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The magnetic hedgehog lattice (HL) is a noncoplanar magnetic texture with a periodic array of magnetic
monopoles and antimonopoles. Despite phenomenological and numerical studies thus far, there remain open
issues on the microscopic origin, especially with respect to the recent experimental findings of two different
types of HLs even at zero magnetic field. Here, we study the stability of the HLs for an effective spin model with
long-range interactions arising from the itinerant nature of electrons. By variational calculations and simulated
annealing, we find that the HLs are stabilized in the ground state at zero magnetic field by the synergetic effect of
the antisymmetric exchange interactions generated by the spin-orbit coupling and the multiple-spin interactions
generated by the spin-charge coupling. We also clarify the phase diagram in the magnetic fields, which includes
topological phase transitions with pair annihilation of the monopoles and antimonopoles depending on the field
directions.
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I. INTRODUCTION

Chirality, often termed as handedness, is a key concept in
a broad field of science, ranging from particle physics to bi-
ology. In condensed matter physics, chiral magnetic textures,
which break both inversion and mirror symmetries in addition
to time-reversal symmetry, have recently attracted consider-
able attention for potential applications to next-generation
electronic devices. There are a variety of chiral magnetic tex-
tures, such as skyrmion lattices [1] and chiral soliton lattices
[2]. Noncollinear and noncoplanar spin arrangements in these
textures generate emergent electromagnetic fields through
the Berry phase mechanism, which induce unconventional
transport, optical, and magnetoelectric properties [3–5].

Recently, a three-dimensional chiral magnetic texture,
which is called the hedgehog lattice (HL), was discovered
in the B20-type compound MnGe [6,7]. The magnetic struc-
ture is characterized by cubic three wave vectors, and hence
it is referred to as the triple-Q hedgehog lattice (3Q-HL)
[Fig. 1(b)]. The 3Q-HL has a periodic array of hyperbolic
hedgehog and antihedgehog spin textures, which generates an
emergent magnetic field with a periodic array of radial hedge-
hogs and antihedgehogs regarded as magnetic monopoles and
antimonopoles, as shown in Fig. 1(c) [8–10]. The peculiar
magnetic field was discussed as a source of the enormous
topological Hall effect [11] and thermoelectric effect [12,13].
In addition, by a substitution of Ge by Si, the 3Q-HL changes
into a different HL characterized by tetrahedral four wave
vectors, dubbed the quadruple-Q hedgehog lattice (4Q-HL)
[Fig. 1(a)] [14]. Remarkably, the magnetic periods of these
3Q- and 4Q-HLs are very short, ∼2–3 nm, in contrast to most
of the skyrmion lattices.

Such magnetic HLs have been theoretically studied prior
to the experimental discovery, e.g., by the Ginzburg-Landau
theory [15], variational calculations [16], and Monte Carlo
(MC) simulations [17]. The variational study for a classical

spin model showed that the 3Q-HL is not stabilized, whereas
the 4Q-HL is obtained in an applied magnetic field [16].
The 4Q-HL in a field was also confirmed by MC simu-
lations [17]. The previous studies, however, do not predict
the stable HLs in the absence of magnetic fields, contradict-
ing the experimental observations. Furthermore, to account
for the short-period twist, the localized spin picture requires
a large Dzyaloshinskii-Moriya (DM) interaction [18,19], but
it was estimated to be very weak [20–22]. Indeed, recent
analyses based on first-principles calculations showed that the
stable HLs are not obtained by two spin interactions including
the DM interaction [23]. The importance of four- and six-
spin interactions including spin chirality was also proposed
[24,25].

In this paper, we study the stability of 4Q- and 3Q-
HLs from a different viewpoint from the previous studies,
by taking into account the itinerant nature of electrons. We
consider an effective model with long-range exchange inter-
actions originating from the coupling between charge, spin,
and orbital degrees of freedom. By variational calculations
and simulated annealing, we show that the model realizes both
4Q- and 3Q-HLs at zero field, through the cooperation be-
tween the DM-type asymmetric exchange interaction arising
from the spin-orbit coupling and the multiple-spin interactions
from the spin-charge coupling. We also study the effect of
an applied magnetic field on these HLs. Depending on the
field directions, we find that the system exhibits multiple
phase transitions while changing from the 4Q- and 3Q-HLs
to the forced ferromagnetic (FFM) state. Notably, we show
that some of them are topological phase transitions with
pair annihilation of the monopoles and antimonopoles. We
demonstrate how the pair annihilation takes place by tracing
the positions of the monopoles and antimonopoles.

The rest of the paper is organized as follows. In Sec. II, we
introduce the effective spin model derived from an itinerant
electron model. In Sec. III, we describe the methods that
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FIG. 1. Spin textures of (a) 4Q and (b) 3Q hedgehog lattices ob-
tained by simulated annealing for the model in Eq. (2). The enlarged
pictures display the magnetic unit cell with the spin configurations
on every two [001] layers for clarity. The magenta (cyan) balls
represent the (anti)monopoles at the (anti)hedgehog cores, which
locate at the interstitial positions of the cubic lattice sites. In (a), there
are eight monopoles and eight antimonopoles in the magnetic unit
cell, forming two interpenetrating body-centered-cubic lattices (one
of them is shown by the green guides). Meanwhile, there are four
monopoles and four antimonopoles in (b), which comprise spirals
running in the [100], [010], and [001] directions. The right panels
show the ordering vectors for the (a) 4Q and (b) 3Q cases. The thick
arrows (gray) represent the directions of the magnetic field along
the [001], [110], and [111] axes. (c) Correspondences between the
spin textures and the effective magnetic fields. The cube represents
the lattice unit composed of the eight lattice sites surrounding a
monopole and an antimonopole.

we use in this paper to investigate the ground state of the
effective spin model. In Sec. IV, we show the phase diagram
at zero field including the HLs. In Sec. V, we show the
phase diagram in magnetic fields applied in three symmetric
directions. In Sec. VI, we discuss field-induced topological
phase transitions caused by pair annihilation of monopoles
and antimonopoles. Section VII is devoted to the summary.

II. MODEL

In this section, we present the model which we use in the
present paper. Starting from an itinerant electron model with
spin-charge and spin-orbit couplings in Sec. II A, we discuss
the effective model with long-ranged exchange interactions
induced by the itinerant nature of electrons in Sec. II B.

