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Spin-wave transmission through an internal boundary: Beyond the scalar approximation
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The transmission and reflection of a spin wave at an internal boundary created by the local variation of
anisotropy (or a bias magnetic field) are studied taking into account not only the changes in the wave amplitude,
but also the changes in the wave polarization. It is shown that the account of the changes in the spin-wave
polarization before and after the boundary leads to (i) increase of the spin-wave amplitude reflection coefficient,
(ii) appearance of an additional phase shift �φ �= 0, π in both transmitted and reflected waves, and (iii) creation
of additional evanescent waves in the vicinity of the boundary. It is also shown that even when significant
changes in the transmitted wave polarization take place at the boundary, a spin wave could pass a finite-width
boundary without reflection, if a certain resonance condition is satisfied. The effect of the polarization change
at an internal boundary is especially pronounced for the exchange-dominated spin waves, while in the case
of the dipole-dominated spin waves, this effect can vanish completely for certain configurations of the static
magnetization.
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I. INTRODUCTION

Spin waves (SWs) in ferromagnetic materials are consid-
ered as promising candidates for signal carriers in the next
generation of signal processing devices. This is closely related
to the attractive intrinsic properties of spin waves, such as rel-
atively low damping, high frequency, small wavelength, down
to tens of nanometers, and a variety of possible nonlinear SW
interactions [1–5]. In order to process information, one should
be able to perform different linear and nonlinear operations
with SWs. In particular, the operations of interest for signal
processing are controllable reflection/transmission of SWs
and variation of the SW phase, which can be performed by
a local variation of the SW spectrum. Such local spectrum
variations were realized many times in bulk and submillimeter
ferromagnetic (FM) samples by the application of an addi-
tional localized static magnetic field. In particular, attenuation
[6,7] and frequency-dependent reflection [8] of SWs by a
field-induced inhomogeneity were realized, as well as the
resonance tunneling of SWs through a potential barrier [9],
and generation of SW pulse trains by magnetic field-induced
mirrors [10].

At nanoscale, however, application of local (10–100 nm)
magnetic field is technically complicated and inefficient. In-
stead, it is much more convenient and energy efficient to vary
the local magnetic properties of the propagation medium us-
ing a variety of magnetoelectric effects [11–14], among which
one of the most promising for application at a nanoscale is
the effect of voltage-controlled magnetic anisotropy (VCMA)
in ferromagnetic metal/dielectric heterostructures [15–17].
The use of the VCMA effect has been already proposed for
magnetic recording [18,19], excitation of SWs [20–23] and
magnetic solitons [24]. In the VCMA effect, as well as in
several other magnetoelectric effects, the application of an

electric field results in the variation of the FM magnetic
anisotropy which, of course, leads to the variation of the SW
spectrum [25,26].

It is important to note that SWs are characterized not only
by their dispersion relation, but also by the vector structure.
Magnetization precession is circular only in an isotropic
ferromagnetic sample. The presence of crystalline or shape
anisotropy, as well as dynamic dipolar interaction, which is
anisotropic, leads to an elliptic trajectory of the magnetization
precession, i.e., to the appearance of a nonzero SW ellip-
ticity ε = 1 − mmin/mmax, where mmin,max are the dynamic
magnetization components in the propagating SW. As the
SW ellipticity is determined by the total effective anisotropy,
the variation of the material anisotropy in the propagation
medium, caused, e.g., by an external bias electric field through
the VCMA effect, could significantly modify the ellipticity
of a propagating SW. Strictly speaking, the application of
a localized external static magnetic field also changes the
SW ellipticity, except in some symmetric cases (like the
case of SW propagation in the perpendicularly magnetized
isotropic FM film), because it changes the relation between
the components of total effective magnetic field acting on the
magnetization. However, this effect is much weaker, than the
effect of the local anisotropy variation.

This is illustrated by Fig. 1, where the SW spectra and
ellipticity are shown for SWs propagating in an in-plane
magnetized FM nanowire subjected to different in-plane bias
magnetic fields [Figs. 1(a) and 1(c)] and different perpendic-
ular electric fields [Figs. 1(b) and 1(d)], which modify the
local magnetic anisotropy due to the VCMA effect. One can
see, that in this example the parameters of the applied static
magnetic and electric fields were chosen in such a way, that
the SW spectral variations caused by the application of these
fields were very similar. At the same time, the variation of
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FIG. 1. Spectrum [(a) and (b)] and ellipticity [(c) and (d)] of SWs
propagating in a ferromagnetic nanowire under different applied
static magnetic fields [(a) and (c)] and electric fields, causing the
local anisotropy modification via VCMA effect [(b) and (d)]. Param-
eters: Fe/MgO nanowire of the 20 nm width, Fe thickness 0.86 nm,
static magnetization and the bias magnetic field are directed along
the nanowire, saturation magnetization Ms = 2.1 T, exchange length
λex = 3.4 nm, constant of the perpendicular surface anisotropy Ks =
1.36 mJ/m2, and magnetoelectric coefficient β = 100 fJ/(Vm) [27].

the SW ellipticity in the case of the anisotropy modification
caused by the electric field are much more pronounced. With
the anisotropy modification, the ellipticity variation takes
place in a wider range of the SW wave numbers, and even
the major and minor axes of the magnetization precession
in the propagating SW could be interchanged by the action
of the external electric field through the VCMA effect [see
Fig. 1(d)].

Thus it is only natural to ask a question on how such a
significant modification of the SW vectorial structure would
affect the transmission and reflection of SWs from the internal
boundary created by the local variation of the FM anisotropy,
and under which circumstances this effect becomes practically
important.

Theoretically the problem of SW transmission between
different ferromagnetic materials or different regions of the
same material was studied for many years. Starting from
seminal work by Rado and Weertman [28] there were many
research interest to the boundary conditions at the ferro-
magnet interface, including study of the effect of magne-
toelastic interaction [29], finite width and diffusive charac-
ter of interfaces [30–32], nonuniform dipolar fields [33,34],
Dzyaloshinski-Moriya interaction [35], magnetic anisotropy
of interface [36,37], etc. The problem of the SW reflection
from a sharp boundary was studied in details for exchange-
dominated SWs in isotropic, uniaxial and biaxial anisotropic
ferromagnets [38–40]. The case of smooth interface was
studied for both dipolar [6,7] and exchange-dominated SWs
[30,31]. A closely related problem of the phase accumula-
tion of SWs propagating in a nonuniform field was con-
sidered in Refs. [41,42]. Recently, the problem of trans-
mission and reflection of exchange-dominated SWs from

an interface between two biaxial magnetic materials has
been considered again [43] and formation of surface ex-
change SWs at the boundary has been predicted for the first
time.

