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Geometric phase control of a spin-torque oscillator
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We show that the phase of a spin-torque oscillator generically acquires a geometric contribution on slow and
cyclic variation of the parameters that govern its dynamics. As an example, we compute the geometric phase that
results from a cyclic excursion of the magnitude of the external field and the current. We consider thermal phase
fluctuations and conclude that the geometric phase should be experimentally observable at room temperature
with current set-ups. We briefly comment on arrays of spin-torque oscillators and possible applications.
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I. INTRODUCTION

Spin-torque oscillators are auto-oscillators, systems in
which a time-independent drive results in self-sustained os-
cillations [1–3]. In spin-torque oscillators, periodic magne-
tization dynamics results from a steady injection of angular
momentum, by means of a spin current, that overcomes
relaxation. Their simplest implementation is based on the
precession of a uniaxial single-domain magnet around its
axis of symmetry. The spin current is then injected either by
using an adjacent fixed ferromagnet to spin-polarize charge
current or by using the spin-Hall effect [4] in an adjacent
normal-metal layer. In the latter situation one also refers to
spin-Hall oscillators.

Regardless of their precise implementation, spin-torque
oscillators are interesting systems that exhibit a variety of
nonlinear physical phenomena, such as phase and frequency
locking [5,6]. Possible applications of spin-torque oscillators
range from the emission and detection of microwave radiation
to neuromorphic computing [7]. Some of these applications
rely on the control of the phase of the oscillator. An example
of such an application is in the field of magnonics [8], where
the phase of the oscillator could be imprinted on the phases of
spin waves that perform certain logic operations by controlled
spin-wave interference. Another example is that of associative
memory applications that may be possible with the phase of
spin-torque oscillators [7].

In this article we show that the phase of a spin-torque
oscillator can be controlled geometrically. More precisely, we
show that a sufficiently slow cyclic change of the parameters
that govern the dynamics of the oscillator results in a geomet-
ric contribution to the phase shift. Here geometric means that
the phase shift is only determined by the geometry of the path
in the parameter space but, for example, not by how fast it
is traversed—provided the parameters are varied sufficiently
slowly. As a concrete example, we consider the geometric

phase that arises from a loop in the parameter space that
is spanned by the magnitude of the external field and the
magnitude of the spin current.

Because spin-torque oscillators are dissipative systems, the
geometric phase that is elucidated here is not straightfor-
wardly related to well-known examples of geometric phases,
such as the Berry phase in quantum mechanics [9] or the
Hannay angle in classical mechanics [10,11]. The geometric
phase we consider is rather an example of a geometric phase
first pointed out by Landsberg [12] and by Ning and Haken
[13]. (See Ref. [14] for a review of this phase, and other
geometric phases.)

The remainder of this article is organized as follows: In
the next section we go in detail through the specific example
of the geometric phase that arises due to a cyclic variation
of field and current. In Sec. III we discuss the effect of
thermal phase fluctuations and conclude that the geometric
phase should be observable despite these fluctuations. We end
with a conclusion and outlook, where we also discuss possible
extensions and applications of our work. In the Appendices we
consider a more general cyclic variation of control parameters,
discuss the influence of ellipticity, and provide some results
for arrays of spin-torque oscillators.

II. GEOMETRIC PHASE DUE TO CYCLIC VARIATION
OF EXTERNAL FIELD AND CURRENT

We consider a specific implementation of a spin-torque
nano-oscillator based on a single-domain magnet with uniax-
ial symmetry into which spin current is injected (see Fig. 1).
Here we mostly follow Slavin and Tiberkevich [1] in the
derivation of the equations of motion and the discussion of
the critical current and the equilibrium power. We start from
the Landau-Lifshitz-Gilbert equation for the magnetization

2469-9950/2020/101(14)/144415(6) 144415-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.144415&domain=pdf&date_stamp=2020-04-10
https://doi.org/10.1103/PhysRevB.101.144415


A. RÜCKRIEGEL AND R. A. DUINE PHYSICAL REVIEW B 101, 144415 (2020)

FIG. 1. Illustration of the set-up that is considered: a uniax-
ial single-domain magnet into which spin current (not shown) is
injected. The external field with magnitude H0 points in the z
direction. The magnetization dynamics is parametrized in terms of
the azimuthal angle φ and the power p. The power determines the
projection of the magnetization direction onto the z axis.

direction m:

∂m(t )

∂t
= −γμ0m(t ) × Heff (m(t ))

−αγμ0m(t ) × [m(t ) × Heff (m(t ))] + τcit (m(t )),

(1)

where γ > 0 is the modulus of the gyromagnetic ratio, μ0

is the vacuum permeability, and Heff is the effective field.
The Gilbert damping term is determined by the constant
α � 1. The current-induced torque τcit (m(t )) could include
a conventional spin-transfer torque, as well as a spin-orbit
torque.

