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Magnetometers with exceptional sensitivity are highly demanded in solving a variety of physical and
engineering problems, such as measuring Earth’s weak magnetic fields and prospecting mineral deposits and
geological structures. It has been shown that the non-Hermitian degeneracy at exceptional points (EPs) can
provide a new route for that purpose, because of the nonlinear response to external perturbations. One recent
work [H. Yang et al. Phys. Rev. Lett. 121, 197201 (2018)] has made the first step to realize the second-order
magnonic EP in ferromagnetic bilayers respecting the parity-time symmetry. In this paper, we generalize the idea
to higher-order cases by considering ferromagnetic trilayers consisting of a gain, a neutral, and a (balanced-)loss
layer. We observe both second- and third-order magnonic EPs by tuning the interlayer coupling strength, the
external magnetic field, and the gain-loss parameter. We show that the magnetic sensitivity can be enhanced by
three orders of magnitude comparing to the conventional magnetic tunneling junction-based sensors. Our results
pave the way for studying high-order EPs in purely magnetic system and for designing magnetic sensors with
ultrahigh sensitivity.

DOI: 10.1103/PhysRevB.101.144414

I. INTRODUCTION

The magnetometer, for measuring the intensity of mag-
netic fields, was first created by Gauss in 1833 [1] and has
achieved tremendous progress since then. It has been widely
utilized in mineral explorations [2,3], accelerator physics [4],
archaeology [5], mobile phones [6], etc. A long-term goal
in the community is to pursue magnetometers with ultra-
high sensitivity. Conventional techniques in magnetic sensors
encompass many aspects of physics. For example, the flux
gate magnetometer works due to the nonlinear character
of soft magnetic materials when they are saturated [7,8].
Magnetoresistive devices typically are made of thin strips
of permalloy whose electrical resistance varies with external
magnetic fields [9]. Although different magnetometric devices
are designed based on different physical mechanisms, they
share a general rule that the variation of the order parameter
linearly varies with respect to the magnetic field. Presently,
ultra-high-sensitive magnetometers such as superconducting
quantum interference devices can reach a magnetic sensitivity
of 1 fT/Hz1/2, but they require an extremely low working
temperature and an oversized volume [10,11]. Seeking a solid-
state, small size, room-temperature magnetometer with ultra-
high sensitivity is thus one central issue. Recently, it has been
demonstrated that the peculiar non-Hermitian degeneracy in
magnetic structures [12–16] may provide a promising way to
solve the problem.

The Hamiltonian obeying the parity-time (PT ) symmetry
constitutes a special non-Hermitian system, which is invariant
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under combined parity P and time-reversal T operations. It
has attracted a lot of attention due to both the fundamen-
tal interest in quantum theory [17–19] and the promising
application in many fields [20–22], such as optics [23–25],
tight-binding modeling [26,27], acoustics [28,29], electronics
[30,31], and very recently in spintronics [12–16]. A PT -
symmetric Hamiltonian could exhibit entirely real spectra and
a spontaneous symmetry breaking accompanied by a real-
to-complex spectra phase transition at the exceptional point
(EP) where two or more eigenvalues and their corresponding
eigenvectors coalesce simultaneously. In the vicinity of the
EP, the eigenfrequency shift follows the 1/N power law of the
external perturbation, where N is the order of the EP. Such a
feature can significantly enhance the sensitivity and has been
observed by several experiments [20,32–35].

PT symmetry and EP in magnetic systems are receiving
growing recent interest. In a simple bilayer structure of two
macrospins with balanced gain and loss, the second-order EP
(EP2) was observed at a critical Gilbert damping constant
[12]. In Ref. [36], it was proposed to realize the pseudo-
Hermiticity in a cavity magnonics system with the third-order
EP (EP3). By taking the spin-wave excitation into account,
some of the present authors reported a novel ferromagnetic-
to-antiferromagnetic (AFM) phase transition at the EP that
depends on the magnon’s wave vector [13]. In Ref. [14], an
exceptional magnetic sensitivity was predicted in the vicinity
of the EP3 for PT -symmetric cavity magnon polaritons.
However, high-order EPs in purely magnetic/magnonic sys-
tem is yet to be explored.

