PHYSICAL REVIEW B 101, 144407 (2020)

Magnetic excitations in magnetization plateaus of a frustrated spin ladder
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Magnetization plateaus emerging in quantum spin systems due to spontaneously breaking of translational
symmetry have been reported both theoretically and experimentally. The broken symmetry can induce recon-
struction of elementary excitations such as Goldstone and Higgs modes, whereas its microscopic mechanism and
reconstructed quasiparticle in magnetization-plateau phases have remained unclear so far. Here we theoretically
study magnetic excitations in the magnetization-plateau phases of a frustrated spin ladder by using the dynamical
density-matrix renormalization-group method. Additionally, analytical approaches with the perturbation theory
are performed to obtain an intuitive view of magnetic excitations. A comparison between numerical and
analytical results indicates the presence of a reconstructed quasiparticle originating from spontaneously broken
translational symmetry, which is realized as a collective mode of the spin trimer called a trimeron.
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I. INTRODUCTION

Various quantum spin systems with frustration have been
extensively studied, motivated by exotic characters such as
the quantum spin liquid at zero temperature and quantiza-
tion of magnetization with spontaneously broken translational
symmetry. Actually, gapless quantum spin liquid states and
gapped quantized states of magnetization have been reported
not only theoretically but experimentally [1-4]. These states
are often induced by frustration and are switchable by ap-
plied magnetic field. For example, the zigzag spin chain,
where geometrical frustration originates from antiferromag-
netic first- and second-neighbor interactions, is known as a
typical quantum spin system exhibiting a gapped-to-gapless
transition induced by magnetic field at zero temperature [5].

Compared with the ground-state properties, dynamical be-
haviors in magnetic fields have mostly not been clarified so
far. In particular, dynamical properties in the quantized state
of magnetization, the so-called magnetization plateau (MP)
state, mostly remains unclear, despite the possible emergence
of novel elementary excitations due to spontaneous symmetry
breaking. In fact, recent studies on a weakly coupled spin-
ladder compound reported a Higgs mode due to spontaneously
broken symmetries [6—8]. Furthermore, these dynamical be-
haviors are crucial for understanding spin or heat transport,
which is applicable to spintronics devices [9,10].

In this paper, we focus on magnetic excitations in a frus-
trated spin ladder (FSL), where antiferromagnetic interac-
tions are assigned to the first- and second-neighbor bonds
in a leg and the first-neighbor bond in a rung. This model
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exhibits three MPs at normalized finite magnetization m =
M/Mg, = 1/3, 1/2, and 2/3 with saturation magnetization
Mg, [11,12]. Interestingly, all of these MPs are induced by
spontaneously breaking translational symmetry, so that the
MPs exhibit extended magnetic unit cells that are different
from the original unit cell of this model. In addition, this
model is regarded as an effective spin model to reproduce
magnetic behaviors in real materials BiCu;POg [13-16] and
Li;CuyO(SOy4), [17-20]. Actually, in BiCu,POg, external
field dependences [21-24], dynamical properties [25,26], and
thermal conductivity [27-29] observed experimentally have
been theoretically explained in the FSL model [30-32], al-
though additional terms such as the Dzyaloshinskii-Moriya
interaction are required to obtain a quantitative coinci-
dence [33,34]. Therefore, the FSL model deserves to be inves-
tigated in terms of the relation between low-energy excitations
and spontaneously broken symmetries of MP phases.

The preceding studies on the MP states [11,12] have pre-
sented the equivalence of two different models, the FSL in
the strong-rung limit and an anisotropic frustrated spin chain
(AFSC). According to these studies, the m = 1/3, 1/2, and
2/3 MP states in the FSL correspond to m’ = —1/3, 0, and
1/3 MP states in the AFSC, respectively. Since the m’ = —1/3
and m’ = 1/3 MP states in the AFSC are connected to each
other via a spin-flip pair, the corresponding m = 1/3 MP and
m = 2/3 states in the FSL should have a common origin.
Therefore, the dynamics of the m = 1/3 MP state is expected
to be equivalent to that of the m = 2/3 MP state, while the
m = 1/2 MP state can show qualitatively different dynamics.

