
AFM 7 ' TARM )

We note that in Egs. (21), T, and Ty are obtained from 4
and tp, which are computed using the linear response theory
described in the above section. One can then obtain T4y, and
‘L'X%M from Egs. (21), which are local quantities defined in a
unit cell.
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To obtain effective spin-transfer torques, we integrate the
local spin torques over the domain-wall profile as follows.
Using the collective coordinate approach with respect to the
domain-wall position X and the domain-wall angle ¢, the
equations of motion of an antiferromagnetic domain wall are
readily obtained as [13,56,71]

,oX + 2ansX = —sE?FM,

pd + 20ns¢p = 0, (23)

where p = 5?/a, and &™ is the effective nonadiabatic spin-
transfer torque integrated over the antiferromagnetic domain-
wall profile, given as

A > on on
™M = —%/ dXI:TX%Ma : B_X} (24)

oo

By the same way, one can calculate the effective adiabatic
spin-transfer torque, ™, integrated over the antiferromag-
netic domain-wall profile, as

- L [ . 3’n\ 9n
b?FM = E /;OO dx[rAFM(n X W) . ﬁ] (25)

However, this adiabatic torque contribution, which is the third
order of small parameters, is absent in Eqs. (23) because
Egs. (23) are obtained by expanding up to the second order.
The adiabatic torque contribution appears only when the
higher order terms are considered as in Ref. [26]. This means
that the adiabatic torque contribution to the antiferromagnetic
domain-wall motion is much weaker than the nonadiabatic
torque contribution. Therefore, as a leading-order contribu-
tion, the antiferromagnetic domain-wall velocity in the steady
state (i.e., X = 0) is determined by the effective nonadiabatic
torque, given as

~AFM
€y

Upw = — (26)

200

On the other hand, the equations of motion of the ferro-
magnetic domain wall are given as [34,36]

~FM 7FM

. c; 1 . 7

b+ —X=—t X tap=-L— (27
ADW ADW ADW D

where « is the damping parameter for m and [72]
dpw [ . om  9m
~FM na
=20 d —
K 2 /_oo x[TFM ox X ]

- 1 [* om) oJm
bI;M = 5 Kw dx|:tl§‘M<m X a) . %i| (28)

As is well known, for ferromagnetic domain walls, both
adiabatic and nonadiabatic contributions appear in the equa-
tions of motion at the same order, in contrast to the case of
antiferromagnetic domain-wall motion.

In the next section, we present numerical results of local
and effective spin-transfer torques for ferromagnetic and anti-
ferromagnetic domain walls.

—
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FIG. 2. Computed results of local spin-transfer torques. (a) The
adiabatic t* (left panel) and nonadiabatic ™ (right panel) torques
for ferromagnetic domain walls. (b) The adiabatic t* (left panel) and
nonadiabatic t™ (right panel) torques for antiferromagnetic domain
walls. In (a) and (b), we compare results for several domain-wall
widths, Apw = 6d, 10d, and 20d. The orange arrow in the right panel
of (b) shows negative local nonadiabatic torques for an antiferromag-
netic domain wall.

IV. RESULTS AND DISCUSSION

A. Local spin-transfer torques

For numerical computation, we choose the number of
unit cell Ngy = 600, the atomic spacing d = 0.27 nm, the
hopping parameter 7y = 1.0 eV, and the number of k points
in the transverse direction is 150 x 150, which guarantees
converged results. We use the Fermi energy Er = 0.0 eV,
the exchange strength A = 1.0eV, and an impurity-impurity
correlation strength Vi = 3.5 eV, unless specified.

We calculate the nonequilibrium spin density at each
atomic site in using Eq. (6) and decompose it into local
adiabatic and nonadiabatic torques using Egs. (19) and (21).
Calculated local spin-transfer torques are shown in Fig. 2 for
(a) ferromagnetic and (b) antiferromagnetic domain walls. An
interesting observation is that the local nonadiabatic torque
for a relatively narrow antiferromagnetic domain wall changes
its sign near the domain-wall center (x; = 0), indicated by
an orange arrow. This negative local torque originates from
spatial oscillation of nonequilibrium spin density near the
domain wall, which results from the spin mistracking process
[38,72]. We note that for the same domain-wall width (Apw =
6d), the local torques for ferromagnetic domain walls do not
show such sign change, suggesting that the spin mistracking is
more pronounced for antiferromagnetic domain walls than for
ferromagnetic domain walls. This enhanced spin mistracking
for antiferromagnetic domain walls may be understood as
follows. According to Ref. [38], for ferromagnetic domain
walls, the nonadiabaticity due to the spin mistracking process
is proportional to exp(—kApw/¢), where k is a constant,
¢ = Er/(Akg), and kr is the Fermi wave vector. Therefore,
the nonadiabaticity increases exponentially with decreasing

144431-5
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FIG. 3. In (a), the effective adiabatic torque by (left panel) and
the effective nonadiabatic torque ¢, (right panel) for ferromagnetic
domain walls are plotted as reduced domain-wall widths Apw/d. We
compare results for several Fermi energies, Er = —0.5 eV, 0.0 eV,
and 0.5 eV. In (b), under the same condition we examine the effective
adiabatic torque (left panel) and the effective nonadiabatic torque
(right panel) for antiferromagnetic domain walls. The inset in the
right panel of (a) shows the effective nonadiabaticity B.y; in the
ferromagnet case.

the exchange interaction A. In antiferromagnets, the effective
exchange interaction averaged over two sublattices is zero. As
a result, it is expected that the characteristic length scale ¢
is very long. We note that the large nonadiabaticity or long
characteristic length scale of transverse spin currents were
recently reported in experiments using antiferromagnetically
coupled ferrimagnets [56,73].