In this work, we propose a ferromagnetic trilayer structure
consisting of a gain, a neutral, and a loss layer to achieve the
EP3. We show that, in the vicinity of the EP3, the separation
of eigenfrequencies follow a power law �ωEP3 ∝ ε1/3. Here,
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FIG. 1. (a) Illustration of three exchange-coupled macrospins
consisting of a gain (red), neutral (gray), and (balanced-)loss (blue)
spin. (b) Schematic plot of a ferromagnetic heterostructure with a
gain, neutral, and loss layer, denoted by red, gray, and blue colors,
respectively. The magnetizations of all spins are initially along x̂
direction.

the perturbation ε comes from the disturbing magnetic field.
We find mode-dependent EPs when the spin-wave excitation
is allowed by including the intralayer exchange coupling.
A ferromagnetic-to-antiferromagnetic phase transition is ob-
served when the PT symmetry is broken. Our results suggest
a promising way to realize higher-order non-Hermitian degen-
eracy in a purely magnetic system and to design magnetome-
ter with ultrahigh sensitivities.

The paper is organized as follows. Section II gives the
macrospin model. The condition for observing EP3 is analyti-
cally derived. The one-half and one-third power law around
EP2 and EP3 are demonstrated, respectively. The effect of
noise on the magnetic sensitivity is analyzed as well. In
Sec. III, we extend the idea to ferromagnetic trilayers by
allowing spin-wave excitations. Discussion and conclusions
are drawn in Sec. IV.

II. MACROSPIN MODEL

We first consider a ternary macrospin structure shown
in Fig. 1(a). The Hamiltonian contains the Zeeman energy,
magnetic anisotropy, and exchange coupling:

H = −
∑

n

B · Mn −
∑

n

Kn

2

(
mx

n

)2 − λμ0M2 · (M1 + M3),

(1)

where Mn (mn = Mn/Mn) is the spin (unit spin) with subscript
index n labeling the nth layer (n = 1, 2, 3), Mn is the saturated
magnetization, B = Bx̂ is the external magnetic field applied
on the whole structure, Kn > 0 is the uniaxial anisotropy,
λ > 0 is the ferromagnetic exchange-coupling strength be-
tween two adjacent layers, and μ0 is the vacuum permeability.
The top and bottom layers are assumed to be the same material
but with opposite Gilbert damping parameters, to guaran-
tee the PT symmetry. The coupled magnetization dynamics
is described by the Landau-Lifshitz-Gilbert (LLG) equation
[37,38]:

∂m1

∂t
= −γ m1 × Beff,1 − αm1 × ∂m1

∂t
, (2a)

∂m2

∂t
= −γ m2 × Beff,2, (2b)

∂m3

∂t
= −γ m3 × Beff,3 + αm3 × ∂m3

∂t
, (2c)

where γ is the gyromagnetic ratio and α > 0 is the Gilbert
constant employed as the balanced gain-loss parameter. The
effective magnetic fields read:

Beff,1 = Bx̂ + K1

M1
mx

1x̂ + λμ0M2m2, (3a)

Beff,2 = Bx̂ + K2

M2
mx

2x̂ + λμ0M1(m1 + m3), (3b)

Beff,3 = Bx̂ + K1

M1
mx

3x̂ + λμ0M2m2. (3c)

For small-amplitude spatiotemporal magnetization preces-
sion, we assume mn = x̂ + my

nŷ + mz
nẑ with |my,z

n | � 1. By
substituting Eqs. (3) into Eqs. (2), and introducing ψn = my

n −
imz

n, we obtain

(i + α)ψ̇1 = ωB1ψ1 − ωλ2ψ2, (4a)

iψ̇2 = −ωλ1ψ1 + ωB2ψ2 − ωλ1ψ3, (4b)

(i − α)ψ̇3 = −ωλ2ψ2 + ωB1ψ3, (4c)

where ωB1 = γ (B + K1/M1 + λμ0M2), ωB2 = γ (B +
K2/M2 + 2λμ0M1), ωλ1 = γ λμ0M1, and ωλ2 = γ λμ0M2.
Imposing a harmonic time dependence ψn = φn exp(−iωt ),
we have the secular equation:

ωφ = Hφ, (5)

with φ = (φ1, φ2, φ3)T, and

H =

⎛
⎜⎝

ωB1
1−iα − ωλ2

1−iα 0

−ωλ1 ωB2 −ωλ1

0 − ωλ2
1+iα

ωB1
1+iα

⎞
⎟⎠. (6)

A. Eigensolutions

The eigenfrequencies are determined by the zeros of the
characteristic polynomial of (6):

aω3 + bω2 + cω + d = 0, (7)

with a = −(1 + α2) < 0, b = 2ωB1 + (1 + α2)ωB2, c =
2ωλ1ωλ2 − ω2

B1 − 2ωB1ωB2, and d = ω2
B1ωB2 − 2ωB1ωλ1ωλ2.