We perform numerical calculations of the dynamical spin
structure factor (DSSF) by using the dynamical density-matrix
renormalization-group (DDMRG) method [35-38] to clarify
the difference in dynamics in the m = 1/3, 1/2, and 2/3 MP
states for the FSL in the strong-rung limit. The dynamical
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behaviors of the m’ = 0 and 1/3 MP states in the AFSC are
also examined in comparison with the dynamics of the FSL.
The AFSC is useful for intuitive understanding of dynamical
properties because of its simplicity. Moreover, a perturbative
clusterization approach imposing spontaneously breaking of
translational symmetry is used to obtain intuitive physical
pictures of spin dynamics.

The contents of this paper are as follows. In Sec. II,
we introduce the model Hamiltonians of the FSL and the
AFSC. The equivalence of the two different models is briefly
reviewed with a projection operator to low-lying states in the
strong-rung limit of the FSL. We also introduce the DSSFs
and model parameters for calculation. In Sec. III, the DSSFs
obtained with the DDMRG are shown for three MP states in
the FSL and two MP states in the AFSC. Section IV is used
to give a qualitative explanation of characteristic structures in
the DSSFs and an intuitive physical picture of spin dynamics.
For this purpose, we introduce a perturbative clusterization
approach imposing spontaneously breaking of translational
symmetry. Finally, we summarize our results in Sec. V.

II. MODEL AND METHOD

In this section, we introduce two model Hamiltonians: the
FSL and its corresponding model in the strong-rung limit, the
AFSC. Additionally, the DSSFs that we calculate to investi-
gate dynamical properties are defined.

A. Frustrated spin ladder
The Hamiltonian of the FSL is defined as

HZHL+H||+HZ, (1)
with

N
Hi=J) Sii-Sia, )

i=1
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=12 i j=12
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where S; 1 (S;2) is the S = 1/2 spin operator on the ith rung
in the upper (lower) chain. Exchange energies of the first-
neighbor bond in a leg, the second-neighbor bond in a leg, and
the first-neighbor bond in a rung are denoted by J;, J,, and /|,
respectively. The magnitude of magnetic field is represented
by H. In this paper, we focus on the strong-rung region of
the FSL because three MPs at m = 1/3, 1/2, and 2/3 become
robust in this limit. Moreover, this limit enables us to map the
FSL to the AFSC, which is used to obtain an intuitive picture
of dynamical behaviors.

B. The effective model of an FSL: AFSC

The Hamiltonian of the AFSC is given by the bond-
operator (quasispin) transformation [11,12,39,40]. To obtain

the AFSC Hamiltonian with quasispin operators, we use the
basis of singlet and triplet states on the ith rung:

1
|s); ZE(M%J N«)i,z - |~L>i,1 |T>i.2)» (5)
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For simplicity, we call the [t*); (@ = +, 0, —) state the “«
triplet” in the following. The Hamiltonian H (1) is rewritten
with these bases.

In the strong-rung limit, leg interactions in #; (3) are
regarded as perturbative terms. For H = 0, magnetization M
jumps from zero to saturation magnetization Mg, at critical
magnetic field H, = J, . Finite contributions from # change
the magnetization jump into a continuous curve including
plateaus around the critical field. The range of field AH for
partially magnetized states approximately equals AH ~ Jj.
In this field region, the 0 and — triplets are much higher in
energy than the + triplet. Therefore, we can ignore the 0 and —
triplets and thus obtain a low-energy effective Hamiltonian. To
abandon the high-energy triplets, we introduce the projection
operator P = [, (Is); (sl; + [£7); (t*];). The effective Hamil-
tonian is given by

J
H=PHP =3 > T, + 17T, + TT5,)

n=1,2 i

- H Z T? + const, ©))

l

where spin-1/2 quasispin operators at site i are denoted
by T;, given by T," = |r*), (s|;, T,” =|s); (t*|;, and T} =
|t1); (t7]; — 1/2. The effective magnetic field H’ is defined by
H =H —J, — (J; +J2)/2. The effective Hamiltonian (9)
describes the AFSC. Note that the z component of quasispin
is given by 7> = [t*),; (t7|; — 1/2. This leads to the relation
where a normalized magnetization m’ = M'/M|, = 2m — 1,
with M’ (M],,) being magnetization (saturation magnetization)
in the quasispin system. For example, m = 1/3, 1/2, and 2/3
in the FSL correspond to m’ = —1/3, 0, and 1/3 in the AFSC,
respectively.