A. Itinerant electron model

In order to investigate the microscopic origin of magnetic
HLs, we begin with a minimal model including itinerant
electrons, an extended Kondo lattice model that describes the
coupling between the itinerant electron spins and localized
magnetic moments. While the Kondo lattice model has been
studied for f electron systems, where the f electrons comprise
the localized moments [26,27], we note that it is also regarded
as an effective model for the Hubbard-type models, which
have been used widely, e.g., for d electron systems, at the level
of the mean-field approximation [28]. In the current paper,
we include an antisymmetric spin-orbit coupling arising from
spatial inversion symmetry breaking in noncentrosymmetric
systems. The Hamiltonian in the wave-number representation
is given by

H =
∑
kσ

(εk − μ)c†kσ
ckσ + JK

∑
kqσσ ′

c†kσ
σσσ ′ck+qσ ′ · Sq

+
∑
kσσ ′

gk · c†kσ
σσσ ′ckσ ′ , (1)

where c†kσ
(ckσ ) is a creation (annihilation) operator of an

itinerant electron with wave vector k and spin σ =↑ or ↓. The
first term describes the kinetic energy of itinerant electrons; εk
is the energy dispersion and μ is the chemical potential. The
second term is for the Kondo coupling between itinerant elec-
tron spins and localized spin moments; σ = (σ x, σ y, σ z ) is
the vector of Pauli matrices, and Sq = 1√

N

∑
l Srl e

−iq·rl is the

Fourier transform of a localized moment Srl = (Sx
rl
, Sy

rl , Sz
rl

)
defined at site l , where N is the number of lattice sites. For
simplicity, Srl is regarded as a classical spin with the length
|Srl | = 1. JK is the exchange coupling constant the sign of
which is irrelevant for the classical spins. The last term repre-
sents the antisymmetric spin-orbit coupling induced by spatial
inversion symmetry breaking; gk = (gx

k, gy
k, gz

k ) is called the
g vector, which plays an important role in chiral magnets.
In the following, we consider the model on a simple cubic
lattice with the lattice constant being unity for simplicity;
noncentrosymmetric nature is effectively taken into account
in the g vector gk with an odd function of k.

B. Effective spin model

In general, the coupling between itinerant electrons and
localized spins generates effective exchange interactions be-
tween the localized spins. For instance, in the strong-coupling
case with JK � |εk − μ|, an effective ferromagnetic interac-
tion is generated to maximize the kinetic energy of itinerant
electrons by aligning neighboring spins, which is called the
double-exchange interaction [29,30]. On the other hand, in
the weak-coupling case with JK � |εk − μ|, the effective
magnetic interaction becomes long ranged and oscillating in
space, which is called the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [31–33]. In this paper, we consider the
weak-coupling case of the model in Eq. (1) by an effective
spin model derived by perturbation expansion in terms of
JK. Our model includes a higher-order effect of the spin-
charge coupling beyond the RKKY interaction discussed in
the previous studies [34–36], and also a DM-type interaction
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originating from the spin-orbit coupling in the last term in
Eq. (1) [37]. The Hamiltonian reads

H =
∑

η

[
− JSQη

· S−Qη
+ K

N
(SQη

· S−Qη
)2

− iDη · SQη
× S−Qη

]
−

∑
l

h · Srl . (2)

The first term denotes the RKKY interaction, which is derived
by the second-order perturbation with respect to JK [31–33].
In general, this tends to stabilize a spiral magnetic texture.
The second term is the biquadratic interaction, which is most
relevant among the higher-order perturbations with respect to
JK [36]. Hereafter, we consider the positive coupling constant
K > 0, which is known to prefer noncollinear and noncopla-
nar spin configurations [34–36]. The third term represents a
DM-type interaction arising from the antisymmetric spin-orbit
coupling, which is derived by the second-order perturbation
with respect to JK [37]. This also brings a twist in spin
textures, and plays a role in not only choosing the chirality but
also giving an anisotropy in spin space. Note that we ignore
other anisotropic exchange interactions originating from the
antisymmetric spin-orbit coupling, for simplicity [37]. The
last term describes the Zeeman coupling to an external mag-
netic field h.

In Eq. (2), all the exchange interactions are long ranged
in real space and specified by particular wave numbers Qη.
This inherits the itinerant nature of electrons; specifically, the
wave vectors Qη are set by the multiple maxima in the spin-
dependent bare susceptibility of itinerant electrons [35,36].
Corresponding to the 3Q- and 4Q-HLs, we assume two sets
of Qη: One is a set of the tetrahedral wave vectors as Q1 =
(Q,−Q,−Q), Q2 = (−Q, Q,−Q), Q3 = (−Q,−Q, Q), and
Q4 = (Q, Q, Q) [Fig. 1(a)], and the other is a set of the cubic
wave vectors as Q1 = (Q, 0, 0), Q2 = (0, Q, 0), and Q3 =
(0, 0, Q), which are orthogonal to each other [Fig. 1(b)]. In
the following calculations, we set Q = π/4 (period of eight
lattice sites); we confirm that the following results remain
qualitatively the same for different choices of Q. Although
the direction of Dη is independent of that of Qη in general,
we assume Dη ‖ Qη that stabilizes proper-screw-type spin
textures [38]. We note that the HLs can be composed of
superpositions of the proper screws. The magnetic field h is
applied along the [001], [110], and [111] directions as shown
in the right panels of Figs. 1(a) and 1(b). We set the energy
scale as J = 1. We consider the system with N = 163 spins
under periodic boundary conditions. We confirmed that the
following results remain the same for N = 243 spins (not
shown here).

III. METHOD

In this section, we present the methods to study the ground
state of the model in Eq. (2). At zero magnetic field, we
mainly adopt variational calculations by comparing the energy
of several different spin states, as introduced in Sec. III A. In
addition, we use simulated annealing, which is introduced in
Sec. III B, not only to confirm the variational results but also
to study the ground state in an applied magnetic field where it
is difficult to infer the variational states.