It is known that if and only if A = B = 0, the equation has a
triple real root, where A = b2 − 3ac and B = bc − 9ad . We
therefore arrive at the constraint supporting the EP3:

(2ωB1 + ωB2 + α2ωB2)2 + 3(1 + α2)
(
2ωλ1ωλ2 − ω2

B1

− 2ωB1ωB2
) = 0, (8a)

(2ωB1 + ωB2 + α2ωB2)
(
2ωλ1ωλ2 − ω2

B1 − 2ωB1ωB2
)

+ 9(1 + α2)
(
ω2

B1ωB2 − 2ωB1ωλ1ωλ2
) = 0. (8b)

To obtain reasonable α and B, we note that the difference
between ωB2 and ωB1 should be close to ωλ2. In the calcula-
tions, we thus choose the annealed and deposited Co40Fe40B20

[39,40] as the top- (bottom-) and the middle-layer ma-
terials, with the saturation magnetization M1 = 1.098 ×
106 A/m and M2 = 1.003 × 106 A/m, and the anisotropy
constant K1 = 4.36 × 105 J/m3 and K2 = 1.07 × 105 J/m3,
respectively.

For each λ, we numerically calculate the allowed magnetic
field B and gain-loss parameter α, as shown in Fig. 2(a)
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FIG. 2. (a) Parametric space for EP3. The gray region marks
the allowed values of the external magnetic field B, the gain-loss
parameter α, and the interlayer coupling strength λ. (b) Evolution
of eigenvalues as the gain-loss parameter α for λ = 0.18 and B =
29.2 mT. The solid and dashed curves represent the real and imagi-
nary parts of eigenfrequencies, respectively.

with the black and blue curves, respectively. We note that
B > max{−K1/M1 − λμ0M2,−K2/M2 − 2λμ0M1} should be
satisfied to guarantee a stable ferromagnetic ground state and
the typical value of α ranges from 0 to 1, leading to the
reasonable parameters labeled by the gray region in Fig. 2(a).
From Fig. 2(a), we can see that the critical α (magnetic field)
decreases (increases) with the increasing of λ. Figure 2(b)
shows a typical evolution of eigenvalues as the gain-loss
parameter α for λ = 0.18 and B = 29.2 mT, in which both
the EP2 and EP3 emerge, marked by green and red dots,
respectively.

Next, we discuss the magnetic sensitivity in the vicinity
of EP2 and EP3. The gain-loss parameters αEP2 = 0.399 and
αEP3 = 0.652 are chosen in the following calculations.

B. Perturbing the top spin

Supposing a perturbation ε only on the top macrospin,
induced by an external magnetic field Bε , i.e., ε = γ Bε/ωλ2,
we modify Eq. (5) to:

�φ = Hεφ, (9)

with

Hε = ωλ2

⎛
⎜⎜⎝

ωB1ω
−1
λ2 +ε

1−iα − 1
1−iα 0

−ωλ1
ωλ2

ωB2
ωλ2

−ωλ1
ωλ2

0 − 1
1+iα

ωB1ω
−1
λ2

1+iα

⎞
⎟⎟⎠. (10)

To highlight the key role played by the order of the EP, we
first investigate the effect of the perturbation on a single-layer
ferromagnet with ε ranging from 10−10 to 10−2. We find that
the ferromagnetic resonance (FMR) frequency varies linearly
with respect to the perturbation plotted in Figs. 3(a) and
3(b), as naturally expected. Then, we evaluate the variation
of eigenvalues with respect to the perturbation near the EP2
and EP3, as depicted in Fig. 3(c) and Fig. 3(e), with the mode
splitting on a logarithmic scale being plotted in Fig. 3(d)
and Fig. 3(f), respectively. We numerically demonstrate that
the separation of frequencies scales as ε1/2 and ε1/3 for EP2
and EP3, respectively. To have a quantitative comparison,
we choose ε = 0.005 and calculate the frequency difference.
We identify 0.03 GHz, 0.14 GHz, and 1.23 GHz shift for
the normal FMR, EP2, and EP3 mode, respectively. The