In almost all the previously published papers, the problem
of the SW transmission through a boundary (or a region
with modified magnetic parameters) was considered within
a scalar approximation, in which SW was described by a
single effective scalar variable. This scalar variable can be
introduced in a multiple ways. Either a spin density formalism
can be employed [38,39] or a single variable describing circu-
larly polarized dynamic magnetization can be introduced [41]
or one of the dynamic magnetization components is simply
neglected [6,7].

In our current work, we go beyond the scalar approxima-
tion and study the SW transmission and reflection using the
full vector equations of motion, accounting, thus, for the SW
polarization. As it will be shown below, the variation of the
SW polarization results in a qualitatively different behavior of
a SW transmitted through a boundary, such as the appearance
of localized modes near the boundary, and appearance of a
nonzero phase shift in the transmitted wave. We develop an
analytical theory of the SW transmission through a sharp in-
ternal boundary for dipole-exchange and exchange-dominated
SWs, and derive a criterion allowing one to determine the
range of validity of the commonly used scalar approximation.
The developed theory is general, and is not limited to the case
when the internal boundary is introduced by the VCMA. This
case will be discussed below simply to illustrate the developed
general formalism.

The paper is organized as follows. In Sec. II, the geom-
etry of the problem, and the general equations of motion
for the magnetization are introduced. The boundary condi-
tions, and the vectorial structure of SWs modes, localized
near the boundary, are described in Sec. III. Analytical ex-
pressions for the coefficients of SW transmission and re-
flection from an isolated boundary, and from a finite-width
region with modified magnetic parameters (two consequent
boundaries separated by a finite distance) are derived and
discussed in Sec. IV within the exchange approximation.
Effects of the dipolar interaction on the obtained results
are discussed in Sec. V. Finally, conclusions are given in
Sec. VI.

II. MODEL AND INITIAL EQUATIONS

The geometry of the considered problem is shown in
Fig. 2. We consider a quasi-one-dimensional problem, when
SWs propagate in a ferromagnetic waveguide (e.g., stripe or
nanowire) along the axis of a waveguide (y axis in Fig. 2).
The boundary between the regions with different magnetic
properties is perpendicular to the SW propagation direction
(x-axis). We also assume that the SW profile in the x-z
plane (perpendicular to the propagation direction) remains un-
changed in both regions. This assumption is absolutely natural
for relatively thin ferromagnetic films and nanowires with the
thickness of the order of several exchange lengths for a given
FM material. In such a case, the SW profile along the film
thickness is maintained uniform by the exchange interaction,
and the width profiles of different SW modes are defined by
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FIG. 2. Geometry of an SW waveguide with a single internal
boundary: SW propagates along the FM waveguide through a sharp
internal boundary between the two waveguide regions which have
different magnetic properties, and, therefore, different SW dispersion
relations and different vector structure (polarization) of the SW
modes.

the effective dipolar boundary conditions, which are almost
independent of the SW wave vector and values of the bias
magnetic field or anisotropy [33,34,44]. The assumption of a
constant SW transverse profile works also in much larger sam-
ples, like micrometer-sized ferromagnetic strips or films, if the
propagation of the bulk SW modes is considered. For example,
such a case is realized if a FM film or a strip is magnetized in
the y or z directions. A well-known exemption, which cannot
be considered within the above mentioned assumption, is the
Damon-Eshbach surface SW mode, which propagates in an
in-plane magnetized film perpendicularly to the direction of
the static magnetization (i.e., the static magnetization is along
the x direction in Fig. 2). The thickness profile of the Damon-
Eshbach mode depends on its wave number [45] (in relatively
thick films), and the solution of the boundary problem in such
a case requires accounting of all the SW modes of the film.

We consider the SW propagation in an FM waveguide
through an internal boundary—a boundary between two re-
gions of the same FM waveguide. This boundary can be
created by any external influence, e.g., by the application of
an external bias magnetic field, electric field or strain. Thus
the regions of the FM waveguide separated by the boundary
can differ by the values of the static internal magnetic field or
magnetic anisotropy, while the saturation magnetization Ms

and the exchange length λex are the same in both regions. The
static magnetization is assumed to be uniform, and have the
same direction in both separated regions of the waveguide.
The boundary is considered to be sharp, which physically
means that the area in which the external control parameter
(magnetic field, electric field, strain, etc.) varies is much
smaller tnan the SW wavelength. For ultrathin nanowires,
where the magnetic anisotropy could be modified by the
VCMA effect, this is an absolutely natural approximation
for all the range of the experimentally achievable SW wave-
lengths. It should be noted, that below we do not use any
specific features of VCMA-induced anisotropy variation. All
the theory uses only the SW dispersion relation and vector
structure, and, thus, could be applied to boundaries created
by any physical effects within the limits described above.
Also, the theory can be generalized to the case of the interface
between the different ferromagnetic materials, and one should
expect qualitatively similar effects.

Within the above formulated approach the propagation of
SWs is described by the following equation (see Refs. [46–48]

for the details of this formalism):

∂m(y, t )

∂t
= μ × �̂ ∗ m(y′, t ) , (1)

where the tensor operator

�̂ = δ(y − y′)
(

γ B − ωMλ2
ex

∂2

∂y2
+ ωMN̂an

)

+ωM

∫
dy′Ĝdip(y − y′). (2)

Here, μ (|μ| = 1) and m(y, t ) are the dimensionless static and
dynamic magnetization components, so that the full magne-
tization vector is written as M(y, t ) = Ms(μ + m(y, t )), B is
the static internal magnetic field inside the FM waveguide,
λex is the exchange length of the FM material, tensor N̂an =
−Ban/(μ0Ms)(ez′ ⊗ ez′ ) describes the uniaxial anisotropy with
effective anisotropy field Ban and anisotropy axis ez′ [47], and
Ĝdip is the magnetostatic Green’s function, which depends
on the sample geometry [49]. For the considered problem,
obviously, B and N̂an can be different in different regions of
the FM waveguide. Since the magnetic damping is not of a
qualitative importance for the particular scattering problem
considered here, in the following it is neglected. Note, that
if the profile of the propagating SW mode is not uniform in
the x-z plane, Eq. (2) remains valid, but proper expression for
the Green’s function Ĝdip should be used (i.e., when averaging
standard two-dimensional Green’s function over the nanowire
width actual SW profile should be taken into account [49]).