A. Variational calculations

In the variational calculations, we consider the following
spin textures as the variational states at zero magnetic field.
The simplest one is given by

Srl ∝
n∑

η=1

âη cosQηl , (3)

where âη is the unit vector parallel to Qη and Qηl = Qη · rl +
ϕη (ϕη represents the phase shift); n = 1, 2, 3 for the 3Q case
and n = 1, 2, 3, 4 for the 4Q case. This is a set of nonchiral
states that has no energy gain from the DM-type interaction.
Another variational state is a chiral one described as the equal
superpositions of proper screws:

Srl ∝
n∑

η=1

(b̂η sinQηl + ĉη cosQηl ), (4)

where b̂η and ĉη are the unit vectors orthogonal to âη and
each other (âη, b̂η, and ĉη form a right-handed system). Note
that the n = 3 (n = 4) state for 3Q (4Q) corresponds to the
3Q(4Q)-HL shown in Fig. 1(a) [1(b)]. In addition, we include
another variational state called the double-Q chiral stripe (2Q-
CS) found in the previous study [39]:

Srl ∝
√

1 − u2b̂1 sinQ1l +
√

1 − u2ĉ1 cosQ1l + uâ1, (5)

where u = v sinQ2l . In the variational calculations, we com-
pare the energy for all the variational states by varying ϕη

from zero to Q and v from zero to 1 to find the lowest-energy
candidate for the ground state.

B. Simulated annealing

In the simulated annealing, we numerically find the can-
didate for the ground state by means of MC simulation. We
gradually reduce the temperature of the system from T =
1 to 10−5 with a condition Tn = 10−0.1n, where Tn is the
temperature in the nth step. During the annealing, we spend a
total of 105–106 MC sweeps by using the standard Metropolis
algorithm. After annealing at a particular value of the field
strength h = |h|, we increase or decrease h successively by
�h = 0.01. At every shift by �h, we heat the system up to
T = 10−3 and cool down again to T = 10−5 by annealing.
Carefully comparing the energy by starting from various
values of h, we map out the magnetic phase diagram.

For the state obtained by the simulated annealing, we
calculate the magnetization per site along the field direction:

m = 1

N

∑
l

Srl · ĥ, (6)

where ĥ is the unit vector in the field direction, and the
magnetic susceptibility

χ = m(h + �h) − m(h)

�h
. (7)

To identify the multiple-Q magnetic orders, we also calculate
the magnetic moment with wave vector q:

mq =
√

S(q)

N
, (8)
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where S(q) is the spin structure factor defined by

S(q) = 1

N

∑
l,l ′

Srl · Srl′ e
−iq·(rl −rl′ ). (9)

In addition, following Ref. [17], we define the monopole
charge in each unit cube by using the fluxes �p penetrating
six square plaquettes of the cube as [40]

Qm(rc) = 1

4π

∑
p∈unit cube

�p · n̂p, (10)

where rc is the center position of the unit cube and n̂p is the
normal unit vector of the pth plaquette pointing outward of the
cube. We compute the flux �p by dividing the pth plaquette
into two triangles and taking the sum of the solid angles of
three spins on the two triangles i = 1 and 2. Each solid angle
is calculated by

	i = 2 tan−1

{
S1 · (S2 × S3)

1 + S1 · S2 + S2 · S3 + S3 · S1

}
, (11)

where S1, S2, and S3 are the three spins on the ith triangle in
the clockwise order viewed from the center of the cube, and
the sign of 	i is taken to be the same as that of S1 · (S2 × S3):
	i ∈ [−2π, 2π ). The flux �p is defined as a perpendicular
vector to the pth plaquette as

�p =
∑
i∈p

	in̂p. (12)

By substituting Eq. (12) into Eq. (10), we obtain the monopole
charge Qm(rc). This quantity detects the monopoles and anti-
monopoles as it takes the value of +1 (−1) when a monopole
(antimonopole) exists in the unit cube. The monopoles and
antimonopoles are connected by flows of the flux �p in
Eq. (12). We compute the total number of monopoles and
antimonopoles in the magnetic unit cell, Nm, as

Nm =
∑

rc∈Vm

|Qm(rc)|, (13)

where Vm is the magnetic unit cell (83 sites in the following
calculations). We also measure the distances between the
monopoles and antimonopoles by using rc where Qm(rc) =
±1. In particular, we compute the minimum distance between
the monopoles and antimonopoles by

dm = min
∣∣rm

c − ra
c

∣∣, (14)

where rm
c and ra

c denote rc for the monopoles and anti-
monopoles. This is an important quantity for not only mon-
itoring topological phase transitions by pair annihilation be-
tween monopoles and antimonopoles but also understanding
the behavior of the net scalar spin chirality introduced below.
We note, however, that rm(a)

c gives an approximate position
of the (anti)monopole core within an accuracy of the lattice
constant, and dm changes discontinuously by definition.

Finally, we calculate the net scalar spin chirality which
gives rise to the topological Hall effect in itinerant electron
systems [41]. We define the local scalar spin chirality at each
lattice site rl by the sum of spin triple products on four

FIG. 2. Phase diagrams of the model in Eq. (2) at zero field
for the (a) 4Q and (b) 3Q cases. 4Q(3Q)-HL, 4Q(3Q)-NC, 2Q-VC,
2Q-CS, and 1Q-H represent the chiral 4Q (3Q) hedgehog lattice, the
nonchiral 4Q (3Q), the 2Q vortex crystal, the 2Q chiral stripe, and
the 1Q helical states, respectively.

triangles on the αβ plane (α, β = x, y, z) as [40]

χγ
sc(rl ) = 1

2

∑
αβνανβ

εαβγ νανβSrl · (
Srl +να δ̂α

× Srl +νβ δ̂β

)
, (15)

where γ is the perpendicular direction to the αβ plane, εαβγ

is the Levi-Civita symbol, να(β ) = ±1, and δ̂α(β ) is the unit
translation vector in the α(β ) direction. By taking the sum
over all the sites and three planes, we obtain the net scalar
spin chirality:

χsc = 1

N

∑
γ l

χγ
sc(rl ). (16)

Since Eqs. (11) and (15) share the spin triple products, χsc

is related with the (oriented) summation of the flux �p in
Eq. (12). As mentioned above, the flows of the flux connect
the monopoles and antimonopoles, and hence the lengths
of the flux flows, which are approximately given by the
distances |rm

c − ra
c |, affect χsc. We will discuss such a relation

in Sec. VI.