(e)

1

2

3

1

2

(a)

(c)

0

(b)

slope=1.0

(d)

slope=0.50

(f)

slope=0.33

FIG. 3. (a) The FMR frequency for a single-layer ferromagnet as
a function of the perturbation ε. (b) The frequency shift � − �0 is
depicted in logarithmic coordinates, with the slope being 1. (c) The
variation of eigenfrequencies near the EP2 as a function of the pertur-
bation. (d) Frequency splitting Re(�1 − �2) on a logarithmic scale,
with the one-half slope indicating the ε1/2 response. (e) The splitting
of eigenfrequencies near EP3 vs the perturbation. Solid and dashed
curves represent numerical and analytical results, respectively.
(f) Frequency splitting of Re(�2 − �3) on a logarithmic scale, with
the slope approximately being 0.33, suggesting the ε1/3 response.

sensitivity is thus enhanced by 4.7 and 41 times around EP2
and EP3 with respect to the FMR mode, respectively.

In the following, we analytically derive the frequency split-
ting near the EP3, by perturbatively solving the characteristic
equation of Hε . Based on the Newton-Puiseux series [41], we
obtain:

�n

ωλ2
= c0 + cn1ε

1
3 + cn2ε

2
3 + cn3ε, (11)

with complex coefficients cni (i = 1, 2, 3) [42] and c0 = 2.28.
Solutions (11) are depicted with dashed orange curves in
Fig. 3(e), showing a nice agreement with numerical results.
The (real part) frequency splitting between �1, �2, and �3 is
thus

Re(�1 − �2) = ωλ2(0.4ε
1
3 − 0.62ε

2
3 − 0.64ε),

Re(�1 − �3) = ωλ2(1.53ε
1
3 − 0.61ε

2
3 − 0.64ε),

Re(�2 − �3) = ωλ2(1.13ε
1
3 + 0.01ε

2
3 ),

(12)

with the leading terms diverging as ε1/3, i.e.,

��EP3 = cωλ2ε
1/3, (13)
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FIG. 4. Evolution of the eigenfrequencies as a function of the
perturbation near the (a) EP2 and (b) EP3 for ε < 0. Inset: frequency
splitting Re(�1 − �2) and Re(�1,2 − �3) on a logarithmic scale,
with the slopes approximately being 0.5 and 0.33, respectively.
Evolution of the eigenfrequencies as a function of the perturbation
near the (c) EP2 and (d) EP3 for ε > 0. Inset plots the frequency
splitting on a logarithmic scale.

for the separation of �2 and �3 spectral lines with c =
Re(c21 − c31).

Supposing the frequency resolution |��EP3| ≈ κ , where κ

is FMR linewidth, we can express the magnetic sensitivity as

S = |δB|√
κ

, (14)

where δB = κ3/(γ c3ω2
λ2). Using the following parameters: the

damping constant 0.001, the FMR frequency 5 GHz, κ ≈
0.005 GHz, and ωλ2 = 6.35 GHz, we estimate the sensitivity
as 3 × 10−14 T/Hz1/2, which is three orders of magnitude
higher than the conventional magnetic sensor based on mag-
netic tunneling junction [43].

C. Perturbing the whole structure

In Sec. II B, we have considered perturbations only on the
top spin. Because of the nonlocal nature of the magnetic field,
it may affect the whole macrospin system. For such cases, we
rewrite the matrix Hε :

H ′
ε = ωλ2

⎛
⎜⎜⎝

ωB1ω
−1
λ2 +ε

1−iα − 1
1−iα 0

−ωλ1
ωλ2

ωB2
ωλ2

+ ε −ωλ1
ωλ2

0 − 1
1+iα

ωB1ω
−1
λ2 +ε

1+iα

⎞
⎟⎟⎠. (15)

As shown in Fig. 4(a), the eigenfrequency near the EP2 splits
into two branches for ε < 0, with the inset displaying the one-
half power-law behavior. The frequency near the EP3 splits
to two branches as well including two degenerate modes. The
separation of two frequencies follows the one-third power law,
as plotted in Fig. 4(b). For ε > 0, the solutions contain a real
root and a pair of complex conjugated roots. The perturbation
pushes the spectrum into the exact PT phase region and
thus can not remove the degeneracy of EP2, as depicted in

FIG. 5. Sensitivity-diminution factor F0 as a function of x0.