The effective field consists of a demagnetizing field and an
external field of magnitude H0 in the z direction, so that

Heff (m) = (H0 − 4πMsmz )ez, (2)

where Ms is the saturation magnetization and ez the unit vector
in the z direction.

We take the current-induced torque of the form

τcit = Isg(m · ez )m × (m × ez ), (3)

which physically corresponds to a spin current Is with spin po-
larization in the z direction that is injected. The dimensionless
function g(m · ez ) is determined by the details of the set-up.

We parametrize the magnetization direction by the power
0 � p(t ) � 1 and a precession angle φ(t ) via

m =

⎡
⎢⎣

2
√

p(1 − p) sin φ

2
√

p(1 − p) cos φ

1 − 2p

⎤
⎥⎦. (4)

This results in equations of the form

ṗ(t ) = −2[�+(p(t ); ω0, Is)−�−(p(t ); ω0, Is)]p(t ), (5a)

φ̇(t ) = ω(p(t ); ω0, Is), (5b)

FIG. 2. Illustration of the rectangular loop in (ω0, Is ) space that
gives rise to the geometric phase. The dotted red line separates the
subcritical (Is < Ic) and supercritical (Is > Ic) regions.

with

�+(p; ω0, Is) = α(ω0 − ωM ) − α(ω0 − 3ωM )p, (6a)

�−(p; ω0, Is) = Is[η + (η′ − η)p], (6b)

where η(p) = g(1 − 2p), η = η(0), and η′ = dη(p)/d p|p=0.
The precession frequency is given by

ω(p; ω0, Is) = ω0 − ωM + 2ωM p . (7)

In deriving the above, we have kept terms up to quadratic
order in p and defined ω0 = γμ0H0 and ωM = 4πγμ0Ms. We
also note that, while the coefficients in Eqs. (6) and (7) depend
on the specific implementation, the various terms that arise are
generic and the results derived below can be easily adopted
to other implementations of spin-torque oscillators, such as
vortex oscillators.

From the equations of motion we find that the critical
spin current, above which the power p becomes nonzero, is
determined by �+(0; ω0, Is) = �−(0; ω0, Is), which yields

Ic = α

η
(ω0 − ωM ), (8)

The stationary power, found by solving for p in the equation
∂ p/∂t = 0, is

p0(ω0, Is) = ηIs − α(ω0 − ωM )

(η − η′)Is + α(3ωM − ω0)
. (9)

We are now in the position to compute the geometric phase
that arises from a slow variation of the current and the external
field, in such a way that they map out a closed loop in (ω0, Is)
space (see Fig. 2). Here we adapt the discussion of Ref. [14]
to our specific case. For slowly varying current Is(t ) and field
ω0(t ), we have

p(t ) = p0(t ) +
(

∂F

∂ p

∣∣∣∣
p0

)−1
∂ p0(t )

∂t
, (10)

where

F (p) = −2[�+(p; ω0, Is) − �−(p; ω0, Is)]p, (11)

and p0(t ) = p0(ω0(t ), Is(t )). Note that for stability of the
auto-oscillations we should have that ∂F/∂ p|p0

< 0. Inserting
the result for p(t ) in the equation for φ̇(t ), and expanding to
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linear order in ∂ p0/∂t , we find that

φ̇(t ) = ω(p0(t ); ω0(t ), Is(t ))

+
(

∂ω

∂ p

∣∣∣∣
p0

)(
∂F

∂ p

∣∣∣∣
p0

)−1
∂ p0(t )

∂t
. (12)

For closed loops in parameter space, starting, e.g., at t = 0
and ending at t = T , integration of Eq. (12) gives two contri-
butions. The first,