IV. PHASE DIAGRAM AT ZERO FIELD

First, we show the results in the absence of the magnetic
field obtained by the variational calculations in Sec. III A.
Figures 2(a) and 2(b) display the magnetic phase diagrams
for the 4Q and 3Q cases, respectively, while varying D =
|Dη| and K in Eq. (2). When K = 0, a nonzero D stabilizes
the chiral 1Q helical state (1Q-H), which remains stable
in the small K region for D > 0 in both 4Q and 3Q cases. On
the other hand, when introducing K with D = 0, the 2Q-CS
is stabilized in both cases, but replaced by the nonchiral 4Q
and 3Q states in the larger K region. A similar sequence of
the phase transitions was found in two dimensions [36,39].
When D and K are both relevant, however, we find the 4Q- and
3Q-HLs in the wide parameter range, in addition to a chiral 2Q
state in the 3Q case, which is a Bloch-type vortex crystal (2Q-
VC) [37]. We confirm the stability of these HLs also by the
simulated annealing in Sec. III B; typical spin configurations
for the 4Q- and 3Q-HLs are presented in Figs. 1(a) and 1(b),
respectively.

Thus, our results indicate that the 4Q- and 3Q-HLs are
stabilized by cooperation between the RKKY interaction,
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FIG. 3. Phase transitions in the magnetic fields along the (a) [001], (b) [110], and (c) [111] directions in the 4Q case: the magnetization
m in Eq. (6); the magnetic susceptibility χ in Eq. (7); the magnetic moments with wave vector Qη, mQη

in Eq. (8); the number of monopoles
and antimonopoles, Nm in Eq. (13); and the net scalar spin chirality χsc in Eq. (16) (note that −χsc is plotted in the figure). The green,
purple, gray, and white regions represent the 4Q-HLs (Nm �= 0), the noncoplanar 4Q states (Nm = 0), the 1Q conical states, and the forced
ferromagnetic (FFM) state, respectively. The black-dashed vertical lines represent the topological transitions by pair annihilation of monopoles
and antimonopoles, while the gray ones represent other nontopological phase transitions. The insets in (a) and (b) show the changes in the
minimum distance between monopoles and antimonopoles, dm, in Eq. (14) when increasing the field before the topological transitions. See
also Figs. 5 and 6.

the biquadratic interaction, and the DM-type interaction. In
other words, both spin-charge and spin-orbit couplings play a
crucial role in the stabilization of the 4Q- and 3Q-HLs.

From the variational calculations, we find that the stable
positions of all the monopoles and antimonopoles of the 4Q-
and 3Q-HLs locate not at the lattice sites but at the interstitial
positions. This is concluded for the 3Q-HL by the fact that
the optimized phase shift in Eq. (4) always takes ϕη = π/8.
In this case, the eight spins surrounding the (anti)monopole
comprise a hyperbolic (anti)hedgehog the north and south
poles of which are in the [111] direction, as shown in Fig. 1(c).
Meanwhile, for the 4Q-HL, the set of ϕη depends on D and
K since the four ordering vectors Qη are dependent on each
other. In this case, however, the eight spins comprise a hy-
perbolic (anti)hedgehog with the north and south poles in the
[001] direction. In both cases, the (anti)hedgehog generates
an effective (anti)monopole field, as shown in Fig. 1(c). We
deduce that the stable monopoles and antimonopoles centered
at the interstitial positions might be ubiquitous to the systems
with fixed spin length on discrete lattices since their cores are
singular points where the spins vanish in the continuum limit.

V. PHASE TRANSITIONS IN MAGNETIC FIELDS

Next, we show the results for the phase diagrams of the
model in Eq. (2) in the magnetic fields along the [001], [110],
and [111] directions obtained by the simulated annealing in
Sec. III B. In Secs. V A and V B, we present the results for the
4Q and 3Q cases, respectively.

A. 4Q case

Let us first discuss the 4Q case, the ordering vectors of
which are shown in Fig. 1(a). Figure 3 summarizes the results
for the 4Q-HL at D = 0.3 and K = 0.6.

First, we discuss the results for the [001] field, h001 =
(0, 0, h), shown in Fig. 3(a). As plotted in the top panel, the
magnetization m shows kinks at h 
 0.575, 1.395, and 2.335,
and a small jump at h 
 0.595. Correspondingly, the mag-
netic susceptibility χ shows peaks at h 
 0.575 and 0.595,
a broad hump at h 
 1.395, and a shoulder at h 
 2.335.
These indicate the existence of at least four phase transitions:
one at h 
 0.595 is of first order, while the remaining three
are of second order. The magnetic moments mQη

plotted in the
middle panel show that the four phases below h 
 2.335 are
4Q states with the equal amplitudes for the four mQη

, whereas
the phase for h � 2.335 is a FFM state. We note that these 4Q
states are distinguished by the higher Fourier components of
the spin structure factor S(q) (see Appendix A).

The number of monopoles and antimonopoles, Nm, is
plotted in the bottom panel. The result shows that Nm is halved
and vanishes through the second-order phase transitions at
h 
 0.575 and 1.395, respectively (black dashed lines). As
plotted in the inset, the minimum distance between the
monopoles and antimonopoles, dm, gets shorter from dm =
2
√

3 to 1 and 3 to 1 while approaching h 
 0.575 and
1.395, respectively. These suggest that the phase transi-
tions are topological ones caused by pair annihilation of
monopoles and antimonopoles. We will discuss the details in
Sec. VI A.
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In the bottom panel, we also plot the net scalar spin
chirality χsc. The result shows that χsc rapidly increases before
the phase transition at h 
 0.575. After showing a sharp peak
at the phase transition at h 
 0.595, χsc exhibits a broad peak
at h ∼ 1, rapidly decreases around the phase transition at
h 
 1.395, and smoothly reduces to zero while approaching
the phase transition to a FFM state at h 
 2.335. The change
of χsc is closely related with the change in the lengths of flows
of the flux �p in Eq. (12); see Sec. VI A.