Fig. 4(c). Figure 4(d) shows the frequency splitting in the
vicinity of EP3, which is similar to that shown in Fig. 4(b).
When the whole trilayer structure is perturbed for ε > 0, we
find the sensitivity approximately to be 10−14 T Hz−1/2, which
is the same order of magnitude as the case studied in Sec. II B.

D. Effect from statistical noise

Noise is inevitable in magnetic systems, which may be
caused by material imperfections or fluctuating environments.
Following the method in Refs. [14,44], we consider a Gaus-
sian distribution of the perturbation ε:

P(ε − ε0) = 1√
2πσ

exp

[
−1

2

(
ε − ε0

σ

)2]
, (16)

with the signal ε0 to be detected and the noise level σ . The
ensemble-average sensitivity can be obtained by:

〈��EP3〉 =
∫ +∞

−∞
cωλ2

3
√

εP(ε − ε0)dε

= cωλ2σ
1/3

√
2π

∫ +∞

−∞
|x + x0|1/3e− 1

2 x2
dx, (17)

with x = (ε − ε0)/σ and x0 = ε0/σ . In the small and large
signal to noise ratio limit, we obtain:

〈��EP3〉 =

⎧⎪⎨
⎪⎩

21/6cωλ2σ
1/3

√
π

�

(
2

3

)
, x0 � 1

cωλ2ε
1/3
0 , x0 
 1

. (18)

For a large signal to noise ratio, 〈��EP3〉 recovers
Eq. (13). By defining the sensitivity-diminution factor F0 =
c−1ω−1

λ2 ε
−1/3
0 〈��EP3〉, we can evaluate the influence of noise

on the sensitivity, which is plotted in Fig. 5. It shows that the
sensor performs well when x0 > 1.

III. TRILAYER FERROMAGNETIC FILMS

In this section, we extend the macrospin model to trilayer
ferromagnets, which include both intralayer and interlayer
exchange couplings, as shown in Fig. 1(b). The Hamiltonian
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of the system is then given by:

H = −
∑

n

∑
〈i, j〉

Jnmn,i · mn, j −
∑

n

∑
i

Bn,i · Mn,i

−
∑

n

∑
i

Kn

2

(
mx

n,i

)2 − λμ0

∑
i

M2,i · (M1,i + M3,i ),

(19)

where Mn,i (mn,i = Mn,i/Mn,i) is the spin (unit spin) at the
ith site in the nth layer (n = 1, 2, 3) with the saturation
magnetization Mn,i, Jn > 0 is the intralayer exchange coupling
constant, 〈i, j〉 sums over all nearest-neighbor sites in the
same layer, and Bn,i = Bn,ix̂ is the external magnetic field
at the ith site in the nth layer. The last term in the model
Hamiltonian (19) describes the interlayer exchange coupling
between layer 1 and layer 2, and between layer 2 and layer
3. In the calculations, we adopt the same material parameters
as the macrospin model and consider the intralayer exchange
coupling constant J1,2,3 = J = 2.44 × 107 J/m3. A homoge-
neous magnetic field is assumed to be applied over the whole
system, i.e., B1,i = B2,i = B3,i = B.

The magnetization dynamics is described by the LLG
equation (2) but with the following effective fields:

Beff,1,i = J

M1

∑
〈i, j〉

m1, j + Bx̂ + K1

M1
mx

1,i x̂ + λμ0M2m2,i,

Beff,2,i = J

M2

∑
〈i, j〉

m2, j +Bx̂ + K2

M2
mx

2,i x̂ + λμ0M1(m1,i+m3,i ),

Beff,3,i = J

M1

∑
〈i, j〉

m3, j + Bx̂ + K1

M1
mx

3,i x̂ + λμ0M2m2,i, (20)

where J
∑

〈i, j〉 mn, j represents J[mn,(ix−1)a,iya+mn,(ix+1)a,iya+
mn,ixa,(iy−1)a + mn,ixa,(iy+1)a] with (ixa, iya) being the coordi-
nate of the ith unit spin vector, ix(y) is an integer, and a is the
lattice constant.

