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Mean-field phase diagram and spin-glass phase of the dipolar kagome Ising antiferromagnet
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We derive the equilibrium phase diagram of the classical dipolar Ising antiferromagnet at the mean-field
level on a geometry that mimics the two-dimensional kagome lattice. Our mean-field treatment is based on the
combination of the cluster variational Bethe-Peierls formalism and the cavity method, developed in the context
of the glass transition, and is complementary to the Monte Carlo simulations realized in a recent paper [Hamp
et al., Phys. Rev. B 98, 144439 (2018)]. Our results confirm the nature of the low-temperature crystalline phase
which is reached through a weakly first-order phase transition. Moreover, they allow us to interpret the dynamical
slowing down observed in the work of Hamp et al. (referenced above) as a remnant of a spin-glass transition
taking place at the mean-field level (and expected to be avoided in two dimensions).
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I. INTRODUCTION

Many interesting classes of classical and quantum mag-
netic systems are extremely constrained. Hard local con-
straints lead to frustration and to the impossibility of satisfying
all competing interactions simultaneously [1], giving rise to
the existence of highly degenerate ground states [2,3]. Under
certain conditions, these features produce a rich variety of
collective behaviors [2,3], unconventional phase transitions
[4,5], the emergence of a Coulomb phase with long-range
correlations [6,7], and other remarkably unusual and exotic
phenomena.

On the other hand, frustration is also one of the key
properties of glassy systems [8–13], where it also arises from
the fact that minimizing some local interactions leads to the
impossibility of minimizing other ones [1]. This feature can
generate rugged energy landscapes and slow dynamics even
in the absence of disorder [14–31].

It is therefore surprising at first sight that very little is
known on glassy phases in geometrically frustrated magnetic
systems. One of the first tentative investigations on this sub-
ject has been performed in Ref. [32], where glassy behavior
was observed in nonrandomly frustrated Ising models with
competing interactions. More recently, strong nonequilibrium
effects, slow dynamics, and super-Arrhenius relaxation have
also been reported in two-dimensional spin systems with
competing long- and short-range interactions [33,34].

On a different front, a thermodynamic theory, called the
“frustration-limited domain theory” of the properties of su-
percooled liquids, and of the extraordinary increase of their

characteristic structural relaxation times as the temperature is
lowered, was formulated in terms of the postulated existence
of a narrowly avoided thermodynamic phase transition due
to geometric frustration [35] (see Ref. [19] for a review). In
this context frustration describes an incompatibility between
extension of the locally preferred order in a liquid and tiling
of the whole space. This picture is consistent with appro-
priate minimal statistical mechanical models, such as three-
dimensional (3D) Ising Coulomb frustrated lattice models,
which display a slowing down of the relaxation in Monte
Carlo simulations [18,36] and an ideal glass transition within
mean-field approximations [18,20]. However, numerical sim-
ulations of these models in (3D) are limited by the pres-
ence of a first-order transition to a modulated, defect-ordered
phase [18], and cannot be performed at sufficiently low
temperatures.

Several frustrated spin (or Potts) lattice models without
quenched disorder have also been introduced and studied
over the past years to describe the key features of the glass
transition. However, most of them are either mean field in
nature (and cannot be easily generalized to finite dimen-
sions) [14–16], or are characterized by (unphysical) multi-
body interactions [31]. The classical three-coloring model on
the two-dimensional (2D) hexagonal lattice has been shown
to undergo a dynamical freezing in metastable states very
similar to the one observed in structural glasses [37,38].
Slow dynamics also appears in electronic Coulomb liquids
on the triangular lattice at quarter-filling [39], as well as
in spin-ice systems both in 2D [40,41] and in 3D [42]. A
sharp spin-glass transition has been observed in pyrochlore
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oxides free of disorder [43,44], which is indistinguishable
from the conventional one of the Edwards-Anderson model
with quenched disorder [45]. On the quantum side, it was
shown in Ref. [46] that a valence bond glass phase emerges
in the SU(N) Hubbard-Heisenberg model on a Bethe lattice
in the large-N limit due to the interplay of strong magnetic
frustration and quantum fluctuations.

Yet, despite all these efforts over the past years, a clear
and coherent picture of the glassy behaviors that can arise
due to the effect of geometric frustration in finite-dimensional
magnetic systems at low temperature is still missing.

Recently, Hamp et al. [47] studied an Ising model on
the kagome lattice with short-range antiferromagnetic inter-
actions and dipolar interactions decaying as 1/r3: the dipolar
kagome Ising antiferromagnet (DKIAFM) introduced in [48].
By means of extensive Monte Carlo simulations, the authors
first showed evidence for a first-order transition from the high-
temperature paramagnetic phase to a low-temperature crystal
state that breaks time-reversal and sublattice symmetries, and
coincides with the one previously proposed in Ref. [48] as
the ground state. Furthermore, upon cooling below the first-
order transition, the system enters a supercooled liquid regime
which exhibits all the characteristic features of fragile glasses:
two-time autocorrelation functions decay as stretched expo-
nentials and the relaxation time grows in a super-Arrhenius
fashion as the temperature is decreased. However, these con-
clusions were drawn out of numerical simulations of relatively
small systems (about 300 spins) and might be affected by both
strong finite-size effects and the difficulty of reaching thermal
equilibrium in a reliable fashion due to strong metastability
effects. Moreover, a consistent picture of the physical origin
of the dynamical slowing down at low temperatures has not
been convincingly established yet.

In order to overcome, at least partially, these issues, in
this paper we perform an analytical study of the equilibrium
phase diagram of the DKIAFM in the thermodynamic limit at
a mean-field level, focusing both on the ordered state and the
glassy phase. Our results essentially confirm, support, and elu-
cidate the observations reported in Ref. [47]. Upon decreasing
temperature, we first find a transition to a sixfold-degenerate
crystal state which breaks time-reversal and rotation sublattice
symmetry as the one observed in [47,48]. The mean-field
analysis indicates that the transition is indeed discontinuous.
However, its first-order nature turns out to be “weak,” in the
sense that the spinodal point of the crystal phase is very
close to the transition point, resulting in a very large jump
of the specific heat at the transition. This feature provides a
possible explanation of the fact that the finite-size scaling of
the numerical data of the maximum of the specific heat with
the system size performed in Ref. [47] did not find the usual
behavior (Cmax ∝ N) expected at a first-order transition due to
very large finite-size effects.

When the system is supercooled below the first-order tran-
sition, we find that the paramagnetic state becomes unstable
below a temperature at which the spin-glass susceptibility
diverges. Here, a continuous spin-glass transition takes place
at the mean-field level [49].

Note that the fact that the model displays a continuous
spin-glass transition in mean-field instead of a random first-
order transition [50,51] of the kind found in structural glasses

(such as hard spheres in infinite dimensions [27] and lattice
glass models on the Bethe lattice [21,22,24–26]) is perhaps
not surprising. In fact, Ising spins with antiferromagnetic
couplings on high-dimensional frustrated lattices and other re-
lated frustrated mean-field models with pairwise interactions
are known to undergo a continuous transition to a spin-glass
phase when the temperature is lowered below the critical
temperature of the antiferromagnetic phase [26,52]. In this
respect, it is interesting to notice that a spin-glass transition
has been recently found theoretically in a model of disorder-
free pyrochlore magnets [44] introduced to clarify the origin
of the spin-glass transition observed in the experiments on
pyrochlore magnets [43]. The model consists of spin and
orbital degrees of freedoms which induce effective dynamical
randomness on each other, and simultaneously freeze into the
disordered state.