∫ T
0 ω(p0(t ); ω0(t ), Is(t ))dt is the dynamic

phase; the second contribution is the geometric phase that we
are after. It is given by

φgeo =
∫ T

0
dt

⎡
⎣

(
∂ω

∂ p

∣∣∣∣
p0

)(
∂F

∂ p

∣∣∣∣
p0

)−1
∂ p0(t )

∂t

⎤
⎦ . (13)

The above phase shift is dubbed a geometric phase shift as
it does not depend on the specific path (ω0(t ), Is(t )) that is
traversed, i.e., it does not depend on the time dependence of
ω0(t ) and Is(t ), but only on the geometry of the path. To see
this explicitly, we use that Eq. (13) is the parametrization of a
line integral. The geometric phase can therefore be written as

φgeo =
∮

dλ · A, (14)

with the vector potential

Ai =
(

∂ω

∂ p

∣∣∣∣
p0

)(
∂F

∂ p

∣∣∣∣
p0

)−1
∂ p0

∂λi
, (15)

where i ∈ {1, 2}, and λ = (ω0, Is)T , so that λ1 = ω0 and λ2 =
Is. This vector potential is straightforwardly evaluated, and,
with the help of Stokes’ theorem, we rewrite the line integral
for the geometric phase in Eq. (14) in terms of the rotation of
the vector potential. This yields

φgeo =
∫

O
dω0dIsB(ω0, Is), (16)

with

B(ω0, Is) ≡ ∂AIs

∂ω0
− ∂Aω0

∂Is

= αη′

[ηIs − α(ω0 − ωM )][(η−η′)Is+α(3ωM − ω0)]2
,

(17)

and where the integration is over the area O enclosed by the
loop in (ω0, Is) space. Note that this result shows that the geo-
metric phase is only nonzero when η′ �= 0. This is traced back
to the fact that when η′ = 0 we have that p0(ω0, Is) depends
on ω0 and Is in the combination ηIs − αω0. As a result, in the
case that η′ = 0, a loop in (ω, Is) space is actually a line in the
variable ηIs − αω0 which does not lead to a geometric phase.

For spin currents that approach the threshold current from
above, i.e., for Is ↓ Ic, we have that B(ω0, Is) diverges as
B(ω0, Is) ∝ 1/(Is − Ic). In this article we do not explore the
dependence of the geometric phase on the various parameters
of the system in detail but instead discuss an example in what
follows. We note, however, that the geometric phase is in
general nonzero and, depending on parameters, can take any
value between 0 and 2π .

FIG. 3. Geometric phase for a rectangular loop in the parameter
space spanned by external field and spin current as a function of total
time T . Dots: numerical results, solid line: analytic results. Parame-
ters taken are ωmin/ωM = 3/2, ωmax/ωM = 2, α = 0.02, Imin/ωM =
0.061, Imax/ωM = 0.066, η = 1, and η′ = 0.1.

To illustrate the above result, we consider for simplicity a
rectangular loop in parameter space, as illustrated in Fig. 2.
That is, starting from the initial values ω0 = ωmin and Is =
Imin, we first increase the field linearly in time to ω0 = ωmax.
Keeping the field at this value, the spin current is increased
linearly in time from Is = Imin to Is = Imax. Hereafter, the
field is decreased linearly in time back to its initial value
ω0 = ωmin, followed by decreasing the spin current back to
Is = Imin. For all instantaneous values of spin current and field
we should have that Is > Ic.

The numerical result for the geometric phase is shown in
Fig. 3 as a function of the time T . This time is the total time
over which the equation of motion (5) with Eqs. (6) are solved
numerically. The field and spin current are kept constant for
a time T/6, after which the four steps in the loop described
above are performed for a time T/6 each. After this, the
systems is evolved for constant field and current for a time
T/6. To numerically determine the geometric phase, we have
performed the loop both clockwise and counterclockwise and
taken the difference of the phases after the loop and divided
it by two. This cancels the dynamical phase. This result is
then taken mod 2π . The analytic result in Eqs. (16) and (17)
is evaluated and yields a rather lengthy expression that we
omit here. It is also plotted in Fig. 3. From this figure, one
sees that the numerical result for the phase approaches the
analytic one for large times ωMT 
 1. As the analytic result
assumes the adiabatic limit, we conclude that the adiabatic
limit is obtained when ωMT 
 1. This is expected because
it physically corresponds to many cycles of precession while
the field and spin current are slowly varied. Contrary to the
geometric phase which saturates for sufficiently large times,
the dynamical phase (not plotted) increases linearly with time
for large times T , as expected.