Considering transmission of a monochromatic SW with
the angular frequency ω, we represent the SW dy-
namic magnetization via its complex amplitudes: m(y, t ) =
(m(y) exp[−iωt] + c.c.), which results in the replacement
∂m(y, t )/∂t → −iωm(y) in Eq. (1). In a general case, the
resulting integral-differential equation can not be solved an-
alytically. However, for a sufficiently large SW wave number
k (see criteria below), the exchange interaction becomes dom-
inant, and the integral operator in Eq. (2) can be replaced with
its Fourier-transform F̂k = ∫

Ĝdip(y)e−ikydy. Consequently,
Eq. (1) becomes an ordinary differential equation, which for
the considered case of a sharp boundary can be solved in
each region separately, and a proper boundary conditions
should be applied. In both regions separated by the boundary,
the SW has the form of a harmonic wave with the wave
vector k = key: m(y, t ) = (mk exp[i(ky − ωkt )] + c.c.). The
SW dispersion relation ωk (k) and the vector structure mk of
the propagating SW mode are determined from the following
eigenvalue problem [46,47]:

−iωkmk = μ × �̂k · mk , (3)

�̂k = (
γ B + ωMλ2

exk2
)
Î + ωM (F̂k + N̂

an
) . (4)

The range of validity of the above described exchange
approximation can be easily evaluated from Eqs. (3) and
(4). Comparing the exchange contribution to the SW en-
ergy (frequency) and maximal possible dipolar contribu-
tions one finds that the last one is negligible if λ2

exk2 �
maxα,β |Fk,αβ − F0,αβ |. Note that F̂0 is the simple static de-
magnetization tensor of the used FM waveguide.
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III. BOUNDARY CONDITIONS AND EVANESCENT SPIN
WAVES

In the case when M0 and λex are the same in both regions,
the following conditions of continuity of the dynamic mag-
netization m(y) and its derivative should be satisfied at the
boundary (located at y = 0):

m(y = 0−) = m(y = 0+) ,
∂m
∂y

∣∣∣∣
y=0−

= ∂m
∂y

∣∣∣∣
y=0+

. (5)

If the SW vector structure is the same in both regions, one
can represent dynamic magnetization using a scalar variable
a(y): m(y) = m0a(y). In such a scalar approximation, the
conditions (5) are reduced to two scalar equations, and it
is easy to calculate the SW reflection R and transmission
T coefficients at the boundary by choosing the solution as
a sum of incident and reflected waves before the boundary,
a(y < 0) = eik0y + Re−ik0y, and a single transmitted wave after
the boundary, a(y > 0) = Teik1y. This solution is well-known

R = k0 − k1

k0 + k1
, T = 2k0

k0 + k1
. (6)

The wave number k1, of course, is determined form the
dispersion relation, so that the frequencies of the incident
and transmitted SWs are the same: ω0(k0) = ω1(k1). From
Eq. (6), it is clear that the SW reflection coefficient increases
when the difference of SW wave numbers, determined by
the difference of the external control parameters before and
after the boundary becomes larger. One can also see, that the
transmitted SW is always in phase with the incident one, while
the reflected SWs could be in phase, or acquire a phase shift
�φ = π depending whether k0 > k1 or not.

In a general “vectorial” case, however, one should use
the full boundary conditions (5). It is clear, that choosing
solution as a sum of the incident and reflected SWs before the
boundary and as a single transmitted SW after the boundary, it
is not possible to satisfy the boundary conditions as there are
only two scalar parameters to be determined (R and T ) and
four scalar equations to be satisfied (since m is, effectively, a
two-component vector perpendicular to the static magnetiza-
tion). Consequently, there should be the other waves, which,
together with the incident, reflected and transmitted SWs, will
allow us to satisfy the boundary conditions.

To understand what are these “other” additional SWs,
let us look closer at Eq. (3). For a fixed SW frequency
ω, Eq. (3) can be considered as an eigenvalue problem
for the SW wave vector k2 and the vector mk charac-
terizing the vectorial structure of the SW mode. In the
range of existence of the propagating SW mode this eigen-
value problem has two solutions: one with the k2 > 0,
which describes the propagating SWs having the vectorial
profile mk , and the second solution with k2 = −κ2 < 0,
which corresponds to the exponentially localized (evanes-
cent) SWs with the spatial distribution m(y) ∼ exp[±κy]. The
“wave number” of these evanescent SWs for an arbitrary
anisotropy and static magnetization can be represented as

κ2 = 2ωk|mk|2
ωMλ2

exAk
− k2 , (7)

where Ak = i(m∗
k · μ × mk ) is the norm of the propagating

SW mode mk [46]. The vector structure of these localized
waves (to the accuracy of an arbitrary multiplier) is deter-
mined as

mev = μ × m∗
k . (8)

For example, if a propagating SW has polarization mk =
mxex + imyey, then the structure of the evanescent SW is
described by mev = myex − imxey. In other words, the evanes-
cent wave has the opposite direction of the magnetization vec-
tor rotation compared to the incident SW, and the precession
ellipse in the case of an evanescent wave is rotated on 90◦.
Note that in a general case the polarizations of the propagating
incident and the localized evanescent SWs are orthogonal, in
the sense m∗

ev · mk = 0, that is expected. The existence of the
similar evanescent SWs near the boundary was first predicted
in Ref. [43].