Beyond the fact that both spin glasses and structural glasses
exhibit a pronounced slowing down of the dynamics upon
cooling and aging in the low-temperature phase, several im-
portant qualitative and quantitative differences characterize
the dynamical behavior of these systems: In structural glasses,
two-time autocorrelation functions generically exhibit a two-
step relaxation, characterized by a relatively fast decay to a
plateau (i.e., the Edwards-Anderson order parameter) which
appears discontinuously upon lowering the temperature, fol-
lowed by a much slower decay, described by a stretched
exponential. Moreover, the structural relaxation time is found
to grow extremely fast, in a super-Arrhenius fashion, as the
temperature is decreased [8–13]. Conversely, in spin glasses
the Edwards-Anderson order parameter is continuous at the
transition and vanishes in the paramagnetic phase. Hence,
two-time autocorrelation functions should display a simple
exponential decay when the transition is approached from
the high-temperature phase, and an algebraic decay at the
critical point. Furthermore, the relaxation time is expected
to diverge (only) as a power law at the critical point (and
to stay infinite in the whole low-temperature phase) [49].
Nonetheless, these differences are not clearly visible in nu-
merical simulation of relatively small samples. A clear ex-
ample of that is provided by the analysis of the dynamics
of 3D Ising spin glasses performed in Refs. [53,54] using
Monte Carlo simulations of systems with up to 643 spins.
The two-time autocorrelation function was found to be very
well fitted by stretched exponentials, with an exponent β that
exhibits a temperature dependence extremely similar to the
one reported in [47] for the DKIAFM. Moreover, although
the divergence of the relaxation time as a power law τ ∼
(T − Tc)−zν is consistent with the numerics, a Vogel-Fulcher
law τ ∼ eE0/(T −Tc ) was also found to account reasonably
well for the data. These observations clearly illustrate that,
although the origin of stretched exponential relaxations in the
3D Edwards-Anderson model and in fragile glass formers is
of different nature, making a clear distinction between a spin
glass and a glass type of dynamical slowing down is not al-
ways an easy task when analyzing numerical data of finite-size
samples.

The lower-critical dimension of the spin-glass transition is
expected to be dL ≈ 2.5 [55] (at least in the case of short-
range interactions). Hence, on general grounds we do not
expect a genuine spin-glass phase for the DKIAFM in 2D.
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Yet, the manifestations of the vestige of the transition can
be very strong also in two-dimensional systems: The spin-
glass amorphous order can establish over very long (although
not infinite) length scales, the spin-glass susceptibility can
become very large (although not infinite), and the relaxation
time can grow very fast at low temperature. Several exper-
imental realizations of two-dimensional spin glasses using
thin films do indeed show the same behavior as 3D spin
glasses at sufficiently low temperature [56–58]. In this sense,
the existence of the spin-glass phase in higher dimension,
accompanied by the growth of long-range amorphous order
and a rough free-energy landscape, provides a possible and
natural explanation of the slow dynamics observed in the
numerical simulations of Ref. [47] of the 2D model at low
temperatures.

Despite the fact that our mean-field approach consists
in studying the model on a random sparse graph of trian-
gular kagome plaquettes, and cutting off the dipolar inter-
actions beyond the second-nearest-neighbor plaquettes (i.e.,
the fifth-nearest-neighbor spins), it provides a remarkably
good approximation for the equilibrium properties of the
2D DKIAFM. For instance, the mean-field approach yields
a zero-temperature entropy density of the nearest-neighbor
kagome spin-ice model obtained for D = 0 [59] equal to
sGS ≈ 0.752 04, which turns out to be extremely close to the
Pauling estimate sGS ≈ 0.752 25. Similarly, the ground-state
energy density of the crystal ground state within the mean-
field approximation is eGS ≈ −1.6116, which accounts rea-
sonably well for the one found in the Monte Carlo simulations
of systems with 300 spins, eGS ≈ −1.515 [60]. As expected,
the transition temperature to the crystalline phase is overesti-
mated (by about a factor 3) by the mean-field treatment. Yet,
the temperature dependence of the specific heat, the energy
density, and the magnetization are remarkably similar, also
at a quantitative level, to the ones found with Monte Carlo
simulations (see Fig. 3).

The results presented here can serve at least two purposes:
(i) They help to support, understand, and clarify the numerical
results of Ref. [47]. (ii) They provide a first step to bridge
the gap between the slow dynamics observed in geometrically
frustrated magnetic systems and the theory of the glass transi-
tion formulated in terms of rough free-energy landscapes. We
believe that this analysis is of particular interest, especially
in the light of the experimental relevance of the model,
which could be potentially realized in several realistic setups,
including colloidal crystals [61,62], artificial nanomagnetic
arrays [63,64], cold polar molecules [65], atomic gases with
large magnetic dipole moments [66], and layered bulk kagome
materials [67–69].

The paper is organized as follows. In the next section we
introduce the model. In Sec. III we describe the mean-field
approach, based on a cluster formulation of the problem on
the Bethe lattice. In Sec. IV we show the results found within
our analytical treatment, including the phase diagram and
the equation of state. Finally, in Sec. V we provide some
concluding remarks and perspectives for future work. In the
Appendix A we discuss the solution of the antiferromagnetic
Ising model on the Bethe lattice which can be useful to
understand the results obtained for the DKIAFM in a simpler
setting.

II. MODEL

We consider the DKIAFM [47,48] in which N classical
spins Si = ±1 are placed on the vertices of a two-dimensional
kagome lattice and point in a direction perpendicular to the
plane. The Hamiltonian comprises an antiferromagnetic ex-
change term of strength J between spins at nearest-neighbor
lattice sites 〈i j〉 and long-range dipolar interactions of charac-
teristic strength D between all pairs of spins:

H = J
∑
〈i j〉

SiS j + D

2

∑
i �= j

SiS j

r3
i j

, (1)

where the distance ri j = |ri − r j |/a between the spins i and j
is measured in units of the lattice spacing a (that we set equal
to 1 throughout).

In the following, we will be interested in the case in which
both interactions are antiferromagnetic, i.e., J > 0 and D >

0. The case D = 0 is known to be fully frustrated and does
not order down to zero temperature [70]. The phase diagram
of the J = 0 model is less well understood but the system is
again strongly frustrated with any ordering (if present at all)
suppressed down to temperatures T � D [63].

The previous studies of the model [47,48] considered the
coupling parameters D = 1 K and J = 0.5 K (setting kB = 1
and measuring all energies in Kelvin). A further advantage
of developing an analytic (although approximate) treatment
is that it is relatively simple to explore the parameter space.
Without loss of generality, we set J = 0.5 K throughout (as
in [47,48]) and study the phase diagram of the model and
the constitutive equations in the different phases varying the
dipolar coupling D and the temperature T .

III. MEAN-FIELD ANALYSIS

Our mean-field treatment is based on the combination of
the cluster variational Bethe-Peierls formalism (already suc-
cessfully employed in the study of the equilibrium properties
of geometrically frustrated magnetic systems [4,71–74]) and
the cavity method [52], developed in the context of glassy and
disordered systems described by replica symmetry breaking
(RSB). The latter concept is related to a complex free-energy
landscape with special structure and the calculational meaning
of it, in the context of the cavity method, will become clear
below.

This long (and rather technical) section is organized as
follows: In the next subsection we motivate the choice of the
treelike lattice of triangular plaquettes used in the calculation,
the random regular graph (RRG). In Sec. III B we show how
to obtain the recursion relations for the local probabilities
of finding specific spin configurations on each plaquette. In
Sec. III C we explain the solution of these equations in the
simplest high-temperature paramagnetic phase, and discuss
the stability of this solution in Sec. III D. In Sec. III E we
describe the crystalline phase, found on a modified eight-
partite RRG built in such a way that the specific spatial
structure of the ground state proposed in Refs. [47,48] can
establish. Finally, in Sec. III F we discuss the existence of a
spin-glass phase at low temperature described by RSB. The
reader who is not interested in the technical details can skip
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this whole section and jump to Sec. IV, with the discussion of
the phase diagram.

A. Random regular graph

Originally, the Bethe approximation was introduced on
(loopless) Cayley trees of fixed connectivity. These graphs
have no loops by definition and have (roughly) half of the
sites lying on the boundary (i.e., the leaves of the tree). The
hierarchical structure of the lattice allows one to obtain exact
recursion relations which can be solved by iterations starting
from some initial condition on the leaves. When studying
homogeneous phases or, more generally, situations where the
Gibbs measure is characterized by a single, or few, pure states,
the recursion equations converge after a few iterations (the
number of which may depend on the proximity to a critical
point) to a stationary solution in the bulk of the tree, which
is independent of the initial condition. Then, thermodynamic
observables are measured in this bulk region, close to the root.