Another interesting observation is that the local adia-
batic torque is sizable for both ferromagnetic [left panel
of Fig. 2(a)] and antiferromagnetic [left panel of Fig. 2(b)]
domain walls. We will discuss the relation between this
nonzero local adiabatic torque and effective adiabatic torque
for antiferromagnetic domain walls in the next section. Fi-
nally, in Fig. 2, it is observed that the signs of the torque
are different for ferromagnetic and antiferromagnetic domain
walls. However, this sign difference is found to depend on the
parameters (not shown), which may depend on band details
[41].

B. Effective spin-transfer torques for antiferromagnetic
domain walls

In this section, we discuss effective adiabatic spin-transfer
torques (B and H9™) and effective nonadiabatic spin-
transfer torques (& and &™), which are calculated by
integrating the local torques over the domain-wall profile [see
Eqgs. (24), (25), and (28)].

For ferromagnetic domain walls [Fig. 3(a)], the effective
adiabatic (B5M; left panel) and nonadiabatic (¢5™; right panel)
torques are almost constant regardless of the domain-wall
width ranging from 6d to 28d. Even with a variation of
Ep, this insensitivity to the domain-wall width is maintained.
Since both b and ¢f™ are finite, one can define the ef-
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©
/

0.10 L— : :
10 11 12 13 14

AleV]

FIG. 4. The effective nonadiabatic torque ¢, with various ex-
change strength A in (a) ferromagnets and (b) antiferromagnets at
domain-wall width Apw = 8d.

fective nonadiabaticity Begr(= ¢i™/b5M), which is almost a
constant of the order of 0.05 in our model, consistent with
previous works [51-54]. In contrast, the effective torques for
antiferromagnetic domain walls show two distinct features in
comparison to those for ferromagentic domain walls. First,
the effective adiabatic torque [/4™; left panel of Fig. 3(b)] is
almost zero regardless of the Fermi energy and domain-wall
width. Given that the local adiabatic torque for antiferromag-
netic domain walls is finite [left panel of Fig. 2(b)], this nearly
zero effective adiabatic torque results from the symmetry of
(n x gi‘z‘) . g—;, which is zero when integrating over a whole
domain-wall profile [see the integral of Eq. (25)].

Second, the effective non-adiabatic torque [E?FM; right
panel of Fig. 3(b)] increases rapidly with decreasing the
domain-wall width, which is consistent with that expected
for the spin mistracking process. To further validate the spin
mistracking process as a main origin of the enhanced &™
for a narrower wall, we compute ¢f™ and &™ with varying
the exchange strength A (Fig. 4). We find that & increases
more rapidly than &f™ with decreasing A. This large increas-
ing rate of &™ can be understood by the fact that the spin
mistracking enhances with decreasing the exchange interac-
tion. Thus, these results support that the spin mistracking
process is responsible for the enhanced E?F M for a narrower

wall, especially in antiferromagnets.

V. CONCLUSION

In this paper, we numerically compute the adiabatic and
nonadiabatic spin-transfer torques for antiferromangetic do-
main walls. We find that the effective adiabatic torque in

144431-6
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antiferromagnetic domain walls is almost zero, which means
that the adiabatic torque does not affect dynamics of anti-
ferromagnetic domain walls. This negligible contribution of
the adiabatic spin torque to antiferromagnetic domain-wall
motion is consistent with previous theories [27,28] based on
spin pumping and Onsager reciprocity. It is also consistent
with a recent experiment [56] showing that the adiabatic
torque contribution on the velocity of ferrimagnetic domain
wall is proportional to the equilibrium net spin density &, and
is thus almost zero near the angular momentum compensation
temperature Ty .

We also find that the effective nonadiabatic torque for anti-
ferromagnetic domain walls can be sizable and increases more
rapidly with decreasing the domain-wall width in comparison
to that for ferromagnetic domain walls. Our result supports
that the rapid increase of nonadiabatic torque for antiferro-
magnetic domain walls is caused by the spin mistracking
process, which is more pronounced in antiferromagnets than
in ferromagnets.

As a final remark, given that the effective adiabatic torque
BJAFM is almost zero while the effective nonadiabatic torque
&"™ is finite, it is unphysical to define the nonadiabaticity
(B = &)™ /bM) for antiferromagnetic domain walls. For the
same reason, the question about whether or not 8 is close
to the damping constant «, which has been a long-standing
debate for ferromagnetic domain walls [37,41,74-76], is not

justified for antiferromagnetic domain walls.
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