Considering a small-angle dynamics, we set mn,i = x̂ +
my

n,i ŷ + mz
n,i ẑ with |my,z

n,i| � 1. Substituting the effective field
into Eqs. (2) and imposing the complex scalar fields ψn,i =
my

n,i − imz
n,i, we obtain:

iψ̇1,i = γ J

M1

⎛
⎝4ψ1,i −

∑
〈i, j〉

ψ1, j

⎞
⎠ + ωλ2(ψ1,i − ψ2,i )

+ γ

(
B + K1

M1

)
ψ1,i − αψ̇1,i,

iψ̇2,i = γ J

M2

⎛
⎝4ψ2,i −

∑
〈i, j〉

ψ2, j

⎞
⎠ + ωλ1(2ψ2,i − ψ1,i − ψ3,i )

+γ

(
B + K2

M2

)
ψ2,i,

iψ̇3,i = γ J

M1

⎛
⎝4ψ3,i −

∑
〈i, j〉

ψ3, j

⎞
⎠ + ωλ2(ψ3,i − ψ2,i )

+γ

(
B + K1

M1

)
ψ3,i + αψ̇3,i, (21)

FIG. 6. The external magnetic field and gain-loss parameter
dependence on the interlayer coupling strength λ at EP3 for
(a) (kx, ky ) = ( π

30a , 0) and (b) ( π

20a , 0). The gray region marks the
parametric space allowing the EP3. (c) Evolution of eigenvalues
with respect to the gain-loss parameter α for λ = 0.175 and B =
99 mT at (kx, ky ) = ( π

30a , 0). (d) The real and imaginary parts of the
eigenvalues as a function of the gain-loss parameter α for λ = 0.158
and B = 170 mT at (kx, ky ) = ( π

20a , 0).

with the abbreviation
∑

〈i, j〉ψn, j=ψn,(ix−1)a,iya+ψn,(ix+1)a,iya

+ ψn,ixa,(iy−1)a + ψn,ixa,(iy+1)a.
Expanding the spatiotemporal magnetization in terms of

plane waves ψn,i = φn,i exp(ik · r − iωt ), we have:

ωφi = Hiφi, (22)

with

Hi =

⎛
⎜⎝

ω′
B1

1−iα − ωλ2
1−iα 0

−ωλ1 ω′
B2 −ωλ1

0 − ωλ2
1+iα

ω′
B1

1+iα

⎞
⎟⎠, (23)

and φi = (φ1,i, φ2,i, φ3,i )T, where ω′
B1 = ω̃1(kx, ky) + γ (B +

K1/M1 + λμ0M2) and ω′
B2 = ω̃2(kx, ky) + γ (B + K2/M2 +

2λμ0M1) with ω̃n(kx, ky)=2γ J/Mn[2− cos(kxa)− cos(kya)].
It is straightforward to see that, for kx = ky = 0, Eq. (22)

is reduced to Eq. (5). We aim to search for all EPs in
ferromagnetic trilayers. Following Ref. [13], we know that
the emergence of EP3 depends on magnon’s wave vector k =
(kx, ky). As two examples, we set k = ( π

30a , 0) and ( π
20a , 0)

without loss of generality, to illustrate the condition support-
ing the EP3, which are depicted in Fig. 6(a) and Fig. 6(b),
respectively. We then explicitly demonstrate the emergence
of EP3 in Fig. 6(c) and Fig. 6(d). We observe that the EP2
appears for all spin-wave modes. At a given (kx, ky), there
exists a critical gain-loss parameter αc, beyond which the
exact PT symmetry is broken. We plot the distribution of the
critical gain-loss parameter over the entire Brillouin zone in
Fig. 7(a). The red circle marks the critical α for the emergence
of EP3. In comparison to previous work [13], we did not note
a special region where the PT symmetry is never broken.
This is due to the fact that the chiral spin-spin coupling, i.e.,
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FIG. 7. (a) Contour plot of the critical gain-loss parameters
dependence on spin-wave modes k. The parameters are identical
to the ones in Fig. 6(c). (b) FM-AFM phase diagram of the PT -
symmetric trilayer and bilayer in α-λ plane. The solid and dashed
curves represent the phase boundary in the two cases.

Dzyaloshinskii-Moriya interaction, is absent in the present
model.