However, this approach fails if the Gibbs measure breaks
into a large number of pure states (i.e., local minima of
the free energy), which is precisely what happens in glasses
and spin glasses in mean field. This has been transparently
understood by Mézard and Parisi [52], who managed to solve
the problem and to obtain the correct physical description of
glassy phases on sparse random networks. The issue when
the number of local minima of the free energy proliferates is
that, since on a Cayley tree a finite fraction of the sites sits
on the boundary, the choice of the initial conditions for the
recursion equations fix the solution that one finds in the bulk
(which never converges to a stationary value). The correct
way to average over all possible pure states is to get rid
of the boundaries and treat them self-consistently. This is
done by introducing random regular graphs (RRGs), which
are essentially trees wrapped onto themselves. RRGs are a
special class of sparse graphs (i.e., a set of nodes and edges
connecting them), whose elements are chosen at random with
uniform probability over the ensemble of all graphs such that
each node has exactly k + 1 neighbors. The properties of these
graphs have been extensively studied in the latest years (for a
review see [75]). The most relevant property in this context
is the fact that RRGs do (necessarily) have loops, but their
typical length scales as the logarithm of the total number of
nodes. This implies that in the thermodynamic limit, the size
of the loops diverges and the RRG looks locally like a tree,
which makes the recursion relations asymptotically exact.

Hence, an RRG is locally a tree, but it is frustrated, does not
have a boundary, is statistically translational invariant, and, as
we will explain later, allows one to self-consistently average
over all possible free-energy minima by taking into account
their Gibbs weight. For these reasons, RRGs are the suitable
geometric structures to study the thermodynamics of glassy
and disordered systems at a mean-field level [21,22,24,25]
(i.e., in the limit of infinite dimensions).

In order to combine the cavity method and the cluster
variational approach for the DKIAFM, hereafter we study the
model (1) on an (infinite) RRG of N� triangular plaquettes of
total coordination three (see Fig. 1 for a sketch). In this case,
the number of spins is equal to N = 3N�/2 since each spin
belongs to two plaquettes and each plaquette contains three
spins.

1
γ

3

2
β

α

δ 1

2

2

3

1

1

23

3

FIG. 1. Sketch of a small portion of a (rooted) random regular
graph (RRG) of triangular plaquettes in presence of a cavity (the
dashed black plaquette β). Each up-type triangular plaquette of
the RRG is connected to three down-type triangular plaquettes and
each down-type triangular plaquette is connected to up down-type
triangular plaquettes. The graph looks locally like a tree since typical
loops are very large (the typical size of the loops diverges as log N�).
The first-nearest-neighboring plaquettes (β, γ , and δ) of the central
(red) triangle (α) are drawn in black, the second-nearest-neigboring
plaquettes in blue, and the third-nearest-neighboring plaquettes in
green. The mean-field Bethe-Peierls approximation consists in dis-
carding the fact that the two spins inside the green circle are in fact
the same spin on the original kagome lattice. Moreover the dipolar
coupling is cut off beyond the second-nearest-neighboring plaquettes
(i.e., fifth-nearest-neighbor spins).

B. “Cavity” recursion relations

The standard way to obtain the recursion relations for the
marginal probabilities of observing a given spin configuration
on a given plaquette is provided by the cavity method [52],
which is equivalent to the Bethe-Peierls approximation at the
replica-symmetric level. The cavity method is based on the
assumption that, due to the treelike structure of the lattice, in
absence of a given plaquette (the cavity, e.g., the red triangle
of Fig. 1), the neighboring plaquettes (the black triangles of
Fig. 1) are uncorrelated and their marginal joint probabili-
ties factorize. (Throughout the paper we will use the words
“triangle” and “plaquette” indistinctly.) Thanks to such fac-
torization property one can write relatively simple recursion
equations for the marginal probabilities of the cavity sites.
Such equations have to be solved self-consistently, the fixed
points of which yield the free energy of the system along with
all the thermodynamic observables (all the technical details of
the method can be found in Refs. [24,52]). However, in order
to be tractable, the cavity approach is formulated for systems
with finite-range interactions. Hence, before proceeding fur-
ther we need to treat the dipolar interactions of Eq. (1) in an
approximate fashion. In practice, in the analytic calculations
described below we choose to cut off the dipolar couplings up
to second-nearest-neighboring plaquettes (i.e., the interactions
between the spins belonging to the red plaquette α of Fig. 1
and the spins belonging to green plaquettes are set to zero).

Consider now the triangle α (red) in absence of the in-
teractions with the spins belonging to one of its neighbor-
ing plaquettes β (dashed black). We define pα→β ({Sα}|{Sβ})
as the probability to observe the spin configuration {Sα} ≡
{Sα,1, Sα,2, Sα,3} on the triangle α of the (rooted) RRG with
the cavity β, given that the spin configuration of the plaquette
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β is {Sβ} ≡ {Sβ,1, Sβ,2, Sβ,3}. We have adopted the convention
that spin 1 is the root of the cavity plaquette and spins 2 and 3
are labeled anticlockwise. Using this convention, one has that
Sβ,1 ≡ Sα,1.

The probabilities pα→β ({Sα}|{Sβ}) can be written in terms
of the marginal probabilities defined on the triangles γ and δ

in absence of the (cavity) triangle α, times the Gibbs’ weight
associated to each spin configuration:

pα→β ({Sα}|{Sβ}) = (
Z (iter)

α→β

)−1 ∑
��γ ,δ��α

pγ→α ({Sγ }|{Sα}) pδ→α ({Sδ}|{Sα}) e−βH̃α→β ({Sα,Sγ ,Sδ}|{Sβ }), (2)

where Z (iter)
α→β is a normalization factor ensuring that

∑
{Sα},{Sβ } pα→β ({Sα}|{Sβ}) = 1 and is associated to the “free-energy shift”

involved in the iteration process: −β�F (iter)
α→β ≡ logZ (iter)

α→β . Here, we introduce the notation
∑

��γ ,δ��α
that indicates the sum

over all possible configurations {Sγ } and {Sδ} of the spin degrees of freedom of the plaquettes γ and δ, compatible with the
constraints imposed by the spin configuration {Sα} on the plaquette α, i.e., Sγ ,1 = Sα,2 and Sδ,1 = Sα,3 [see Eq. (10)]. We will
use this notation throughout this section. The Hamiltonian H̃α→β ({Sα, Sγ , Sδ}|{Sβ}) appearing in the Gibbs factor of Eq. (2) is a
modified Hamiltonian, Eq. (1), restricted to the plaquette α → β with the missing neighboring plaquette β:

H̃α→β ({Sα, Sγ , Sδ}|{Sβ}) ≡ H(AF)
α + H̃(2D)

γ→α + H̃(3D)
δ→α + H̃(2NND)

(γ ,δ) + H̃(2NND)
(γ ,β ) + H̃(2NND)

(δ,β ) ,

H(AF)
α = (J + D)[Sα,1Sα,2 + Sα,1Sα,3 + Sα,2Sα,3],

H̃(2D)
γ→α = D

[
Sα,1Sγ ,2 + Sα,3Sγ ,3

3
√

3
+ Sα,1Sγ ,3 + Sα,3Sγ ,2

8

]
,

H̃(3D)
δ→α = D

[
Sα,1Sδ,3 + Sα,2Sδ,2

3
√

3
+ Sα,1Sδ,2 + Sα,2Sδ,3

8

]
,

H̃(2NND)
(γ ,δ) = D

[
Sγ ,3Sδ,2

8
+ Sγ ,2Sδ,2 + Sγ ,3Sδ,3

7
√

7
+ Sγ ,2Sδ,3

27

]
. (3)

The meaning of this decomposition is the following. H̃(2D)
γ→α contains the four dipolar interaction terms between the spins

belonging to the plaquette α and the spin belonging to its nearest-neighbor plaquette γ attached to the spin Sα,2, which are not
already contained in H(AF)

α . H̃(2NND)
(γ ,δ) contains the four dipolar interaction terms between the spins of the second-nearest-neighbor

plaquettes γ and δ which are not already contained in H̃(2D)
γ→α and H̃(3D)

δ→α .
In order to obtain the marginal probabilities of the spin configurations on each plaquette of the (unrooted) RRG (where each

triangular plaquette has exactly three neighbors), one needs to merge three plaquettes with a cavity (e.g., plaquettes β, γ , and δ

of Fig. 1) onto their neighboring plaquette (e.g., plaquette α of Fig. 1). In this way, one obtains

Pα ({Sα}) = (
Z (s)

α

)−1 ∑
��β,γ ,δ��α

pβ→α ({Sβ}|{Sα}) pγ→α ({Sγ }|{Sα}) pδ→α ({Sδ}|{Sα}) e−βH̃α ({Sα,Sβ ,Sγ ,Sδ}), (4)

where Z (s)
α is a normalization factor ensuring that

∑
{Sα} Pα ({Sα}) = 1, and is associated to the “free-energy shift” involved in the

process of joining three plaquettes (β, γ , and δ) to a central cavity plaquette (α): −β�F (s)
α ≡ logZ (s)