The existence of these evanescent SWs is natural. The
SWs with orthogonal polarization cannot propagate in a FM
waveguide. Consequently, if such an SW is injected into
the waveguide, it should decay at a certain decay length.
Equation (7) determines the magnitude of the characteristic
decay length l = 1/κ of these evanescent SWs. It can be
shown that κ2 > k2 for any parameters of the waveguide, i.e.,
the evanescent SW decays on the length which is of the order,
or smaller, than the wavelength of the propagating SW of the
same frequency.

IV. TRANSMISSION AND REFLECTION OF THE SPIN
WAVES AT A BOUNDARY IN THE EXCHANGE

APPROXIMATION

A. Single internal boundary

In this section, we calculate the transmission and reflec-
tion coefficients for a SW passing through a single internal
boundary, as shown in Fig. 2. As it was pointed out in the
previous section, for the proper description of scattering from
the boundary one should represent the dynamical magnetiza-
tion before the boundary as a sum of incident, reflected, and
evanescent SWs:

m(y < 0) = mk,0(eik0y + Re−ik0y) + C1mev,0eκ0y , (9)

and the magnetization after the boundary as a sum of a
transmitted and another evanescent SWs:

m(y > 0) = T mk,1eik1y + C2mev,1e−κ1y . (10)

The amplitude of the incident propagating SW is assumed
to be equal to 1. Substituting these equations for the wave
amplitudes into the boundary conditions (5), one obtains four
linear equations for the coefficients R, T , C1, and C2, which
can be solved by well-known methods.

An example of the SW profiles (9) and (10) calculated
using the full vectorial approach is presented in Fig. 3(b),
and, for comparison, the similar profiles calculated within the
traditional scalar approximation are presented in Fig. 3(a).
For clarity, we have chosen the parameters of the scattering
problem in such a way, that the incident and reflected SWs
are circularly polarized (dynamic magnetization components
|mx| = |mz|), while the transmitted SW has the elliptical po-
larization. In Fig. 3(b), one can clearly see the influence of
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FIG. 3. Profiles of an SW mode near the boundary of two regions
with different dispersion relation and different SW polarizations:
(a) scalar approximation [Eq. (6)] and (b) full vectorial solution.
Figures show the profiles of both components of the SW dynamical
magnetization and, also, the profile of the effective scalar variable
a(y) [in (a) only]. The position of the boundary is shown by a
vertical dashed line. Calculation parameters: λexk0 = 0.39, mk,0 =
[1, 1], and λexk1 = 0.2, mk,1 = [1.77, 1] (which correspond to an FM
waveguide magnetized in the y direction by the bias magnetic field
Be = 0.1μ0Ms, isotropic in the zeroth region, and having perpen-
dicular hard-axis anisotropy in the first region N (an)

zz,1 = 0.3. The SW
frequency is ω = 0.25ωM ).

the localized evanescent SWs, which allow the components
of the dynamic magnetization to vary continuously across the
boundary. In contrast, in the scalar approximation Fig. 3(a),
only the effective scalar parameter a(y) (e.g., spin density) is
continuous, while dynamic magnetization components have
an unphysical discontinuity at the boundary. The oscillations
before the boundary are caused by the interference of the
incident and reflected SWs. We would like to note that the
localization length of the evanescent SWs does not depend on
the polarization difference in the two regions, and that these
waves always appear if any polarization difference exists.

The transmission and reflection coefficients in the vectorial
formalism have the following form:

T = 2k0(κ0 + κ1)|mk,0|2/(m∗
k,0 · mk,1)

(k0 + k1)(κ0 + κ1) − iE2
01(k0 + iκ1)(k1 + iκ0)

, (11a)

R = (k0 − k1)(κ0 + κ1) − iE2
01(k0 − iκ1)(k1 + iκ0)

(k0 + k1)(κ0 + κ1) − iE2
01(k0 + iκ1)(k1 + iκ0)

. (11b)

Here the quantity E01 is defined as

E01 =
∣∣∣∣∣mk,0 · μ × mk,1

m∗
k,0 · mk,1

∣∣∣∣∣ . (12)

This quantity serves as a natural measure of difference in the
SW polarization mk,0 and mk,1. In particular, it is equal to
zero, if mk,0 = mk,1, and E → ∞ for almost orthogonal SW
polarizations when m∗

k,0 · mk,1 → 0.
It is clear that for identical SW polarizations, when E01 =

0, the vectorial expressions for the SW transmission and
reflection coefficients (11) are reduces to Eq. (6), obtained in
the scalar approximation. Inequality of the SW polarizations
before and after the boundary leads to an increase of the SW
reflection from the boundary, and a consequent decrease of
the SW transmission. Additionally, it leads to the appearance
of the phase shifts in both the reflected and transmitted waves

FIG. 4. Dependence of the SW reflection coefficient on the SW
polarization mismatch for the case of identical SW wave numbers,
but different vector structure of the SWs before and after the bound-
ary: solid line – κ = k and dashed line – κ = 3k.

relative to the incident one, which can take any value �φ ∈
[−π, π ] (recall that in the scalar approximation �φ = 0, π

for the reflected wave, and there is now phase shift for the
transmitted wave). It is important to note that even if the
SW wave vectors are identical, the SW would not be fully
transmitted through the boundary if the polarization mismatch
exists: T �= 1, R �= 0 for k0 = k1, and E01 �= 0. Finally, it is
interesting to note that for a large SW polarization difference
(E01 � 1) the transmission coefficient is reduced to zero,
T → 0, while the reflection coefficient approaches the value:

R → k0 − iκ1

k0 + iκ1
, (13)

which coincides with Eq. (6), obtained in the scalar approxi-
mation, assuming that the only SW existing after the boundary
is the evanescent one, having the inverse localization length
κ1. Naturally, |R| → 1 in this case.

Let us now look quantitatively at the influence of the SW
polarization mismatch on the SW reflection and transmission
coefficients. For this purpose, we calculate the R and T
coefficient for a model system, assuming that the SW wave
numbers in both regions are the same, k0 = k1 and κ0 = κ1,
while the polarization difference E01 is nonzero. In this case,
the SW reflection is caused only by the SW polarization
difference. Such a situation is not just an abstract theoretical
model, but it can be realized, for example, at the interface
between the FM waveguides having the same anisotropy
field, but the anisotropy axes that are perpendicular to each
other.