III. THERMAL FLUCTUATIONS

We now investigate the effect of thermal fluctuations that
may randomize the phase and render the geometric phase
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unobservable for long times. The starting point is the equa-
tions for power and phase that include thermal fluctuations
via Langevin forces [1,2]:

ṗ(t ) = −2[�+(p(t ))−�−(p(t ))]p(t ) + 2
√

p(t )ηp(t ), (18a)

φ̇(t ) = ω(p(t )) + ηφ (t )√
p(t )

, (18b)

where we suppressed, in the notation, the dependence of �−,
�+, and ω on field and current. Here the Langevin forces are
mutually uncorrelated, have zero mean, and autocorrelations
given by

〈ηp(t )ηp(t ′)〉 = 〈ηφ (t )ηφ (t ′)〉 = γ�+(p(t ))

βMsVeffω(p(t ))
δ(t − t ′),

(19)

in which 〈· · · 〉 denotes averaging over noise realizations and
where β is the inverse thermal energy and Veff is effective
magnetic volume of the oscillator. The above Langevin equa-
tions for the power and phase of the oscillator are derived in
the limit p � 1 from the stochastic Landau-Lifshitz-Gilbert
equation [15]. In doing so, the classical limit is assumed, i.e.,
β h̄ω � 1. We write [see Eq. (10)]

p(t ) = p0(t ) +
(

∂F

∂ p

∣∣∣∣
p0

)−1
∂ p0(t )

∂t
+ δp(t ), (20)

where δp = O(ηp). To be able to follow the developments in
Sec. 4 of Ref. [2], we assume that we are sufficiently far in
the supercritical region to take δp small and consider only the
first order in ∂ p0(t )/∂t and δp(t ). This yields

δ ṗ(t ) =
(

∂F

∂ p

∣∣∣∣
p0

)
δp + 2

√
p0ηp(t ) . (21)

We assume an initial state at t = 0 with δp(0) = 0 and a well-
defined phase. The equation for δp(t ) is then solved by

δp(t ) = e
∫ t

0 ( ∂F
∂ p |p0 )dt ′

∫ t

0
dt ′′2

√
p0ηp(t ′′)e− ∫ t ′′

0 ( ∂F
∂ p |p0 )dt ′′′

. (22)

We replace the integrals in the exponents in the above by
(∂F/∂ p|p0

)t and evaluate p0 at time t everywhere. This causes
an error O[∂ p0(t )/∂t] and can be neglected in the above
formal solutions since it gives rise to terms O[ηp∂ p0(t )/∂t],
which we ignored from the outset. This yields

δp(t ) = 2
√

p0e( ∂F
∂ p |p0 )t

∫ t

0
dt ′ηp(t ′)e−( ∂F

∂ p |p0 )t ′
, (23)

from which we find

〈δp(t )δp(t ′)〉 = − 2γ p0�+(p0)

βMsVeffω(p0)
(

∂F
∂ p

∣∣
p0

)
× [

e( ∂F
∂ p |p0 )|t−t ′| − e( ∂F

∂ p |p0 )(t+t ′ )]
, (24)

where p0 is taken at time t . With this, we can evaluate the
variance in the phase after a time T , given by

〈(φ(T ))2〉 =
∫ T

0
dt

∫ T

0
dt ′

(
∂ω

∂ p

∣∣∣∣
p0

)2

〈δp(t )δp(t ′)〉

+
∫ T

0
dt

∫ T

0
dt ′ 1

p0
〈ηφ (t )ηφ (t ′)〉, (25)

yielding

〈(φ(T ))2〉 = γ�+(p0)

βMsVeffω(p0)