α . The plaquette Hamiltonian
H̃α ({Sα, Sβ, Sγ , Sδ}) reads as

H̃α ({Sα, Sβ, Sγ , Sδ}) ≡ H(AF)
α + H̃(1D)

β→α + H̃(2D)
γ→α + H̃(3D)

δ→α + H̃(2NND)
(γ ,δ) + H̃(2NND)

(γ ,β ) + H̃(2NND)
(δ,β ) ,

H̃(1D)
β→α = D

[
Sα,2Sβ,3 + Sα,3Sβ,2

3
√

3
+ Sα,2Sβ,2 + Sα,3Sβ,3

8

]
,

(5)

and the other terms are given in Eq. (3).
The equilibrium averages of all local observables which involve the spin degrees of freedom of a given plaquette, including,

e.g., the magnetization, can be expressed in terms of these marginal probabilities:

〈Oα〉 =
∑
{Sα}

O({Sα})Pα ({Sα}). (6)

Similarly, the contribution to the average energy due to the plaquette α can be expressed as

〈
e(s)
α

〉 =
∑

��α→(β,γ ,δ)�� pβ→α ({Sβ}|{Sα}) pγ→α ({Sγ }|{Sα}) pδ→α ({Sδ}|{Sα}) H̃α ({Sα, Sβ, Sγ , Sδ}) e−βH̃α ({Sα,Sβ ,Sγ ,Sδ})∑
��α→(β,γ ,δ)�� pβ→α ({Sβ}|{Sα}) pγ→α ({Sγ }|{Sα}) pδ→α ({Sδ}|{Sα}) e−βH̃α ({Sα,Sβ ,Sγ ,Sδ})

. (7)
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The process of joining two neighboring plaquettes (each one being a cavity for the other) (e.g., plaquettes α and β of Fig. 1)
involves another “free-energy shift,” defined as

e−β�F (l )
α↔β ≡ Z (l )

α↔β =
∑

��α↔β��
pα→β ({Sα}|{Sβ}) pβ→α ({Sβ}|{Sα}) e−βH̃(1D)

β→α , (8)

where the Gibbs’ factor H̃(D)
β→α has been defined in Eq. (5). Similarly, the contribution to the average energy coming from the

interactions between two neighboring plaquettes is given by

〈
e(l )
α↔β

〉 =
∑

��α↔β�� pα→β ({Sα}|{Sβ}) pβ→α ({Sβ}|{Sα}) H̃(1D)
β→α e−βH̃(1D)

β→α∑
��α↔β�� pα→β ({Sα}|{Sβ}) pβ→α ({Sβ}|{Sα}) e−βH̃(1D)

β→α

. (9)

We recall here the convention adopted for the notation of the
summation over the spin degrees of freedom in the expres-
sions above: ∑

��γ ,δ��α

≡
∑

{Sγ }, {Sδ}
Sγ ,1=Sα,2
Sδ,1=Sα,3

,
∑

��β,γ ,δ��α

≡
∑

{Sβ }, {Sγ }, {Sδ}
Sβ,1=Sα,1
Sγ ,1=Sα,2
Sδ,1=Sα,3

,

∑
��α→(β,γ ,δ)��

≡
∑

{Sα}, {Sβ }, {Sγ }, {Sδ}
Sβ,1=Sα,1
Sγ ,1=Sα,2
Sδ,1=Sα,3

=
∑
{Sα}

∑
��β,γ ,δ��α

,

∑
��α↔β��

≡
∑

{Sα}, {Sβ }
Sβ,1=Sα,1

. (10)

The free energy of the system can be obtained by combining
the free-energy shifts involved in the different processes, as
explained in [24,52]:

F =
N�∑
α=1

�F (s)
α −

∑
〈α,β〉

�F (l )
α↔β = 1

2

∑
〈α,β〉

(
�F (iter)

α→β + �F (iter)
β→α

)

− 1

2

N�∑
α=1

�F (s)
α , (11)

where 〈α, β〉 denotes the sum over the 3N�/2 nearest-
neighbor plaquettes on the graph (the last equality simply
comes from the fact that �F (s)

α = �F (iter)
α→β + �F (l )

α↔β by con-
struction). The average entropy of the system is then given by
〈S〉 = β(〈E〉 − F ). Analogously, the total average energy can
be written as

〈E〉 =
N�∑
α=1

〈
e(s)
α

〉 − ∑
〈α,β〉

〈
e(l )
α↔β

〉
.

Equations (2) can be written for arbitrary (large) RRGs and
are expected to become exact in the thermodynamic limit.
Since for each triangle of the RRG one can remove one of
its three neighbors, Eqs. (2) represent a set of 32 × 3 × N�

coupled nonlinear algebraic equations for the 32 marginal
probabilities pα→β ({Sα}|{Sβ}) associated to the 32 possible
configurations of the spins {Sα} on the plaquette α (in absence
of β), given the configuration of the spins {Sβ}. Once the
fixed points of these equations are found, one can compute
the marginal probabilities on each plaquette of the graph from

Eq. (4), along with the free energy and all observables. In
the following, we will discuss three specific solutions of the
equations in the thermodynamic limit, corresponding to the
(RS) homogeneous paramagnet, the (RS) ordered crystalline
state, and the (RSB) glassy phase.

C. Paramagnetic phase

The paramagnetic phase is characterized by translational
invariance and corresponds to the homogeneous and RS solu-
tion of the recursion relations:

pα→β ({Sα}|{Sβ}) = ppara ({Sα}|{Sβ}) ∀ α, β.

The probabilities ppara ({Sα}|{Sβ}) are given by the fixed point
of Eqs. (2) which in this limit become a simple system of
32 coupled nonlinear algebraic equations. The free energy,
the energy, and the magnetization [which is identically zero
by Z2 inversion symmetry in the paramagnetic phase, which
implies that ppara ({Sα}|{Sβ}) = ppara ({−Sα}|{−Sβ})], can be
easily computed from Eqs. (4), (6)–(9), and (11). This phase is
expected to be stable at high temperature. However, the aver-
age entropy density 〈s〉 = β(〈e〉 − f ) becomes negative below
a certain temperature, Ts=0(D). This indicates that the homo-
geneous solution is certainly not appropriate to describe the
low-temperature region of the phase diagram.

D. Stability of the paramagnetic phase

The manifestation of the failure of the RS solution also
shows up via a loss of stability of the RS fixed point, as
given by a simple linear analysis. To describe this instability,
one needs to introduce a probability distribution P[ �p], where
�p is a shorthand notation for the 32 marginal probabilities
p({Sα}|{Sβ}) and P[ �p] is defined as the probability density
that the probabilities pα→β ({Sα}|{Sβ}) on the plaquette α

(in absence of its neighboring plaquette β) are equal to
p({Sα}|{Sβ}).

In the homogeneous phase from Eq. (2) one has that the
probability distributions of the marginal probabilities on the
triangular plaquettes must satisfy the following self-consistent
equation:

P[ �p] =
∫

dP[ �pγ ] dP[ �pδ] δ[ �p − �p( �pγ , �pδ )], (12)

where �p( �pγ , �pδ ) is a shorthand notation for the right-hand side
term of the recursion relations (2). Close to the homogeneous
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paramagnetic solution we have, to first order,

p({Sα}|{Sβ}) ≈ ppara ({Sα}|{Sβ}) + δp({Sα}|{Sβ}).

Starting with δ �p identically and independently distributed and
injecting the expression above into Eq. (12), one has that the
deviation of the marginal probabilities from the homogeneous
solution evolves under iteration as

〈δ �p〉 = 2
∂ �p( �pγ , �pδ )

∂ �pγ

∣∣∣∣
para

〈δ �p〉, (13)

where 〈·〉 refers to the average using the distribution P ( �p).
∂ �p/∂ �pγ is actually a 32 × 32 Jacobian matrix. If λmax denotes
the eigenvalue of largest modulus of that matrix, the stability
criterion simply reads as 2|λmax| � 1. When 2|λmax| > 1,
the paramagnetic solution is instead unstable with respect to
a “modulation” instability (where λmax = − 1

2 ), correspond-
ing to a transition to a regime with successive (homoge-
neous) generations of the tree carrying different values of the
marginal probabilities. Such modulation instability is thus a
manifestation of an instability toward an ordered phase, which
breaks translational invariance (more details will be given in
the next section).