The calculated dependencies of the SW reflection coeffi-
cient |R| are shown in Fig. 4. As one can see, the effect of the
polarization mismatch on the SW reflection and transmission
depends, also, on the ratio of the SW wave number k to the
inverse localization length of the corresponding evanescent
wave κ; for a larger ratio κ/k, the reflection is stronger.

This can be easily understood by recalling, that in the
well-known scalar case the reflection is proportional to
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FIG. 5. Dependence of the SW reflection coefficient (a) and the
phase shift of the reflected SW (b) on the control parameter (electric
field applied in the region after the boundary) for different wave
number of the incident SW; lines: theory and symbols: results of mi-
cromagnetic simulations. The material and geometrical parameters
are as in Fig. 1.

the difference of the wave vectors of between the incident
and the transmitted waves. Similarly, in our case when the
difference in characteristic scales of the incident and the
localized waves increases, a greater part of the incident SW
is reflected from the boundary. As it was pointed out earlier,
κ2 � k2 for any stable magnetic configuration, and the ratio
κ/k increases with the increase of the band gap in the SW
spectrum (i.e., with the increase of the value ω0).

It should be noted that the influence of the polarization
mismatch on the reflection is proportional to E2

01, and, con-
sequently, it is almost unnoticeable for the small polarization
difference (E01 < 0.1–0.2 in Fig. 4). Obviously, when the SW
wave vectors are also different, which results in a nonzero
reflection for E01 = 0, the effect of the polarization mismatch
on the amplitude of the reflected wave will be pronounced
only for even higher values of E01.

As an example, in Fig. 5, we calculated the reflection
coefficient |R| and the phase shift �φ of an SW reflected in
an ultrathin nanowire where the sharp internal boundary was
created by an external electric field via VCMA, so the perpen-
dicular magnetic anisotropy was changed at the boundary. As
it was shown in Fig. 1, the SW polarization can significantly
change in such a case, resulting in the polarization mismatch
up to E01 = 0.3 in the studied range of applied electric field
values. We found that the difference between the values of the
reflection coefficient |R| in the full vectorial solution Eq. (11)
and in the scalar approximation Eq. (6) does not exceed 1%.

FIG. 6. Geometry of an SW waveguide with two internal bound-
aries: SW in the course of propagation in an FM waveguide encoun-
ters a region of a finite length Lg with different magnetic parameters

However, at the same time one can clearly see in Fig. 5 an
additional phase shift in the reflected SW up to 0.15 rad, which
could be easily detected and should be taken into account in
the design of SW signal processing devices.

We have also verified our theoretical calculations by micro-
magnetic simulations using MuMax3 micromagnetic solver
[50]. In these simulations, we set the nanowire length to 4 μm,
SWs are exited by a local, 50 nm in length, application of mi-
crowave magnetic field bz of the magnitude bz = 0.1 mT and
the frequency of 5.52 GHz (corresponding to k0 = 0.07 nm−1)
and 8.85 GHz (k0 = 0.1 nm−1), and the internal boundary is
separated by 1 μm from the excitation source. To increase the
precision of the determination of reflected wave amplitude and
phase, the damping rate is set to αG = 10−4, except for the re-
gions near the nanowire beginning and end, where it increases
quadratically, which ensures absence of SW reflections form
these edges. The complex reflection coefficient R is extracted
from the magnetization dynamics in the region between the
excitation area and internal boundary (but not close to the
boundary, so that evanescent waves become negligible), by its
fitting by the sum of incident and reflected waves.

As one can see in Fig. 5, the modulus of the reflection
rate |R| is nicely reproduced by micromagnetic simulations.
In the case of shorter incident SW having k0 = 0.1 nm−1, our
theory predicts well also the phase shift of the reflected wave.
In the case of longer incident SW, k0 = 0.07 nm−1, we also
see clear additional phase shift of the reflected SWs, induced
by the polarization mismatch, however, this shift is somewhat
smaller than predicted one. The reason of this discrepancy is
the increased role of the dipolar interaction in the propagation
of longer SWs, which is discussed in more details in Sec. V.

Thus, we can conclude that the SW polarization mismatch
before and after the boundary leads to three main effects.
The first one, which is clearly visible for any polarization
mismatch, is the appearance of the localized evanescent SWs
at the boundary. The second effect is the additional phase
shift for both reflected and transmitted SWs. Finally, the
third one is a decrease of the transmission and increase of
reflection coefficients which, however, is measurable only for
sufficiently large values of the polarization mismatch E01.

B. Finite region with different SW dispersion and polarization

In this section, we consider the SW scattering from a region
(“gate”) of a finite gate length Lg, inside which the magnetic
parameters (magnetic field or anisotropy) of a waveguide are
modified (see Fig. 6). Such structures can be used for the
effective control of the phase and amplitude of a propagating
SW in the SW-based signal processing. In experiment, such
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a geometry can be realized by applying a control voltage in a
spatially extended region of the SW waveguide (middle region
in Fig. 6).

Within a standard scalar approximation the solution of this
transmission problem is well-known, and the transmission
coefficient T is given by

|T |2 =
[

1 + 1

4

(
k0

k1
− k1

k0

)2

sin2(k1Lg)

]−1

. (14)

The reflection coefficient can be calculated from the equality
|T |2 + |R|2 = 1. Of course, this solution is valid if the gate
length Lg is significantly smaller, than the SW mean free path.

For the calculation of the transmission coefficient within
the full vectorial approach one should take into account an in-
cident (eik0y), reflected (Re−ik0y), and one evanescent (C1eκ0y)
SW in the first region (left one in Fig. 6), two propagat-
ing (C2eik1y and C3e−ik1y) and two evanescent [C4e−κ1y and
C5eκ1(y−Lg)] SWs inside the middle (gate) region, and one
transmitted propagating SW (Teik0(y−Lg)) and one evanescent
SW (C6e−κ0(y−Lg)) in the last (right) region. In this geometry,
the positions of the sharp internal boundaries are assumed to
be at y = 0 and Lg, respectively. By the application of two
pairs of conditions Eq. (5) at both boundaries, one can obtain
the amplitudes of all the propagating and evanescent waves.
The exact solution of the problem is too cumbersome to be
presented here. Thus below we will show only the solutions
obtained in several most important particular cases.