Next, we discuss the results for the [110] field, h110 =
1√
2
(h, h, 0), shown in Fig. 3(b). As shown in the top panel, m

and χ show jumps and sharp peaks, respectively, at h 
 0.795,
0.845, and 1.435. m also has kinks at h 
 1.325 and 2.495,
where χ shows a broad hump and a shoulder, respectively.
These indicate the existence of at least five phase transitions:
Three at h 
 0.795, 0.845, and 1.435 are of first order, while
the remaining two at h 
 1.325 and 2.495 are of second order.
mQη

plotted in the middle panel show that the four phases
for h � 1.435 are 4Q states, the phase for 1.435 � h � 2.495
is a single-Q (1Q) conical state, and that for h � 2.495 is a
FFM state. In the 4Q states, the amplitudes of mQη

are equal
at zero field, while they split into two groups for nonzero
fields. We note that the 1Q conical phase breaks C2 rotational
symmetry spontaneously by choosing one of two equivalent
wave vectors Q3 and Q4 (we denote the chosen wave vector
as Q4 in the figure).

As shown in the bottom panel of Fig. 3(b), Nm is halved
through the first-order phase transition at h 
 0.845 and van-
ishes through the second-order one at h 
 1.325. As plotted
in the inset, dm gets shorter when approaching h 
 1.325,
similar to the cases of h001 with h 
 0.575 and 1.395. This
also suggests a topological transition by pair annihilation. On
the other hand, χsc has a nonzero value in all the 4Q states.
Notably, χsc is almost doubled at h 
 0.845 where Nm is
halved, and rapidly decreases through the phase transition at
h 
 1.325 where Nm vanishes. We will discuss the relation to
the flux flows in Sec. VI A.

Finally, we discuss the results for the [111] field, h111 =
1√
3
(h, h, h), shown in Fig. 3(c). m, χ , and mQη

in the top
and middle panels signal two first-order phase transitions at
h 
 0.775 and 0.845 among the 4Q-HLs, a first-order one to
the 1Q conical state at h 
 1.095, and a second-order one to a
FFM state at h 
 2.595. In the 4Q states, all four mQη

become
inequivalent for 0.775 � h � 0.845, while two of them have
the same amplitudes for h � 0.775 and 0.845 � h � 1.095.
This indicates that the 4Q state for 0.775 � h � 0.845 has
lower symmetry compared to the other two 4Q states, while
C3 rotational symmetry around the [111] axis (‖ Q4) is broken
in all three phases except at h = 0.

As plotted in the bottom panel in Fig. 3(c), Nm is reduced
to half through the first-order phase transition at h 
 0.845.
This leads to the enhancement of χsc, similar to the case
with h110. In the [111] field, however, the system does not
exhibit a continuous phase transition that might be ascribed
to the topological phase transition. This is presumably due
to the fact that the 1Q conical state is more stable down
to a lower field, compared to the [001] and [110] cases,
since the field is applied in parallel to one of the wave
vectors, Q4.

B. 3Q case

Next, we discuss the 3Q case with the ordering vectors
shown in Fig. 1(b). Figure 4 summarizes the results for the
3Q-HL at D = 0.3 and K = 0.7.

First, we discuss the results for the [001] field, h001 =
(0, 0, h), shown in Fig. 4(a). As shown in the top and middle
panels, m, χ , and mQη

signal at least five phase transitions:
first-order ones at h 
 0.275, 0.695, and 0.775 and second-
order ones at h 
 1.035 and 2.595. The four low-field phases
for h � 1.035 are 3Q states with nonzero three mQη

, the
phase for 1.035 � h � 2.595 is a 1Q conical state with only
mQ3 �= 0, and that for h � 2.595 is a FFM state. Furthermore,
when we look closer mQη

, we find that mQ1 becomes inequiva-
lent to mQ2 at 0.695 � h � 0.775, whereas mQ1 = mQ2 in the
other three 3Q states. These 3Q states are also distinguished
by the higher Fourier components of the spin structure factor
S(q) and the structure factor of the local scalar spin chirality
(see Appendix B).

As shown in the bottom panel of Fig. 4(a), Nm is unchanged
in the three low-field 3Q phases, but it vanishes through the
first-order phase transition at h 
 0.775. On the other hand,
χsc increases in the two low-field phases, while it rapidly
decreases in the third phase and vanishes through the second-
order phase transition to the 1Q conical state at h 
 1.035.
The change of χsc in the 3Q-HL phases is accounted for
by the change in the lengths of the flux flows connecting
the monopoles and antimonopoles, similar to the 4Q case in
Sec. V A (see Sec. VI B).

Next, we discuss the results for the [110] field, h110 =
1√
2
(h, h, 0), shown in Fig. 4(b). As plotted in the top panel,

the data of m and χ signal seven first-order phase transitions
at h 
 0.405, 0.525, 0.725, 0.975, 0.995, 1.125, and 1.245,
and a second-order phase transition at h 
 2.415. In addition,
mQη

in the middle panel and Nm in the bottom panel indicate
additional phase transitions at h 
 0.445, 0.745, 0.945, and
1.355. mQη

shows that all the phases for h � 1.245 are 3Q
states, the two phases for 1.245 � h � 2.415 are 2Q states,
and the phase for h � 2.415 is a FFM state. We note that mQ1

becomes inequivalent to mQ2 in the 3Q states for 0.405 � h �
0.525 and 0.725 � h � 0.975, and the 2Q state for 1.245 �
h � 1.355. This indicates spontaneous symmetry breaking by
choosing one of the two equivalent wave vectors in these
states.

Within the 3Q phases for h � 1.245, Nm changes in a com-
plicated manner, as plotted in the bottom panel of Fig. 4(b): In
contrast to the other cases, Nm is not reduced monotonically
but changes from 8 to 6 to 10 to 6 to 2 in steps. By tracing dm

plotted in the insets, we find that the three phase transitions
at h 
 0.445, 0.745, and 0.945 appear to be topological ones
caused by pair annihilation of monopoles and antimonopoles
(dm does not change from 1 before the transitions since
the lattice spacing is larger than the positional changes of
monopoles and antimonopoles; see Sec. VI B for the details).
The net scalar spin chirality χsc is nonzero in all the 3Q-HLs
for 0 < h � 1.245. It exhibits a broad peak at h ∼ 1 and
vanishes through the first-order phase transition to the 2Q state
at h 
 1.245.