As first predicted in Ref. [13], for a PT -symmetry fer-
romagnetic bilayer, antiferromagnetism could emerge in the
PT broken phase. As to the ferromagnetic trilayer, it can
exhibit a FM-AFM phase transition as well. In Fig. 7(a), we
find that the minimum of αc(k) appears at the boundary of
the Brillouin zone. We calculate the corresponding critical
gain-loss parameter at k = (±π

a ,±π
a ) for different λ,

αc =
√

X (k) − 1
∣∣
k=(± π

a ,± π
a ), (24)

where

X = 1

12ω′3
B2

(
ω′2

B1ω
′
B2−2ω′

B1ωλ1ωλ2
) [

c1 + (
c3 −

√
c2

3 − c3
2

)1/3

+(
c3 +

√
c2

3 − c3
2

)1/3]
, (25)

with

c1 = −27β2
1 − 6β1ω

′
B2(3β2 + 4ω′

B1ω
′
B2) + β2

2ω′2
B2,

c2 = [
27β2

1 + 6β1ω
′
B2(3β2 + 4ω′

B1ω
′
B2) − β2

2ω′2
B2

]2

− 48β1ω
′3
B2

(
9β1β2ω

′
B1+12β1ω

′2
B1ω

′
B2−β3

2−β2
2ω′

B1ω
′
B2

)
,

c3 = −[
27β2

1 + 6β1ω
′
B2(3β2 + 4ω′

B1ω
′
B2) − β2

2ω′2
B2

]3

+ 72β1ω
′3
B2

[
27β2

1 + 6β1ω
′
B2(3β2 + 4ω′

B1ω
′
B2) − β2

2ω′2
B2

]
×(

9β1β2ω
′
B1 + 12β1ω

′2
B1ω

′
B2 − β3

2 − β2
2ω′

B1ω
′
B2

)
− 864β2

1ω′2
B1ω

′6
B2

(
8β1ω

′
B1 − β2

2

)
,

β1 = ω′2
B1ω

′
B2 − 2ω′

B1ωλ1ωλ2,

β2 = 2ωλ1ωλ2 − ω′2
B1 − 2ω′

B1ω
′
B2, (26)

as plotted by the solid black curve in Fig. 7(b), in which
the blue and red regions represent the AFM and FM
phases, respectively. The phase boundary for PT -symmetric
bilayer is

αc = λμ0M1√
8J
M1

+ B + K1
M1

√
8J
M1

+ B + K1
M1

+ 2λμ0M1

(27)

marked by the dashed line in Fig. 7(b), as a comparison.

IV. DISCUSSION AND CONCLUSION

Negative damping (gain) is the key to realize our pro-
posal. In previous work [12,13], it has been suggested that
the spin transfer torque, the parametric driving, the ferro-
magnetic|ferroelectric heterostructure [45], and the interac-
tion between magnetic system and environment [46–48] are
possible mechanisms to achieve the magnetic gain. Slavin
et al. analytically demonstrated that the main effect of the
spin-polarized current in a free magnetic layer is a negative
damping [49]. In Ref. [50], the Slonczewski form of the spin
torque is treated as a negative damping too.

To achieve the EP3, FM coupling between two adjacent
layers should fall into the allowed parametric space, which
can be realized by tuning the thickness of the nonmagnetic
spacer between them [51,52]. A single-mode spin wave can
be excited via the Brillouin light scattering technique [53,54],
which is essential to observe the mode-dependent EP3.

In the present model, we have assumed that the middle
layer is dissipationless. However, a more realistic case is that
it suffers a positive damping αm. In this case, we expect that
the mode coalescence will disappear. Indeed, we find that a
gap opens at the original exceptional point with the frequency
splitting following the one-third power law �ωEP3 ∝ α1/3

m (not
shown). This feature could provide a new method to determine
materials damping parameter with an ultrahigh sensitivity.

In summary, we have theoretically investigated the dy-
namics of PT -symmetric ternary macrospin structure and
ferromagnetic trilayer. We observed both EP2 and EP3 under
proper materials parameters. We demonstrated the one-half
and one-third power-law response to external perturbations
in the vicinity of EP2 and EP3, respectively. Outstanding
magnetic sensitivities were identified in the vicinity of EP3.
Our results open the door for observing higher-order EPs in
all-magnetic structures and for designing ultra-high-sensitive
magnetometers.
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