To illustrate the qualitative influence of the polarization
mismatch on the SW propagation through a gate of a finite
length, we present below the dependence of the transmis-
sion coefficient on the gate length Lg for a model problem
illustrated in Fig. 7 and compare it with the similar results
obtained in the scalar approximation Eq. (14). The following
features of the SW scattering from the finite-size gate can be
seen from Fig. 7. First, the function |T |2(Lg) is still a periodic
function, except in the case of small gate lengths, when the
amplitudes of the evanescent SWs localized at one of the
boundaries are not vanishing the other another boundary, i.e.,
when exp[κ1Lg] is not a negligible value. The period of the
function |T |2(Lg) is the same as in the scalar approximation,
and is equal to 2π/k1. Second, the minimum value of the
transmission coefficient becomes smaller due to the influence
of polarization difference. Finally, the most interesting feature
is the fact, that the maximum value of transmission coefficient
can be max |T |(Lg) = 1, i.e., an SW can pass the gate region
resonantly. This resonance transmission could appear to be
rather surprising, since the SW passes two boundaries where
a part of the SW polarization is lost. In a certain sense, this is
an analog of the well-known resonance tunneling of particles
in quantum mechanics, and the role of the tunnel barriers is
played by the internal boundaries. The resonant transmission
takes place if the condition k1Lg + ψ = πn, n ∈ Z is satisfied
(see the definition of ψ below). In a scalar approximation,
the resonant transmission also takes place, under the condition
k1Lg = πn (see Eq. (14) or Ref. [40]). The appearance of the
phase ψ in the resonance conditions is related to the additional
phase shift, which is acquired by an SW reflected from a
boundary due to a nonzero polarization mismatch.

FIG. 7. Coefficient of SW transmission through a gate of a finite
length Lg; solid lines: full vectorial solution and dashed lines: scalar
approximation. Parameters: internal field B/μ0Ms = 0.1, effective
anisotropy tensor (including static demagnetization tensor) N (an)

xx,1 =
0.8, N (an)

yy,1 = 0.2 within the gate region, and N (an)
xx,0 = 0.35, N (an)

yy,0 =
0.65 outside this region, SW frequency ωSW = 0.6ωM . The corre-
sponding SW spectra are shown in the inset, dashed line; within the
gate region, solid: outside this region; for these parameters, the SW
polarization difference is E01 = 0.37.

An reasonably simple analytical expression for the SW
transmission coefficient can be derived assuming that ampli-
tude of the evanescent SW localized at one of the boundaries is
vanishingly small at the other boundary, i.e., if exp[−κ1Lg] �
1. Within this approximation the SW transmission coefficient
can be written as

|T |2 =
[

1 + 1

4

[(
k0

k1
− k1

k0

)2

+ E2
01 f

]
sin2(k1Lg + ψ )

]−1

.

(15)
Here, f and ψ are the coefficients which depend on the SW
wave numbers ki, “wave numbers” κi of the localized evanes-
cent waves, and the SW vector structure. In a general case,
the explicit expressions for f and ψ are rather cumbersome,
and we will not present them below. It is clear, that for a
negligible difference of the SW polarization, E01 � 1, the
above presented equation is reduced to Eq. (14) (ψ = 0 for
E01 = 0, see below).

The expressions for f and ψ in a compact explicit form
can be also derived in several limiting cases. For a small
polarization mismatch, E01 � 1 these expressions have the
following form:

f = 2

(
k2

0 − k2
1

)(
k2

0κ0 − k2
1κ1

)
k2

0k2
1 (κ0 + κ1)

, (16a)

ψ = 1

2
arcsin

[
4E2

01

k1
(
k2

0 + κ0κ1
)

(
k2

0 − k2
1

)
(κ0 + κ1)

]
. (16b)

It is clear, that for E01 = 0 the phase ψ = 0, as it was
pointed out above. In particular, using Eq. (16), we can
calculate the effect of the polarization mismatch on the SW
transmission for a VCMA gate (all the parameters used are the
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same as in Fig. 5). When the applied gate voltage E = 2 V/nm
the value E2

01 f is only 4% of the polarization-independent
term (k0/k1 − k1/k0)2. Consequently, the minimum transmis-
sion coefficient also decreases by around 4%. The phase ψ

which affects the condition of the resonance transmission
through the finite-length gate is equal to ψ = 0.15 rad, which
is not a negligible value, and should be taken into account.

Another limiting case, in which compact expressions for
f and ψ can be derived, is the case of a large polarization
mismatch, i.e., the case when E01 � 1. In this limit, the
coefficients in Eq. (15) can be calculated as

f = E2
01

(
k2

0 + κ2
1

)2(
k2

1 + κ2
0

)2

k2
0k2

1 (κ0 + κ1)4
, (17a)

ψ = 1

2
arcsin

[
4k1κ0

(
κ2

0 − k2
1

)
(
κ2

0 + k2
1

)2

]
. (17b)

The case of a large polarization mismatch is, basically the
case of a large ellipticity of the SW precession, for which
typically κ � k. Consequently, one can see that in such a case
ψ → 0, similarly to the case of small values of E01.

V. EFFECT OF DIPOLAR INTERACTION

In the previous sections, we neglected the effect of the
dynamic dipolar interaction on the SW propagation and
transmission through an internal boundary. For a sufficiently
short SWs and thin ferromagnetic films, this approximation is
natural and correct. However, in the range of relatively small
SW wave numbers the dynamic dipolar interaction becomes
important, and, also, its influence is more pronounced in
relatively thick ferromagnetic films.

The problem of transmission of dipole-exchange SWs
through an internal boundary is a complex challenging task,
which has not been solved analytically even within the scalar
approximation. In order to understand main features of the
SW transmission in the dipole-exchange case we, first, con-
sider the case of purely dipolar SWs (magnetostatic waves),
neglecting the exchange interaction. This approximation is
valid if all the dimensions of a ferromagnetic waveguide and
the SW wavelength are much larger than the exchange length
in the waveguide FM material.