This instability criterion can also be obtained by study-
ing response functions to a perturbation (which is related
to correlations through the fluctuation-dissipation theorem)
[24]. In this setting, the instability is detected by means of
the divergence of the linear magnetic susceptibility in the
paramagnetic phase, defined as

χ = 1

N�

∑
α,β

〈SαSβ〉c = 1

N�

∑
α,β

∂〈Sα〉
∂hβ

∣∣∣∣
hγ =0

,

where Sα ≡ ∑
i∈α Si is a shorthand notation for the magneti-

zation of the plaquette α and hβ is an external magnetic field
conjugated to the magnetization of the plaquette β. Making
use of the homogeneity of the paramagnetic solution and
the treelike structure of the lattice, the susceptibility can be
rewritten as

χ = 1 + 3
∞∑

r=1

2r−1
〈
Sα0 Sαr

〉
c,

where Sα0 and Sαr are two plaquettes taken at dis-
tance r on the tree. The series converges provided that
limr→∞ log〈Sα0 Sαr 〉c/r < log 2. To evaluate 〈SαSβ〉c, we in-
voke the fluctuation-dissipation relation

〈
Sα0 Sαr

〉
c = ∂

〈
Sαr

〉
∂hα0

∣∣∣∣∣
hγ =0

,

where hα0 denotes the external magnetic field conjugate to Sα0 .
Since hα0 is a function of (the components of) P({Sα0}), we can
use the chain rule along the branch of the tree which connects
the plaquette α0 with the plaquette αr through the plaquettes
αl , l = 1, . . . , r − 1:

∂
〈
Sαr

〉
∂hα0

= ∂
〈
Sαr

〉
∂ �pαr→αr−1

(
r∏

l=2

∂ �pαl →αl−1

∂ �pαl−1→αl−2

)
∂ �pα1→α0

∂ �Pα0

∂ �Pα0

∂hα0

.

In the paramagnetic phase, all the intermediate marginal cav-
ity probabilities are equal and the previous equation factor-
izes, leading again to 2|λmax| � 1.

The maximal eigenvalue λmax decreases as the temperature
is lowered and becomes equal to − 1

2 at a certain temperature,
signaling a modulation instability of the paramagnetic phase
toward a crystalline phase (see Sec. III E) at a temperature
Tmod(D).

Below Tmod the linear susceptibility is given by a sum
of exponentially diverging terms with alternating signs. Yet,
the crystalline order of the DKIAFM is not compatible with
the simplest RRG used to study the paramagnetic phase,
due to the presence of loops at all scales which inhibits the
periodic order to establish. As explained in the next section,
in order to be able to find the crystalline phase, one needs to
introduce a more complicated structure, i.e., an eight-partite
RRG constructed in such a way that the specific crystalline
order of the DKIAFM can establish [76].

One can also look for another kind of instability, namely,
a spin-glass instability, which manifests itself as a divergence
of the nonlinear susceptibility [24], which is defined as

χsg = 1

N�

∑
α,β

〈SαSβ〉2
c .

Equivalently, this instability appears as a widening of the vari-
ance 〈(δ �p)2〉 under the recursion of Eq. (12). Both approaches
lead to a stability criterion 2λ2

max � 1. Note that this condition
is always weaker than that for the modulation instability
2|λmax| � 1, associated to the crystalline order [77]. However,
it is the relevant one in the case of glassy phases, characterized
by the onset of long-range amorphous order (which, contrarily
to the periodic order of the crystalline phase, is compatible
with the simplest RRG of triangular plaquettes).

Solving the recursion relations (2) in the paramagnetic
phase, we find that the homogeneous solution becomes un-
stable below a temperature Tsg(D), at which the spin-glass
susceptibility diverges [with Ts=0(D) < Tsg(D) < Tmod(D)].

This requires either a phase transition before the spin-glass
local instability is reached [[21–26] (as occurs in the mean-
field models of fragile glasses, described by a random first-
order transition [50,51]), or a continuous (possibly spin-glass)
transition at Tsg. We will show below that the latter scenario
is the correct one for the DKIAFM. In order to do this, in
Sec. III F we look for a solution of the recursion relations
which breaks the replica symmetry, corresponding to a glassy
phase where many local minima of the free energy exist
and where the local marginal probabilities fluctuate from a
plaquette to another.

E. Crystal phase

The crystalline phase corresponds to a (RS) solution where
the marginal probabilities do not fluctuate randomly from
site to site, but are different in different sites (breakdown of
translational invariance). The (sixfold-degenerate) crystalline
state proposed in [48] and observed numerically in [47] is
characterized by a 12-spin unit cell and breaks (twofold)
time-reversal symmetry and (threefold) rotation symmetry
(see Refs. [47,48] for more details). As anticipated above,
this structure is not compatible with the simplest RRG used
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FIG. 2. Sketch of the sublattice structure introduced to de-
scribe the ordered crystalline phase proposed in [48] and detected
in [47]. The four up-type plaquette sublattices are denoted by
(A, B,C, D), and the four down-type plaquette sublattices are de-
noted by (a, b, c, d ). The green circles represent the +1 spins in one
of the sixfold-degenerate ground-state configurations. Such sublat-
tice structure is associated to 24 different kinds of cavities, denoted
by (An, Bn,Cn, Dn), and (an, bn, cn, dn), with n = 1, 2, 3, obtained
by removing one of the three neighboring plaquettes to each of the
eight kinds of sublattice plaquettes. For example, the plaquette (a1)
is obtained by removing the bottom neighboring plaquette (C) from
the plaquette (a), and it is connected to the plaquettes (A3) on the
right and (B2) on the left, obtained, respectively, by removing the
right neighboring plaquette (a) from the plaquette of type (A) and
the left neighboring plaquette (a) from the plaquette of type (B).

to describe the paramagnetic phase, due to the presence of
loops of all lengths, which inhibits the periodic order to
establish. In order to be able to account for such ordered
phase we need to introduce a more complicated graph, made
by eight interpenetrated sublattices, labeled by the letters
(A, B,C, D, a, b, c, d ): each sublattice is an RRG of triangular
plaquettes such that each plaquette has three randomly chosen
neighboring plaquettes belonging to the other sublattices (see
the caption of Fig. 2 for more details). This eight-partite RRG
is built accordingly with the specific crystalline order of the
DKIAFM, as illustrated in Fig. 2: for example, a site of the
RRG of type (a) of down-type triangles is connected to an

up-type triangle of the RRG (A) on the up-left corner, an up-
typ triangle of the RRG (B) on the up-right corner, and an up-
type triangle of the RRG (C) on the bottom corner, and so on.
Since for each triangle of the whole graph one can remove
one of its three neighbors, this eight-partite RRG yields 24
different sets of cavity probabilities. The iteration process is
done taking into account the structure of the crystalline phase,
as explained in the caption of Fig. 2. The recursion equations
(2) become then a set of 24 × 32 coupled nonlinear algebraic
equations for the 24 marginal cavity probabilities on plaque-
ttes of each sublattice in presence of a cavity. The solution
of these equations appears discontinuously at a spinodal point
Tsp(D), and becomes thermodynamically stable when the cor-
responding free energy crosses the paramagnetic one, at the
melting temperature Tm(D). At that temperature, we observe
a first-order phase transition characterized by a spontaneous
breakdown of the translational, rotational, and spin inversion
invariance, accompanied by a discontinuous jump of the en-
ergy density and of the entropy density. Decreasing further the
temperature, the energy in the crystalline phase approaches
quickly the ground-state value eGS ≈ −1.6116 (which turns
out to be remarkably close to the one found with Monte Carlo
simulations of systems of 300 spins, eGS ≈ −1.515 [47]), and
the entropy quickly approaches zero.

Note that while the translation-invariant phases can be
recovered on the eight-partite RRG just by imposing that the
probabilities are the same on all sublattices, the opposite is not
true since the crystalline solution can only be found provided
that the symmetry between the eight sublattices is broken.