Finally, we discuss the results for the [111] field, h111 =
1√
3
(h, h, h), shown in Fig. 4(c). In this case, m and χ plotted
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FIG. 4. Phase transitions in the magnetic field along the (a) [001], (b) [110], and (c) [111] directions in the 3Q case. The plotted quantities
and the dashed vertical lines for the phase transitions are common to those in Fig. 3. The red, orange, blue, gray, and white regions represent
the 3Q-HLs (Nm �= 0), the noncoplanar 3Q states (Nm = 0), the 2Q vortex crystal states, the 1Q conical state, and the FFM state, respectively.
See also Figs. 7 and 8 for the changes of dm shown in the insets of the bottom panels of (b) and (c).

in the top panel signal four first-order phase transitions at h 

0.585, 1.105, 1.135, and 1.255, and two second-order ones
at h 
 1.305 and 2.335. In addition, Nm in the bottom panel
indicates an additional phase transition at h 
 0.495. mQη

in
the middle panel shows that all the phases for h � 2.335 are
3Q states, while the phase for h � 2.335 is a FFM state. All
the 3Q phases have the equal amplitudes for the three mQη

;
namely, they retain C3 rotational symmetry with respect to the
[111] axis.

As plotted in the bottom panel of Fig. 4(c), Nm is nonzero
in the 3Q phases below h 
 1.305. By monitoring dm plotted
in the insets, we find that the transitions at h 
 0.495 and
1.305 appear to be topological ones by pair annihilation of
monopoles and antimonopoles. χsc is nonzero for all the 3Q-
HLs but decreases rapidly through the second-order phase
transition at h 
 1.305 where Nm vanishes. We will discuss
the details in Sec. VI B.

VI. TOPOLOGICAL PHASE TRANSITIONS BY PAIR
ANNIHILATION OF MONOPOLES AND

ANTIMONOPOLES

In Sec. V, we found several phase transitions in the 4Q- and
3Q-HL phases where no discontinuous changes are observed
in m and mQη

but Nm changes. These suggest continuous phase
transitions with a topological change caused by pair anni-
hilation of monopoles and antimonopoles. Such topological
transitions under the [001] field were discussed for an ansatz
of the 3Q-HL state in the continuum limit [10] and also for
a metastable 3Q-HL in the model in Eq. (2) [40]. Our results
in Sec. V, however, appear to offer several examples in the
ground state for both 4Q- and 3Q-HLs. In this section, we
analyze these phase transitions by tracing the positions of
monopoles and antimonopoles in real space. In Secs. VI A

and VI B, we present the results for the 4Q and 3Q cases,
respectively.

A. 4Q case

In Sec. V A, we found three possible topological phase
transitions in the 4Q-HL: Two are at h 
 0.575 and 1.395 for
the [001] field and the other is at h 
 1.325 for the [110] field.
We discuss how the monopoles and antimonopoles move and
pair annihilate as a function of the field strength through each
transition.

In the case of the [001] field, Nm changes from 16
to 8 at h 
 0.575 and from 8 to 0 at h 
 1.395, both
suggesting four pairs of monopoles and antimonopoles
annihilate simultaneously at the phase transition. They
are visualized in real space in Fig. 5. At zero field, the
monopoles and antimonopoles form two interpenetrating
body-centered-cubic lattices with dm = 2

√
3 as shown in

Fig. 5(a) [see also Fig. 1(a)]. While increasing h, half of the
monopoles and antimonopoles move toward each other in
the field direction, forming four pairs. When approaching
to the critical field, dm given by the four pairs is reduced
to 1 as shown in Fig. 5(b) at h = 0.57 and then becomes
zero, which is the pair annihilation at the critical field
h 
 0.575. In the higher-field region, the remaining
monopoles and antimonopoles are paired along the field
direction again, as exemplified in Fig. 5(c) at h = 0.60. In
this case, dm is reduced from 3 to 1 as shown in Fig. 5(d)
at h = 1.39 and, finally, becomes zero at the critical field
h 
 1.395 by the pair annihilation. The changes of dm were
plotted in the inset of the bottom panel in Fig. 3(a).

The movement of the monopoles and antimonopoles ex-
plains the behavior of χsc plotted in the bottom panel of
Fig. 3(a). When approaching the topological transition at
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FIG. 5. Positions of monopoles (magenta) and antimonopoles
(cyan) in the magnetic unit cell (cube) when approaching the topo-
logical transition at h 
 0.575 and 1.395 for the [001] field (denoted
by the gray arrow) in the 4Q case: (a) h = 0.00, (b) h = 0.57, (c) h =
0.60, and (d) h = 1.39. The arrows at the bottom show the slice of
the spin texture on the plane just below some of the monopoles and
antimonopoles. The black arrows represent the minimum distances
between the monopoles and antimonopoles, dm. The vertical dashed
lines and the dots at the bottom end represent the projections onto the
bottom plane as guides for the eye.

h 
 0.575 by increasing h, χsc decreases [−χsc increases in
Fig. 3(a)]. This is understood by the decrease of dm with
the flux flows in the same direction of the magnetic field:
The decrease of dm reduces the positive contribution to χsc,
which leads to the net decrease in χsc. On the other hand,
χsc increases (−χsc decreases) near the other topological
transition at h 
 1.395. This is due to the decrease of dm with
the flux flows in the opposite direction to the magnetic field.

Similarly, Nm changes from 8 to 0 for the [110] field
through the phase transition at h 
 1.325. The change of the
positions of monopoles and antimonopoles is shown in Fig. 6,
where dm changes in a similar manner to the case of the [001]
field at h 
 1.395 in Figs. 5(c) and 5(d); see also the inset of

FIG. 6. Positions of monopoles and antimonopoles when ap-
proaching the topological transition at h 
 1.325 for the [110] field
in the 4Q case: (a) h = 0.85 and (b) h = 1.32. The notations are
common to those in Fig. 5.

FIG. 7. Positions of monopoles and antimonopoles when ap-
proaching the topological transition at h 
 0.445, 0.745, and 0.945
for the [110] field in the 3Q case: (a) h = 0.41, (b) h = 0.44, (c) h =
0.45, (d) h = 0.73, (e) h = 0.94, and (f) h = 0.95. The notations are
common to those in Fig. 5.

the bottom panel of Fig. 3(b). The only difference from the
[001] case is in the direction of collisions. The corresponding
reduction of the lengths of the flux flows is also related to the
suppression of χsc in Fig. 3(b) since the fluxes �p have the
positive component in the opposite direction to the field.