The propagation of the dipolar SWs is described by the
Walker’s equation [51] for magnetostatic potential ψ :

div(μ̂ · ∇ψ ) = 0 , (18)

where μ̂ = μ̂(ω) = Î + χ̂ is the tensor of magnetic perme-
ability, and χ̂ is the tensor of magnetic susceptibility. In the
coordinate system where the z′ axis is aligned along the
direction of static magnetization the susceptibility tensor χ̂

has only four nonzero components:

χ̂ = ωM

ω2
0 − ω2

⎛
⎝ωH + ωan,y′ iω 0

−iω ωH + ωan,x′ 0

0 0 0

⎞
⎠ , (19)

where ωan,i = γ Ban,i, Ban,x′ , and Ban,y′ are the anisotropy fields
in the x′ and y′ directions (anisotropy is assumed to be biax-
ial), and ω2

0 = (ωH + ωan,x )(ωH + ωan,y) is the ferromagnetic
resonance frequency in the waveguide.

In order to make the calculations simple and clear, we
consider a metalized FM waveguide where the static mag-
netization direction is along the z axis (the case of a per-
pendicularly magnetized waveguide). The coordinate system
is the same as the one shown in Fig. 2. In this case from
the boundary conditions at the metalized surfaces, which
require (μ̂∇ψ )z = 0, one gets a profile of the dipolar SW
eigenmodes: ψn = cos[κnz]eiky, where κn = π/tz, where tz
is the film thickness. Also, form Eq. (18), one can get a
dispersion relation for the magnetostatic waves in the form:
κ2

n = μyy(ω)k2. The thickness profile of a magnetostatic SW
mode does not depend on its wave vector, so we can consider
the transmission problem for only one magnetostatic mode.

The magnetostatic boundary conditions at an internal
boundary require continuity of the tangential components of
the magnetic field H = ∇ψ (x and z components in our geom-
etry) and of the normal component of the magnetic induction
B = μ̂ · ∇ψ (y component). These conditions can be satisfied
by the selection of a solution as a sum of incident, reflected
and transmitted waves: ψ (y < 0) = cos[κz](eik0y + Re−ik0y)
and ψ (y > 0) = T cos[κnz]eik1y. Then, the transmission and
reflection coefficients are equal to

R = μyy,0k0 − μyy,1k1

μyy,0k0 + μyy,1k1
, T = 2μyy,0k0

μyy,0k0 + μyy,1k1
. (20)

This solution is similar to the one obtained in the scalar
exchange approximation [Eq. (6)]. The only difference is the
fact, that the magnetostatic wave is sensitive to the variation
of the product of a wave number by the yy component of
the magnetic permeability tensor, but not sensitive to the
variation of the SW wave vector alone. Another two features
of this solution should be pointed out: (i) the solution of the
transmission problem in the range of dipolar SWs does not
contain any localized SW modes independently of the presence
or absence of the SW polarization mismatch and (ii) there is
no explicit dependence of the SW transmission coefficient on
the SW polarization.

A dependence of the SW transmission coefficient on SW
polarization may, however, be present implicitly in the de-
pendence μ̂(ω). To check this point, let us look at the case
when the SW wave vectors in the regions before and after
the boundary are the same, k0 = k1. From the dispersion law,
it follows that this case requires μyy,0 = μyy,1. Consequently,
the reflected wave is absent [see Eq. (20)], and the incident
wave passes fully through internal boundary. The polarization
of the magnetostatic wave is given by m = χ̂∇ψ , i.e., the
relation between the dynamic magnetization components has
the form: to mx/my = χxy/χyy = iω/(ωH + ωan,x ). As it was
mentioned above, the yy components of the susceptibility
tensor χyy are the same in both regions, but the xy components
can be different.

Indeed, one can easily find values of ωH,0(1), ωan,0(1) such
that χyy,0 = χyy,1, but χxy,0 �= χxy,1 for a certain frequency ω,
see Eq. (19). Note, that this is possible not only in a specific
case of biaxial anisotropy, but also can happen in a case of
an uniaxial anisotropy. Thus, we can conclude, that a dipolar
SWs can be absolutely insensitive to the variation of the SW
polarization, at least in certain geometries. This is in a sharp
contrast with the properties of the exchange SWs, which are
always sensitive to the SW polarization mismatch.
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Absolutely the same calculations with the similar conclu-
sions one can made for the case when the FM waveguide is
magnetized in-plane along the direction of the wave prop-
agation μ = ey. The only difference is in the values of the
transmission and reflection coefficients [see Eq. (20)], where
μyy = 1 [since μz′z′ = 1 + χz′z′ = 1, see Eq. (19)]. For any
other directions of the waveguide static magnetization such a
simple analysis can not be performed, because the SW profile
across the film thickness becomes dependent on the SW wave
vector, and the conditions at an internal boundary can not be
satisfied using a single thickness SW mode. Therefore, in a
complex magnetization geometry, the scattering into multiple
thickness magnetostatic modes takes place at a boundary.
In such a complex case, obviously, it would be difficult to
try to isolate the effect of SW polarization mismatch in the
scattering problem.

Let us now return to the initial problem of the transmission
of a dipole-exchange SWs through a boundary. If an FM
waveguide is sufficiently thin (of the order of 10–100 nm,
depending on the material exchange length), the thickness
profile of a propagating SW is maintained uniform by the
exchange interaction independently of the static magnetiza-
tion direction. Based on the above described properties of
the magnetostatic waves, one can expect, that, at least in
certain geometries, the SW would become insensitive to the
polarization mismatch when the role of the dipolar interaction
increases. To verify this hypothesis, we performed numerical
simulation of Eq. (1) accounting for the dipolar interaction via
the integral operator with Green’s function kernel [Eq. (2)].
Equation (1) was solved using finite-difference method in
the stationary mode (i.e., ∂m/∂t = −iωm). The length of
simulation area was chosen 10–20 times larger than SW
wavelength, and the boundary conditions were set as the sum
of harmonic incident and reflected waves at one boundary, and
transmitted wave at other boundary, with unknown reflection
and transmission rates. This approach leads, finally, to a
linear equation system for the coefficients R and T and a set
discretized magnetization values.