Inspecting the (ground-state) spin configuration of Fig. 2,
it was noticed in [47] that one of the three spins of the
kagome triangles is completely polarized (i.e., the bottom
spins of sublattices a, b, c, d and the top spins of sublatices
A, B,C, D), with the state having zero magnetization overall.
Note that the need to introduce eight sublattices of triangular
plaquettes is due to the fact that the spin pattern on the two
nonpolarized rows of spins of the kagome triangles (i.e., along
the horizontal bonds in Fig. 2) has period four, with three
spins S = ∓1 followed by one spin S = ±1. Based on these
observations, suitable order parameters for the transition to the
ordered state are the sublattice magnetizations:

mX =
∑
i∈X

Si,

with X denoting the eight different sublattices: X =
{A, B,C, D, a, b, c, d}. These order parameters essentially co-
incide with the emergent effective charge variables introduced
in Ref. [47], derived from the so-called dumbbell picture
[78]. The (ground-state) spin configuration of Fig. 2 corre-
sponds to ma = mc = mA = mD = ±1 and mb = md = mB =
mC = ∓1. Equivalently, one can choose as order parameter
mpol = 〈Spol〉, the average magnetization of the spins of the
kagome triangles that are completely polarized, as done in
[47]. Following this suggestion, we will use |mpol| as the order
parameter jumping from zero to a finite value at the transition.

We have also looked for other plausible competing or-
dered phases, which break the translational and rotational
symmetries in different ways and have different unit cells.
However, such alternative crystalline states turn out to
be less favorable (i.e., they have a higher free energy)
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compared to the crystalline phase of [47,48]. Yet, if one
does not include the dipolar interactions between the second-
nearest-neighboring plaquettes, the crystalline phase depicted
in Fig. 2 disappears (i.e., no physically relevant fixed point
of the recursion relations is found corresponding to the
sublattice structure of Fig. 2), and another completely dif-
ferent (fourfold-degenerate) ordered phase emerges. This
observation highlights the importance of accounting for the
dipolar interaction as accurately as possible, in order to re-
cover the correct description of the ordered phase [79].

F. Spin-glass phase

As explained above, the crystalline order of the DKIAFM
cannot establish on the simple RRG which does not have
the specific eight-partite structure described above. Hence,
one can follow the paramagnetic solution, at least formally,
in the supercooled regime [T < Tm(D)], and even below the
modulation instability [T < Tmod(D)] [76].

However, as mentioned above, the predicted entropy den-
sity becomes negative as the temperature is lowered below
Ts=0(D), implying that this solution does not describe well
the low-temperature region. Moreover, the homogeneous so-
lutions become unstable below a certain temperature Tsg(D) >

Ts=0(D), at which the spin-glass susceptibility diverges. The
“entropy crisis” and the spin-glass instability are manifesta-
tions of the appearance of a huge number of metastable glassy
states. The RS approach fails because it does not take into ac-
count the existence of several local minima of the free energy.
This requires either a phase transition before the spin-glass
local instability is reached (as in the case of lattice models for
fragile glasses in the mean-field limit [[21–26] described by
a random first-order transition [50,51]), or a continuous spin-
glass transition at Tsg. In order to understand which of these
two possible scenarios is the correct one for the DKIAFM, we
have to look for a solution of the recursion relations which
breaks the replica symmetry, corresponding to a glassy phase
where many local minima of the free energy exist and where
the local marginal probabilities fluctuate from a plaquette to
another. We thus need to perform a statistical treatment of sets
of solutions of Eq. (2). The simplest setting which allows to
proceed further in this direction is provided by a one-step RSB
ansatz, which starts from the assumption that exponentially
many (in N�) solutions of the recursion relations exist. More
precisely, we assume that the number N ( f ) of solutions with
a given free-energy density f on graphs of size N� is N ( f ) ∼
exp[N��( f )], where �( f ) � 0 is called the configurational
entropy (or complexity) and is supposed to be an increasing
and concave function of the free energy f . This is a strong
hypothesis which is justified by its self-consistency. Under
these assumptions, one can show that the 1RSB self-consistent
equation for the probability distribution of the marginal cavity
probabilities becomes [24,52]

Pm[ �p] ∝
∫

dPm[ �pγ ] dPm[ �pδ] δ[ �p − �p( �pγ , �pδ )] e−βm�F (iter)
,

(14)
where �p( �pγ , �pδ ) is a shorthand notation for the right-hand
side term of the recursion relations (2) and �F (iter) is the
free-energy shift involved in the iteration process defined in
Eq. (2) via the normalization of the cavity marginal proba-

bilities. The probability distribution depends on the param-
eter m which is the breakpoint in Parisi’s order-parameter
function at the 1RSB level [24,49,52], and is defined as m =
(1/β )∂�/∂ f (all the details of the calculation can be found in
Refs. [24,26,52]). Similarly to Eq. (11), the 1RSB free-energy
density functional is given by

φ(m) = �φ(s)(m) − 3
2�φ(l )(m), (15)

with

e−βm�φ(s) =
∫

dPm[ �pβ] dPm[ �pγ ] dPm[ �pδ] e−βm�F (s)
,

e−βm�φ(l ) =
∫

dPm[ �pα] dPm[ �pβ] e−βm�F (l )
,

where the free-energy shifts have been defined in Sec. III B.
The other relevant thermodynamic observables, such as, e.g.,
the average energy, can be obtained in a similar fashion
[24,52]. The parameter m is fixed by the maximization of the
free-energy functional with respect to it [24,52], which allows
to recover the complexity as a Legendre transform of φ(m):

m φ(m) = m f − 1

β
�( f ).

The RS high-temperature homogeneous description of the
phase is recovered by taking Pm( �p) = δ( �p − �ppara ) and m = 1
[80].

Since Eq. (14) is a functional relation, an analytical
treatment is not possible in general. Yet, the self-consistent
equation can be efficiently solved numerically with arbitrary
precision using a population dynamics algorithm (for all
technical details, see [52]). For high values of the temper-
ature [T > Tsg(D)] we recover the paramagnetic solution.
Lowering the temperature, a nontrivial solution of the 1RSB
equation appears continuously exactly at Tsg(D). Right below
Tsg the probability distribution Pm( �p) acquires an infinitesimal
widening of the variance 〈(δ �p)2〉. This scenario corresponds to
a continuous transition to a spin-glass phase at the temperature
at which the spin-glass susceptibility diverges. The order pa-
rameter of the spin-glass transition is the Edwards-Anderson
order parameter qEA = (1/N )

∑
i〈Si〉2, which vanishes lin-

early as qEA ∼ (Tsg − T ) for T → T −
sg [49].

As it is well known, the low-temperature spin-glass phase
should be described by full RSB [49]. However, any new
level of RSB will require considering a more sophisticated
situation, namely, a distribution over the probability distri-
bution of the previous level. For instance, the two-step RSB
will be written as a distribution Q[P[ �p]] over distributions
P ( �p). Describing with this formalism a finite connectivity
system with full RSB is therefore too complicated, and we will
limit ourselves to the 1RSB ansatz. Moreover, since solving
the self-consistent functional equation (14) via population
dynamics is quite computationally demanding, we did not
perform the maximization of the free-energy functional (15)
with respect to m. For these reasons, our approach only pro-
vides an approximate description of the equilibrium properties
of the spin-glass phase and we have not pushed the 1RSB
calculations far below Tsg (essentially we only consider few
values of the temperature in the vicinity of the critical point).
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IV. PHASE DIAGRAM AND THERMODYNAMIC
BEHAVIOR

In this section we discuss the main results found within the
mean-field treatment of the DKIAFM described in Sec. III.
In order to compare with the numerical results of the Monte
Carlo simulations of [47], we start by fixing the parameter D
to 1, as in Refs. [47,48], and measure several observables such
as the average energy density 〈e〉 = 〈E〉/N�, the (intensive)
specific heat c = ∂〈e〉/∂T , the magnetization of the polarized
spin in one of the sixfold-degenerate ground-state configura-
tions |mpol|, and the average entropy density 〈s〉 = 〈S〉/N�, as
a function of the temperature T .

For the reader uninterested in the technical details of the
mean-field calculations who skipped the whole Sec. III, we
just recall here that one can find three different solutions of
the recursive equations on the Bethe lattice:

(1) The paramagnetic state, corresponding to a translation-
ally invariant solution where the local probabilities are the
same on all the plaquettes.

(2) The spin-glass phase, corresponding to an infinite set
of solutions of the mean-field recursion relations, where the
probabilities fluctuate from one plaquette of the Bethe lattice
to another. This infinity of possible solutions is encoded
in a probability distribution obtained after averaging self-
consistently over all free-energy minima with the correspond-
ing Gibbs weight. After averaging over all free-energy min-
ima, the probability distributions over all possible solutions
are again translationally invariant.

(3) The crystal phase, where the local probabilities do not
fluctuate randomly from one plaquette to another, but are
different on different plaquettes (breakdown of translational
invariance).