B. 3Q case

In the case of the 3Q-HLs, we identified totally five
possible topological transitions in Sec. V B. Three of them
are at h 
 0.445, 0.745, and 0.945 for the [110] field, and
the remaining two are at h 
 0.495 and 1.305 for the [111]
field. Figure 7 shows the real-space pictures for the [110]
field. In a low field, there are totally eight monopoles and
antimonopoles as shown in Fig. 7(a) for h = 0.41, but one
pair annihilates through the transition at h 
 0.445 as shown
in Figs. 7(b) and 7(c). We note that the directions of pairs
change within the same 3Q state with spontaneous symmetry
breaking with respect to the [100] and [010] directions. In
the next topological transition at h 
 0.745, Nm changes from
10 to 6, where two pairs of monopoles and antimonopoles
annihilate as shown in Figs. 7(d) and 7(e). Through these
transitions, dm does not change from 1, since the distance
for the pairs that survive is already 1 before the transition.
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FIG. 8. Positions of monopoles and antimonopoles when ap-
proaching the topological transition at h 
 0.495 and 1.305 for the
[111] field in the 3Q case: (a) h = 0.00, (b) h = 0.49, (c) h = 0.50,
(d) h = 1.26, and (e) h = 1.30. The notations are common to those
in Fig. 5.

Finally, the other two pairs annihilate and Nm is reduced to 2
at h 
 0.945 as shown in Fig. 7(f). See also the insets in the
bottom panel of Fig. 4(b).

Finally, we present the results for the [111] field in
Fig. 8. In this case, there are four pairs of monopoles and
antimonopoles in the low-field phase, and their distance gets
shorter as demonstrated in Figs. 8(a) and 8(b). Through the
topological transition at h 
 0.495, three of four annihilate as
shown in Fig. 8(c). Finally, the remaining pair gets closer and
pair annihilates through the transition at h 
 1.305 as shown
in Figs. 8(d) and 8(e). The rapid decrease of dm explains the
rapid suppression of χsc while approaching the topological
phase transition at h 
 1.305 in Fig. 4(c).

VII. CONCLUDING REMARKS

In conclusion, we have investigated the magnetic HLs
in the effective spin model with long-range interactions re-
flecting the itinerant nature of electrons. We found that both
4Q- and 3Q-HLs are stabilized even at zero magnetic field
by the synergy between the DM-type interactions from the
spin-orbit coupling and the multiple-spin interactions from
the spin-charge coupling. The results are in stark contrast

to the previous studies for the localized spin models with
short-range interactions, where the HLs are stable only in a
field. Furthermore, our HLs may have much shorter periods
compared to the previous ones; the periods in our HLs are
dictated by nesting properties of the Fermi surface, whereas
those in the previous studies are given by the competition
between the ferromagnetic exchange interaction and the DM
interaction. We also clarified the effect of an external magnetic
field on the HLs. We showed that both 4Q and 3Q cases
exhibit a variety of successive phase transitions depending
on the field direction, including the transitions to 2Q and 1Q
states. Interestingly, among them, we found several topolog-
ical phase transitions where the number of monopoles and
antimonopoles changes by the pair annihilation. We explic-
itly showed how the pair annihilation occurs by tracing the
real-space positions of monopoles and antimonopoles on the
discrete lattice.

As mentioned in the introduction, 3Q- and 4Q-HLs were
recently discovered in MnSi1−xGex [6,7,14]. They are stable
even in the absence of the magnetic field and have much
shorter periods compared to the conventional skyrmion lat-
tices, for instance, in MnSi, and evaded the understanding
from the conventional spin models with short-range two-spin
interactions. A scenario was recently proposed based on short-
range four-spin and six-spin interactions including the scalar
spin chirality [23]. Our finding suggests another scenario
by emphasizing the important role of the itinerant nature
of electrons. To test our scenario, it is necessary to clarify
the electronic structure in the real compounds, e.g., by the
angle-resolved photoemission spectroscopy and the de Haas–
van Alphen effect. First-principles calculations would also be
helpful, while it is not straightforward to precisely predict
the relevant wave numbers in the complicated multiorbital
systems with electron correlations, in particular, chemically
doped materials like MnSi1−xGex. It would also be interesting
to test our scenario for the short-period skyrmion lattice
recently discovered in EuPtSi [42–44]. We note that a simi-
lar scenario (without the DM-type interaction) was recently
discussed for the swirling spin textures in a centrosymmetric
triangular magnet Gd2PdSi3 [45].

On the other hand, in the magnetic field, our results suggest
that the 4Q and 3Q states exhibit a nonzero topological Hall
effect through the nonzero scalar spin chirality χsc. Our results
also indicate that χsc changes drastically corresponding to
the modulation of the magnetic textures including the topo-
logical transitions by pair annihilations of monopoles and
antimonopoles. Experimentally, interesting behaviors were
observed in a wide range of field and temperature, even
with the sign change of the topological Hall resistivity [14].
Assuming our scenario based on the itinerant nature of elec-
trons, it will be important to take into account the realistic
electronic band structures in the magnetic field for detailed
comparison between theory and experiment. In particular, it
is worth studying how the modulations of the Fermi surfaces
and corresponding Qη modify the phase diagrams in the
magnetic field. Moreover, thermal fluctuations might also play
an important role. We leave the finite-temperature study as a
future work, as it requires sophisticated Monte Carlo simu-
lations beyond the simulated annealing to resolve competing
phases.
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APPENDIX A: DIFFERENCE AMONG THE 4Q STATES

In this section, we discuss the difference among the 4Q
states found in Sec. V A. In the case of the [001] field in
Fig. 3(a), we found four 4Q states below h 
 2.335, all of
which have the equal amplitudes of the four mQη

. Two of
them are distinguished by the number of monopoles and
antimonopoles, Nm: the 4Q-HL state with Nm = 16 below
h 
 0.575 and the 4Q state with Nm = 0 above h 
 1.395.
The remaining two have the same Nm = 8, but we find that
they show different values in higher harmonics in the spin
structure factor S(q) in Eq. (9): By calculating S(Qη + Qη′ )
where η = 1, 2, 3, 4 and η �= η′, we find that S(Q2 + Q3) and
S(Q3 + Q1) have equal amplitudes for 0.575 � h � 0.595,
but S(Q2 + Q3) �= S(Q3 + Q1) for 0.595 � h � 1.395. The
differences among the four 4Q states are summarized in
Fig. 9(a).