⎛
⎝ T

p0
+ p0

(
2 ∂ω

∂ p

∣∣
p0

∂F
∂ p

∣∣
p0

)2{
T +

[
1 − e( ∂F

∂ p |p0 )T ][
3 − e( ∂F

∂ p |p0 )T ]
2
(

∂F
∂ p |p0

)
}⎞

⎠, (26)

where we take p0 = p0(T ). In the above we have ignored the
time dependence of p0 in carrying out the various integrations,
cf. our earlier approximations. To investigate the relative
importance of phase fluctuations, we take the same parameters
as in Fig. 3, i.e., ω0/ωM = 3/2, α = 0.02, Is/ωM = 0.061,
η = 1, and η′ = 0.1. We find that for these parameters and
for ωMT 
 1 the fluctuations in the phase are dominated by
the second term in the above, which is estimated as

〈(φ(T ))2〉 ∼ γ T

αβMsVeff
. (27)

That this term dominates for ωMT 
 1 is understood as it
is a factor 1/α2 
 1 larger than the other term linear in
T , whereas the other terms are either constant with T or
exponentially suppressed. The adiabatic regime where the
geometric phase manifests was found to be reached when
ωMT ∼ 100. We demand that

√
〈(φ(T ))2〉 is at least one or-

der of magnitude smaller than φgeo = O(1). Taking β h̄ωM ∼

10−4–10−3, for a typical frequency of ωM = 1–10 GHz and
room temperature, one requires that αMsVeff/γ h̄ is at least
107–108 to observe the geometric phase. The factor MsVeff/γ h̄
is the effective number of spins in the oscillator. For typical
Gilbert damping α ∼ 0.01, one needs MsVeff/γ h̄ ∼ 109–1010,
which should be achievable. We conclude that observation
of the geometric phase should be experimentally possible at
room temperature, despite the thermal fluctuations. To reduce
the effect of fluctuations and increase phase stability, one
may also consider arrays of spin-torque oscillators. In the Ap-
pendix we show that such arrays exhibit a similar geometric
phase.

IV. CONCLUSIONS, DISCUSSION, AND OUTLOOK

In conclusion, we have shown that the phase of a spin-
torque oscillator picks up a geometric contribution when
the parameters that govern its dynamics perform a loop in
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parameter space. We have focused on a spin-torque oscillator
based on a uniaxial single-domain magnet and considered the
geometric phase due to a cyclic excursion of the magnitude of
field and current. In the Appendices we consider the generic
case and give a general expression for the geometric phase.
There we also show that the global phase of an array of
coupled spin-torque oscillators acquires a similar geometric
contribution.

As the phase of a spin-torque oscillator can be measured
directly (see, e.g., Ref. [16]), our findings could be tested ex-
perimentally in a straightforward manner. To experimentally
extract the geometric phase one could start from a state with
well-defined phase by locking the phase of the oscillator to an
external alternating source and then performing a loop in the
parameter space of field and current. By repeating the exper-
iment, but with a reversed loop, and taking the difference of
the phase between the forward and reversed loop, one would
cancel the dynamical phase and directly obtain the geometric
one times a factor of two. In particular, our estimates indicate
that, even at room temperature, thermal fluctuations, leading,
e.g., to incomplete cancellation of the dynamical phase in this
procedure, do not render the geometric phase unobservable.

The geometric phase that we considered here could, for
example, be used to imprint, in a controlled and reproducible
way, a phase difference on two identical spin-torque oscilla-
tors that are initially phase locked. Such a phase difference
could then be transferred to spin waves in set-ups where
the oscillators act as spin-wave emitters and could be useful
for magnonic operations that rely on phase control of the
spin waves [8]. Other possible applications may be found in
the context of neuromorphic computing based on spin-torque
oscillators in which the phase plays an important role [7].

Possible extensions of our work could be done in the
direction of spin-torque oscillators based on antiferromagnets
or could be geared toward specific experimental implemen-
tations. We hope that this work stimulates efforts in these
directions.
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APPENDIX A: GENERAL CASE

The general equations of motion for the power p(t ) and
phase φ(t ) of a spin-torque nano-oscillator are given by

ṗ(t ) = −2[�+(p; λ) − �−(p; λ)]p, (A1a)

φ̇(t ) = ω(p; λ). (A1b)