The paramagnetic and spin-glass phases are found on
simple RRGs of triangular plaquettes, while the crystalline
order can only establish on a more complicated eight-partite
RRG constituted by eight sublattices.

The results are shown in Fig. 3. At high temperature the
system is found in the paramagnetic phase. Upon lowering
the temperature, a first-order transition to the crystalline phase
proposed in Refs. [47,48] (see Fig. 2) occurs at Tm. The
order parameter |mpol| presents a finite jump at Tm, where
the average energy and entropy densities also display an
abrupt drop. The transition to the ordered state turns out to
be weakly first order, in the sense that the spinodal point
of the crystalline solution Tsp ≈ 0.16 K is very close to the
transition temperature Tm ≈ 0.1566 K where the free energies
of the paramagnetic phase and the crystal phase cross. The
modulation instability where the paramagnetic phase would
become unstable toward the crystalline phase is instead found
at significantly lower temperature Tmod ≈ 0.147 K. Since the
specific heat of the crystal solution diverges at the spinodal
point, the vicinity of Tm and Tsp results in a very large jump (of
about a factor 3) of the intensive specific heat at the transition.
This feature might explain the deviations observed in the
numerical simulations from the expected scaling of the peak
of the (extensive) specific heat as Cmax ∝ N� [47]. (On the
other hand, on the high-temperature paramagnetic side of the
transition the specific heat is featureless in the vicinity of Tm.)

Although approximate, our approach accounts remarkably
well for the numerical results of Ref. [47]. As expected,
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FIG. 3. Average energy density 〈e〉 (top left), magnetization of
the polarized spins |mpol| (top right), specific heat (per plaquette)
c = ∂〈e〉/∂T (bottom left), and average entropy density 〈s〉 (bottom
right) as a function of the temperature T for J = 0.5 and D = 1.
Data in the paramagnetic phase are shown in blue, in the crystal
phase in black, in the supercooled paramagnetic phase in magenta.
The red circles are obtained by solving the 1RSB equations in
the spin-glass phase (with m = 1). The vertical dashed black and
red lines correspond to the first-order transition to the crystal state
at Tm and the continuous transition to the spin-glass phase at Tsg,
respectively. The gray curves correspond to the crystal solution in
the metastable region and end at the spinodal point (Tsp, vertical
black dotted line). The green dotted vertical line gives the position
of the modulation instability of the homogeneous solution Tmod. The
orange dashed curves correspond to the (unstable) RS solution of the
equation below the spin-glass transition point, and show the entropy
crisis in the manner of Kauzmann of the RS solution (at Ts=0).

the transition temperature is overestimated by the mean-field
approximation (by about a factor 3). Yet, the temperature
dependencies of the specific heat, the energy, and the mag-
netization are, also at a quantitative level, very similar to the
ones found in Ref. [47] (recall that the energy, entropy, and
specific heat per spin are obtained by multiplying the energy,
entropy, and specific heat per plaquette by a factor 2

3 ).
Since the crystalline order of the DKIAFM cannot estab-

lish on the simple RRG which does not have the specific
eight-partite structure described in Sec. III E, one can follow
the paramagnetic solution in the supercooled regime (T < Tm)
even below the modulation instability (T < Tmod) [76]. If one
keeps lowering the temperature, the spin-glass susceptibil-
ity grows and diverges at Tsg ≈ 0.1 K, where a continuous
transition to a spin-glass phase takes place. Although the
spin-glass phase is presumably described by full RSB (at
least at the mean-field level), our approach only allows one to
perform an approximate 1RSB ansatz for the low-temperature
glassy phase. Moreover, solving the self-consistent functional
equation (14) via population dynamics is computationally
heavy. For these reasons, we did not push the calculations of
the thermodynamic observables too deep into the spin-glass
phase, and only solved the equations for few points close to
the critical temperature.

144413-10



MEAN-FIELD PHASE DIAGRAM AND SPIN-GLASS PHASE … PHYSICAL REVIEW B 101, 144413 (2020)

0 1 2 3
D

0

0.2

0.4

T

paramagnet

cr
ys

ta
l

supercooled

paramagnet

spin
glass

FIG. 4. Mean-field phase diagram of the model in the D-T
plane for J = 0.5, showing the position of the different phases and
the transition lines. The black continuous line corresponds to the
first-order melting transition Tm(D), where the free energies of the
paramagnetic and the crystalline solutions cross. The black dotted
line gives the spinodal point at which the crystalline solution appears
discontinuously. The green dotted line corresponds to the modulation
instability of the paramagnetic solution Tmod(D). The red continuous
line is the continuous spin-glass transition Tsg(D), where the spin-
glass susceptibility diverges.

Since the kagome lattice is compatible with the crystalline
ground state of the DKIAFM, one might expect that the para-
magnetic phase should in fact disappear below Tmod. However,
one should keep in mind that there are some frustrated Ising
models (see, e.g., Ref [35]) for which the transition to the
ordered phase becomes more discontinuous in finite dimen-
sion compared to their mean-field counterpart. It is therefore
possible that in 2D Tmod is shifted to lower temperature
(relatively to Tm). In this case, the supercooled paramagnetic
phase which exists between Tmod < T < Tm might be strongly
influenced by the remnant of a spin-glass transition found at
the mean-field level since the spin-glass susceptibility might
be already very large a Tmod.

In Fig. 4 we plot the phase diagram of the DKIAFM,
showing the position of the different phases when varying
the temperature T and the dipolar interaction D (J is fixed
to J = 0.5 K). The effect of varying the dipolar interaction is
particularly simple. In fact, we find that the phase boundaries,
as well as all the characteristic temperature scales, vary lin-
early with D:

Tm ≈ 0.1566D,

Tsg ≈ 0.1 D,

Tsp ≈ 0.16 D,

Tmod ≈ 0.147 D,

Ts=0 ≈ 0.0713 D.

As expected, in the limit D = 0 the paramagnetic phase is
stable at all temperatures and corresponds to the only solution
of the recursion relations. This is due to the fact that for
D = 0 the system is much less frustrated and has a highly

(i.e., extensively) degenerate ground state (i.e., 〈s〉 approaches
a finite value in the T → 0 limit) since each plaquette has
a sixfold-degenerate ground state which corresponds to the
ice rule (two +1 and one −1 spins or two −1 and one
+1 spins). In particular, for D = 0 the model reduces to the
nearest-neighbor kagome spin-ice model of Wills, Ballou, and
Lacroix [59], for which a Pauling estimate yields the entropy
sGS = (3/2) log[2(3/4)2/3] ≈ 0.752 25, while our mean-field
approximation yields sGS ≈ 0.752 04. When the dipolar in-
teractions are turned on (D > 0), such degeneracy is lifted,
and a specific crystalline ground-state structure emerges.
The minimization of the local interactions produces a much
stronger geometric frustration for T � D and gives rise to
the emergence of a spin-glass phase at low temperatures,
characterized by an extremely rough free-energy landscape
(at least at the mean-field level). The fact that all the relevant
temperature scales of the problem show an apparent linear
dependence on D is precisely due to the fact that the relevant
energy scale is the energy difference between the ground state
and the first excited states, which goes linearly to zero with D.

V. CONCLUSIONS

In this paper we have developed an analytical mean-field
treatment for the equilibrium properties of the DKIAFM
introduced in [48] and studied numerically in [47]. Our mean-
field approach is based on a cluster variational Bethe-Peierls
formalism [4,71–74] and on the cavity method [52], and
consists in studying the model on a sparse random tree-
like graph of triangular kagome plaquettes, and cutting off
the dipolar interaction beyond the second-nearest-neighbor
plaquettes (i.e., the fifth-nearest-neighbor spins). Our results
essentially confirm and support the observations reported in
Ref. [47], which were obtained using Monte Carlo simulations
of relatively small system (ranging from 48 to 300 spins), and
might be affected by both strong finite-size effects and by the
difficulty of reaching thermal equilibrium in a reliable fashion
due to strong metastability effects.

The summary of our results is the following. Upon decreas-
ing the temperature, we first find a transition to a sixfold-
degenerate crystal state which breaks time-reversal, transla-
tion, and rotation symmetry as the one proposed in [47,48].
Such transition is indeed discontinuous, as suggested in [47],
although its first-order character turns out to be weak, which
might explain the strong finite-size effects observed in the
finite-size scaling of the numerical data of the specific heat.
When the system is supercooled below the first-order tran-
sition, we find that the paramagnetic state becomes unstable
below a temperature at which the spin-glass susceptibility
diverges and a continuous spin-glass transition takes place at
the mean-field level. The remnant of such spin-glass transition
could be detected in numerical simulations and experimental
realizations of the DKAIFM by measuring the nonlinear
susceptibility [81].