These numerical calculations showed that the above de-
scribed behavior takes place if the waveguide static mag-
netization does not have in-plane components that are per-
pendicular to the SW propagation direction, μx = 0, i.e.,
it takes place for perpendicular magnetization (μ = ez), for
“backward volume waves geometry” (μ = ey), and for any
magnetization configuration between these two. For such
magnetization geometries, the SW transmission through a
boundary becomes less sensitive to the polarization mismatch
with the increase of the role of the dipolar interaction (this
increase was simulated by the increase of the film thickness),
and in the limit of a negligible exchange interaction the effect
of polarization disappears completely. The same feature was
pointed above in our micromagnetic simulations (see Fig. 5).

However, if μx �= 0, in particular, in the case of a “Damon-
Eshbach geometry” (μ = ex), the effect of the SW polar-
ization does not disappear completely even for the dipole-
dominated SWs. In particular, the SW reflection takes place
if k0 = k1, but m0 �= m1. Such a drastic dependence on the
direction of the static magnetization can be understood re-
calling the above mentioned solution of the Walker’s equa-
tion. In the above considered dipolar case of perpendicular

magnetization, the SW polarization is defined by the xy and
yy components of the susceptibility tensor, however, the xy
component of the same tensor does not contribute to the SW
dispersion law, and, consequently, to the SW propagation and
scattering. Thus the SW propagation would not be affected
by the mx component of the dynamic magnetization in the
considered case. A similar situation takes place in the case of
the dipole-exchange SW propagating in thin films when μx =
0, because xx and xy components of the magneto-dipolar
Green function in Eq. (1) are identically zero, Gxx = Gxy = 0.
However, as soon as μx �= 0, both dynamic magnetization
component have the y or/and z components, and, thus, both of
them contribute to the SW propagation, since Gyy , Gzz �= 0.
Also, we should note, that different symmetry of dynamic
magnetic fields of a SW in the Damon-Eshbach geometry
leads to different SW transmission features in general, not
only regarding the SW polarization [52].

Concluding this section we can state, that the effect of
the SW polarization mismatch on the transmission through
an internal boundary is more complex in the case of dipole-
dominated SWs, compared to the case of the exchange-
dominated SWs. In certain geometries (μx = 0), this effect
disappears, while in other geometries it is still present. Also,
in the case of dipolar SWs the polarization difference does
not lead to the formation of dipolar-dominated localized SWs.
The evanescent SWs, discussed in Sec. III, are, of course,
still present, because the exchange interaction requires the
magnetization continuity. However, these localized SWs do
not contribute to the transmission and reflection coefficients
of the dipolar SWs. In the intermediate region, when both
dipolar and exchange interaction are important, one should
expect a smooth transition from the transmission rules for
the exchange-dominated SWs to the transmission rules char-
acteristic to the dipole-dominated SWs. In particular, one
should expect a smooth disappearance of the effect of the
SW polarization mismatch in the case of a static magnetiza-
tion with μx = 0. The characteristic values of the SW wave
number, when this transition occurs can be obtained from
the comparison of the term m∗

k · (F̂k − F̂0) · mk/Ak evaluat-
ing the dipolar contribution and the term λ2

exk2 evaluating
the exchange contribution to the SW dispersion. If λ2

exk2 �
m∗

k · (F̂k − F̂0) · mk/Ak , one can safely neglect the dynamic
dipolar interaction, and use the above developed analytical
vectorial scattering theory for exchange-dominated SWs (see
Sec. IV of the current paper). Otherwise a numerical solution
of the full problem Eq. (1) should be used.

VI. SUMMARY

In this work, we have developed a theory of an SW
transmission and reflection from a sharp internal boundary,
taking into account the SW polarization. The difference in the
SW polarizations before and after the boundary accompanies
the difference in the SW wave numbers in almost all the cases,
except some symmetric ones. However, the difference in po-
larizations is much more pronounced if the regions, separated
by an internal boundary, differ by the value of anisotropy, as it
happens in the case of a magnetoelectric (e.g., VCMA) control
of the SW dispersion, or/and by the direction of anisotropy
axes, as it takes place at an interface between two different
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anisotropic ferromagnets. While the above presented theory
was developed for an internal boundary within a single fer-
romagnet, assuming a constant static magnetization M0, and
exchange length λex in all the sample, it can be generalized
to the case of an interface of two different ferromagnets, and
one should expect qualitatively similar SW behavior at the
boundary.

The SW polarization difference leads to three main effects.
First, the exponentially localized (evanescent) SWs appear in
the vicinity of the boundary. The appearance of these localized
evanescent SW modes is a direct consequence of the necessity
to satisfy the continuity conditions for the magnetization and
its derivative within the whole ferromagnetic sample, which
cannot be satisfied by propagating SWs only. The localized
SWs are orthogonal to the propagating SWs of the same
frequency, and have the localization lengths equal or smaller
than the wavelength of a corresponding propagating SW. The
existence of the localized modes results in the second effect—
appearance of an additional phase shift for both reflected and
transmitted SWs. This phase shift can be of any value �φ ∈
[−π, π ], and only for the case of a zero SW polarization
mismatch it is reduced to �φ = 0, π for the reflected SW
and to �φ = 0 for the transmitted SW. Finally, a nonzero
SW polarization mismatch E01 results in a decrease of the SW
transmission coefficient and in an increase of the SW reflec-
tion coefficient. However, this effect is pronounced only for
a sufficiently large polarization mismatch E01 (characteristic
value depends on the difference of the SW wave numbers for
the incident and transmitted SWs).

In spite of a nonzero polarization mismatch before and
after a finite-length region with different magnetic param-
eters, an SW can pass this region resonantly, i.e., without
reflection and with a transmission coefficient |T | = 1, if the
propagation losses within that region are negligible. The
conditions of the resonant transmission through a finite-length
“gate” are affected by the SW polarization mismatch, and has
the form k1Lg + ψ = πn, n ∈ Z, where the additional phase
ψ = ψ (E01) is the function of the polarization difference.
In particular, for relatively small polarization mismatch, the
phase is proportional to ψ ∼ E2

01.
All these features are intrinsic for the exchange-dominated

SW, since exchange interaction requires continuity of the
magnetization and its derivatives. In the case of dipole-
dominated SWs, the influence of SW polarization difference
is not as pronounced, and can disappear completely in certain
magnetization geometries.
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