Here �+(p; λ) is the damping and �−(p; λ) the antidamping,
resulting, typically, from injection of spin current. The fre-
quency is given by ω(p; λ). The frequency and both damping
and antidamping depend on the power p. This dependence

stems from nonlinearities in the magnetization dynamics. The
damping, antidamping, and frequency do not depend on the
phase for a circular spin-torque oscillator, which is what
we consider here. They do, however, depend on a set of
parameters λ = (λ1, . . . , λN )T , e.g., current and field, that are
varied slowly and such that λ(t ) makes a closed loop in the
space of parameters. Completing this loop gives rise to a
geometric contribution to the phase. By following the steps
in the derivation of the main text for this general case, one
finds the geometric phase

φgeo =
∮

dλ · A, (A2)

with the vector potential

Ai =
(

∂ω

∂ p

∣∣∣∣
p0

)(
∂F

∂ p

∣∣∣∣
p0

)−1
∂ p0

∂λi
, (A3)

with i ∈ {1, . . . , N}. Here

F (p) = −2[�+(p; λ) − �−(p; λ)]p, (A4)

and p0 = p0(λ) is determined by solving for p in F (p) = 0.

Ellipticity

In the case of a spin-torque oscillator with ellipticity,
resulting, for example, from magnetic anisotropies that favor
a certain direction for tilting of the magnetization away from
the easy axis, the equations of motion become

ṗ(t ) = −2[�+(p, φ; λ) − �−(p, φ; λ)]p, (A5a)

φ̇(t ) = ω(p, φ; λ). (A5b)

As was shown in Ref. [17], systems described by these
equations can exhibit geometric phases that are different in
origin than the one that arises in the circular case. It is hard to
give a simple analytical expression for these geometric phases,
and we do not consider them further. We do, however, note
that this also implies that the phase difference between two
coupled oscillators, which obeys an equation similar to that
in Eq. (A5), may also exhibit a geometric phase shift in the
regime where the phases are not locked.

APPENDIX B: ARRAYS OF SPIN-TORQUE OSCILLATORS

To improve phase stability and output signal, one often
considers arrays of spin-torque oscillators. Such arrays exhibit
similar geometric phases, as we will discuss now. We consider
M coupled uniaxial spin-torque oscillators. The generic equa-
tions of motion are

ṗδ (t ) = Fδ (p,φ; λ), (B1a)

φ̇δ (t ) = ωδ (p,φ; λ), (B1b)

where δ = 1, . . . , M labels the power pδ and phase φδ of each
oscillator, p = (p1, . . . , pM )T , and φ = (φ1, . . . , φM )T . Like
before, the vector λ consists of N system parameters that may
be varied adiabatically.

We rewrite these equations of motion in terms of the
global phase φ = ∑M

δ=1 φδ and M − 1 phase differences
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φν = φν+1 − φν , with ν = 1, . . . , M − 1. This yields
equations of the form

ṗδ (t ) = Fδ (p,�φ; λ), (B2a)

φ̇ν (t ) = ων (p,�φ; λ), (B2b)

φ̇(t ) = ω(p,�φ; λ). (B2c)

Crucially, spin-rotation symmetry around the z direction en-
sures that the functions Fδ , the frequency differences ων =
ων+1 − ων , and the total frequency ω = ∑M

δ=1 ωδ do not de-
pend on the global phase itself.

We now consider an adiabatic excursion of the parameters
λ. For notational convenience, we introduce the vector f =
(p1, . . . , pM ,φ1, . . . ,φM−1) that has 2M − 1 components
and rewrite the equations of motion to

ḟμ = Fμ(f ; λ), (B3a)

φ̇(t ) = ω(f ; λ). (B3b)

We denote with f0(λ) the solutions of the 2M − 1 equations
Fμ(f0) = 0, where μ runs from 1 to 2M − 1. In the adiabatic

limit we have that

f = f0 +
(

∂F
∂f

)−1

· ∂f0

∂t
, (B4)

where ∂F/∂f is the matrix with elements ∂Fμ/∂ fμ′ on its μth
row and μ′th column, and the inverse in the above equation is
a matrix inverse. Insertion in the equation for the global phase
yields

φ̇(t ) = ω(f0; λ) + ∂ω

∂f
·
(

∂F
∂f

)−1

· ∂f0

∂t
, (B5)

from which one obtains the geometric phase as in Eq. (A2),
with the vector potential

Ai = ∂ω

∂f
·
(

∂F
∂f

)−1

· ∂f0

∂λi
, (B6)

where i ∈ {1, . . . , N}.
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