On the one hand, the results presented here support and
clarify the numerical findings of Ref. [47]. On the other
hand, they provide a first step to bridge the gap between the
slow dynamics observed in geometrically frustrated magnetic
systems and the mean-field theory of glassy systems formu-
lated in terms of rough free-energy landscape. We believe
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that this analysis is of particular interest, especially in the
light of the experimental relevance of the model, which could
be potentially realized in several realistic setups, including
colloidal crystals [61,62,82–85], artificial nanomagnetic ar-
rays [63,64,86,87], polar molecules [65], atomic gases with
large magnetic dipole moments [66], and layered bulk kagome
materials [67–69].

Some comments are now in order.
The lower critical dimension of the spin-glass transition is

expected to be dL ≈ 2.5 [55] (at least in the case of short-range
interactions). Hence, we do not expect a genuine spin-glass
phase for the DKIAFM. Yet, in 2D the spin-glass amorphous
order can establish over very large (although not infinite)
length scales and the spin-glass susceptibility can become
very large (although not infinite) at low temperature due to
the vestiges of the transition. Indeed, there are plenty of
experimental studies using thin films that at sufficiently low
temperatures behave as the 3D counterparts. See, e.g., [57] for
a very recent reference and [56] for a more classical ones. The
situation is similar concerning numerical simulations [58].
Furthermore, since Tsg < Tmod, our mean-field analysis seems
to suggest that the spin-glass phase could not be realized
because the paramagnetic one becomes unstable at higher
temperatures [77]. Yet, as there are models (like in [35]) which
are more discontinuous in finite dimensions with respect
to their mean-field counterpart, it is possible that Tmod can
decrease (relatively to Tm) in 2D compared to the mean-field
solution. Hence, the properties of the supercooled paramagnet
below Tm could be influenced by the fact that the spin-glass
susceptibility is already very large at Tmod.

Concerning the dynamics, very early Monte Carlo simula-
tions of the 3D Edwards-Anderson model suggested that the
spin autocorrelation function, close but above the expected
critical temperature, decays as a stretched exponential [53].
Therefore, although the the spin-glass transition is a second-
order phase transition with critical slowing down and alge-
braic decay of correlation functions, for the system sizes and
timescales accessed in Ref. [53], the time-delayed correlations
were satisfactorily fitted by such an anomalous form, with
a stretching exponent decaying with decreasing temperature.
Just a bit later, in [54] the conventional critical slowing down
was recovered. A stretched exponential relaxation of the self-
correlation in the DKIAFM was reported in [47]. However,
although the origin of stretched exponential relaxations in the
3D Edwards-Anderson model and in fragile glass formers is
of different nature, for limited system sizes it is hard to distin-
guish sharply between this behavior and a slow algebraiclike
decay.

The case J = 0 and D > 0 [70] has been left over by the
present investigation and might be an interesting subject for
future studies. Possibly, the most interesting questions would
be the investigation of how the properties of the model are
affected by quantum fluctuations.
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APPENDIX: ANTIFERROMAGNETIC ISING MODEL
ON THE RRG

The solution of the DKIAFM on the Bethe lattice shares
many similarities with other geometrically frustrated models
whose mean-field version on sparse random networks exhibits
a spin-glass phase. In this Appendix we discuss the simplest
example, which is provided by the Ising model with antifer-
romagnetic interactions, which we believe can help the reader
to get a better intuition of the results described in the main
text and of their physical implications. The Hamiltonian of
the model is

H = J
∑
〈i, j〉

SiS j,

with J > 0. This model can be easily solved on a RRG of con-
nectivity k + 1. The recursion equations, i.e., the equivalent
of Eqs. (2) for the probabilities pi→ j and qi→ j = 1 − pi→ j ,
of the spin i being up or down in absence of one of its k + 1
neighbors j, are

pi→ j = 1

Z (iter)
i→ j

∏
m∈∂i/ j

(e−βJ pm→i + eβJqm→i ),

qi→ j = 1

Z (iter)
i→ j

∏
m∈∂i/ j

(e−βJqm→i + eβJ pm→i ),

(A1)

where the notation m ∈ ∂i/ j indicates the set of all neighbors
of i but j, and Z (iter)

i→ j is the normalization factor which ensures
that pi→ j + qi→ j = 1.

The paramagnetic phase is obtained by imposing transla-
tion invariance, i.e., pi→ j = p ∀ (i, j), which yields

p = [eβJ − 2p sinh(βJ )]k

[eβJ − 2p sinh(βJ )]k + [e−βJ + 2p sinh(βJ )]k
. (A2)

It is straightforward to show that for any value of βJ the
equation above admit the unique solution p = 1

2 (i.e., m = 0).
In order to study the stability of the paramagnetic phase,

similarly to Eq. (13), one has to compute the deriva-
tive d pi→ j/d pm→i|p=1/2 = − tanh(βJ ) ≡ λ. The correlation
function between two spins at distance r on the RRG is thus

〈SiSi+r〉 = [− tanh(βJ )]r,

which yields the linear and spin-glass susceptibilities as

χ = 1 + k + 1

k

∑
r

[−k tanh(βJ )]r,

χsg = 1 + k + 1

k

∑
r

[k tanh2(βJ )]r .

At temperature Tmod = J/atanh(1/k) the paramagnetic
phase exhibits a modulation instability (for any k > 1) toward
an antiferromagnetic phase where χ diverges. The spin-glass
susceptibility also diverges at a lower temperature Tsg =
J/atanh(1/

√
k). The modulation instability is the manifes-

tation of a second-order transition to an antiferromagnetic
phase, characterized by a staggered order, where each ↑ spin
is surrounded by k + 1 ↓ spins and so on. However, this
phase can only be realized on bipartite lattices. The simple
RRG is not bipartite due to the presence of loops of all
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lengths [88]. Hence, the antiferromagnetic order cannot be
realized on these lattices. Yet, one can find an antiferromag-
netic solution by introducing a more complicated graph, made
of two interpenetrated RRGs labeled by the letters (A) and
(B), and constructed in such a way that each site of (A) is
connected to k + 1 randomly chosen sites of (B) and each site
of (B) is connected to k + 1 randomly chosen sites of (A).
Imposing translation invariance separately on the (A) and (B)
sublattices, Eqs. (A1) become

pa = [eβJ − 2pb sinh(βJ )]k

[eβJ − 2pb sinh(βJ )]k + [e−βJ + 2pb sinh(βJ )]k
,

pb = [eβJ − 2pa sinh(βJ )]k

[eβJ − 2pa sinh(βJ )]k + [e−βJ + 2pa sinh(βJ )]k
.

Of course, above Tmod the paramagnetic solution can be
simply recovered imposing pa = pb. However, below Tmod

another solution appears continuously where translational in-
variance is spontaneously broken [89].

As said above, this solution does not exist on the simple
nonbipartite RRGs. One can thus follow, at least formally, the
paramagnetic solution down to Tsg. Here, a spin-glass transi-
tion (described by full RSB) occurs. This is signaled by the

appearance of an infinity of solutions of Eqs. (A1) where the
local probabilities fluctuate from site to site. Proper averaging
over all solutions (i.e., all minima of the free energy) at the
1RSB level yields

Pm(p) =
∫ k∏

m=1

dPm(pi )δ[p − f ({pm})]
(
Z (iter)

m

)m
,

where the function f ({pm}) represents the right-hand side of
Eq. (A1).

One can of course ask what is the relevance of this spin-
glass transition since it occurs in a temperature range where
the paramagnetic phase seems to be unstable anyway. The
answer depends on the physical situation that one wants to
describe. For example, 2D square lattices are bipartite and no
paramagnetic state can exist below Tmod. On the contrary, tri-
angular lattices are not bipartite and the antiferromagnetic or-
der cannot establish [yet one still finds a modulation instability
on RRGs of connectivity k + 1 = 3 at Tmod = J/atanh( 1

2 )].
The existence of a spin-glass solution at low temperature
in this case reflects somehow the fact that the Ising model
with antiferromagnetic interactions becomes highly frustrated
at low T on a triangular lattice (although no true spin-glass
transition can occur in 2D anyway).
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