In the case of the [110] field in Fig. 3(b), we also find
four 4Q states below h 
 1.435 that share the same symmetry
in terms of mQη

. In this case again, Nm distinguishes two of
them: the 4Q-HL state with Nm = 8 for 0.845 � h � 1.325
and the 4Q state with Nm = 0 for 1.325 � h � 1.435. In order
to distinguish the remaining two for h � 0.845, we calculate
the spin structure factor with the spin component parallel to
the [110] field defined by

S‖(q) = 1

2
{Sxx(q) + Syy(q)} + Sxy(q), (A1)

where Sμν (q) is the matrix form of the spin structure factor
defined by

Sμν (q) = 1

N

∑
l,l ′

Sμ
rl

Sν
rl′

e−iq·(rl −rl′ ). (A2)

We find that the higher harmonics along the field direction,
S‖(2Q1 + 2Q2), is nonzero in the 4Q state for 0.795 � h �
0.845, while it vanishes for h � 0.795. The differences among
the four 4Q states are summarized in Fig. 9(b).

Finally, in the case of the [111] field in Fig. 3(c), we
find three 4Q states. In this case, mQη

distinguishes the
intermediate phase for 0.845 � h � 1.095, as mentioned in
Sec. V A. The remaining two can be distinguished by Nm. See
Fig. 9(c).

APPENDIX B: DIFFERENCE AMONG THE 3Q STATES

In this section, we discuss the difference among the 3Q
states found in Sec. V B. In the case of the [001] field in
Fig. 4(a), we find four 3Q states. One of them for 0.775 �

FIG. 9. Schematics for the differences among the 4Q phases
in the (a) [001], (b) [110], and (c) [111] field corresponding to
Figs. 3(a), 3(b), and 3(c), respectively.

h � 1.035 is distinguished from the others by Nm: the 3Q
state with Nm = 0 above h 
 0.775. In addition, as mentioned
in Sec. V B, mQη

distinguishes the 3Q-HL state for 0.695 �
h � 0.775. We find a difference between the remaining two in
higher harmonics in the structure factor of the local scalar spin
chirality in Eq. (15). Specifically, we calculate the component
perpendicular to the [001] field defined by

χ⊥
sc (q) = 1

2

{
χ xx

sc (q) + χ yy
sc (q)

} + χ xy
sc (q), (B1)

where χμν
sc (q) is the matrix form of the structure factor defined

by

χμν
sc (q) = 1

N

∑
l,l ′

χμ
sc(rl )χ

ν
sc(rl ′ )e

−iq·(rl −rl′ ). (B2)

We find that χ⊥
sc (2Q1) and χ⊥

sc (2Q2) are nonzero and have
equal amplitudes in the 3Q-HL state for 0.275 � h � 0.695,
but vanish below h 
 0.275. The differences among the four
3Q states are summarized in Fig. 10(a).

Next, in the case of the [110] field in Fig. 4(b), we found
ten 3Q states below h 
 1.245 with a variety of Nm. The
3Q-HL state with Nm = 10 for 0.725 � h � 0.745 is distin-
guished from others, but Nm = 8 for the two states below
h 
 0.445, Nm = 6 for the three states for 0.445 � h � 0.725
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FIG. 10. Schematics of the 3Q states in the (a) [001], (b) [110],
and (c) [111] field corresponding to Figs. 4(a), 4(b), and 4(c),
respectively.

and 0.745 � h � 0.945, and Nm = 2 for the remaining four
for 0.945 � h � 1.245. As mentioned in Sec. V B, the two
with Nm = 8 below h 
 0.445 and the two with Nm = 6 for
0.445 � h � 0.725 are distinguished by mQη

. Similarly, the
two with Nm = 2 for 0.945 � h � 0.975 and 1.125 � h �
1.245 are distinguished from the other two by mQη

. See
Fig. 10(b).

In order to distinguish the rest, we calculate higher
harmonics in the spin structure factor similar to the 4Q
case in Appendix A. For the 3Q-HL states with Nm =
6, S‖(Q2 + Q3) and S‖(Q3 + Q1) have equal amplitudes
for 0.745 � h � 0.945, but do not for 0.445 � h � 0.525.
Meanwhile, for the two states with Nm = 2 and mQ1 �=
mQ2 , S‖(2Q2 + 2Q3) = S‖(2Q3 + 2Q1) for 1.125 � h �
1.245 while S‖(2Q2 + 2Q3) �= S‖(2Q3 + 2Q1) for 0.945 �
h � 0.975. Furthermore, for the two states with Nm = 2 and
mQ1 = mQ2 the component perpendicular to the [110] field,
Szz(2Q1 + 2Q2), is zero for 0.975 � h � 0.995, but nonzero
for 0.995 � h � 1.125. All the differences among the ten 3Q
states are summarized in Fig. 10(b).

Finally, in the case of the [111] field in Fig. 4(c), we found
seven 3Q states below h 
 2.335, all of which have equal
amplitudes of the three mQη

. Two of them are distinguished
by Nm: the 3Q-HL state with Nm = 8 below h 
 0.495 and
the 3Q state with Nm = 0 above h 
 1.305. The remaining
five have the same Nm = 2, but two of them for 1.105 �
h � 1.135 and 1.255 � h � 1.305 show nonzero values in
higher harmonics in the spin structure factor S⊥(Q1 + Q2 +
Q3), which is the component perpendicular to the [111] field
given by

S⊥(q) = 2

3
{S(q) − Sxy(q) − Syz(q) − Szx(q)}. (B3)

Furthermore, S⊥(Q1 + Q2) = S⊥(Q2 + Q3) for 1.105 � h �
1.135, but S⊥(Q1 + Q2) �= S⊥(Q2 + Q3) for 1.255 � h �
1.305. The remaining three 3Q-HLs (for 0.495 � h � 0.585,
0.585 � h � 1.105, and 1.135 � h � 1.255) with Nm = 2
cannot be distinguished within the present analyses although
further higher harmonics may reveal the difference. See
Fig. 10(c).
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