C. Dynamical spin structure factor

To investigate magnetic excitations of the FSL, we calcu-
late the DSSF defined by

1
§5(g, ) = ——Tm (yo| §] VS; o), (10)

w—H+Ey+i

where [v) is the ground state, Ey is the ground-state energy,
and y is an infinitesimal value. The Fourier component S;t
under the open boundary condition is given by

[ 2
+ : -\ ot
Sg = Nil Ei sin(qxi)S;, » (11)

144407-2



MAGNETIC EXCITATIONS IN MAGNETIZATION ...

PHYSICAL REVIEW B 101, 144407 (2020)

(a) 0.3

0.2

wl |

0.1

0 /3 21/3 T

Ay

6.5

0 /3

21/3 T
q

FIG. 1. (a) $*(q., w) in the m = 1/2 MP phase of the FSL. (b) T*(q,, w) in the m’ = 0 MP phase of AFSC. A broad excitation with
minimum-energy excitations around ¢, = 27 /3 and an intensive peak at g, = /2 are common in (a) and (b).

with

1
(Sfl - Sitz),

1
St =—(FH +55), St =—
i1 i,2 i,qy=m \/z
12)

i,qy=0 \/E

where Sfj =S}, £iS;,; and the wave number of the leg
(rung) direction 1s given by g, = Z5n (qy =0, 7), with n =
1,2, ..., N, with N being the total number of rungs along the
leg direction.

Similarly, the DSSF for the AFSC denoted by Ti(q, w)
is given by substituting the quasispin operator Tqi and
H' for S;E and #, respectively, in Eq. (10). Here TqjE =

7o 2 sin(g) T, and g = Agn, with n=1,2,...,N,
with N being the total number of sites in the chain.

To obtain the DSSF numerically, we use the DDMRG
method [36,37]. This method requires three target states,
[¥0), S(f [Y0), and [w — H + Ey + i)/]’lel‘E [Y0). The correc-
tion vector [w — H + Eg + iy]17'Sg [¥o) is obtained with the
kernel-polynomial expansion method [38]. In this method, a
Gaussian broadening with a width ¢ is introduced instead of
Lorentzian broadening in Eq. (10).

III. RESULT

S, in Eq. (11) has two modes, ¢, = 0 and g, = 7, with
respect to rung parity. These two modes in Eq. (12) are
rewritten by using the singlet and triplet bases:

S5 o = 5 401+ 1) (T, (13)

St —a = —(r5) (sl + 1) (). (14)

Since the 0 triplet |¢°); in plateau regions is much higher in
energy than the singlet |s); in the strong-rung limit, only the
¢y = m mode is enough to describe elementary excitations in
the low-energy region. We thus discuss only the g, = 7 mode
in this paper and abbreviate S*(g,, gy = 7, w) for the FSL to
S*(g,, ) hereafter.

In our calculations, we use the following parameters:
Ji/J. =0.2 and J,/J; = 0.65 in the 48-rung FSL and o =

0.02J,. These parameters are chosen for the following rea-
sons. First, in the real material BiCu,POg, preceding studies
have concluded that two spins on each rung form a singlet
at low temperatures; that is, the ground state without mag-
netic fields is the so-called rung-singlet state [25,26,30,31].
The strong-rung condition J;/J; = 0.2 also belongs to the
rung-singlet phase, and we can apply perturbation analysis
based on the strong-rung limit to clarify an intuitive physical
picture of elementary excitations. Additionally, to stabilize
the m = 1/3, 1/2, and 2/3 MPs, we introduce the frustration
J2/J; = 0.65. In fact, we have confirmed that the MPs emerge
due to spontaneously breaking symmetry [see Fig. 6(a) in
Appendix A]. The system size, N = 48 rungs, is sufficient to
discuss dynamical behaviors at least qualitatively. With these
parameters, the truncation error in DDMRG is less than 10~4
with 600 states kept in the DDMRG calculations.

A. ST excitation in the m = % MP phase

Figure 1(a) shows S*(g,, w) in the m = 1/2 MP phase
[for MP see Fig. 6(a) in Appendix A]. A broad but intensive
peak centered at w/J; = 0.08 is seen at g, = 7 /2. Its peak
width is wider than the Gaussian width o, indicating intrinsic
broadening of the peak. We consider that this peak originates
from a dimerized ground state in the m = 1/2 MP phase,
which breaks the translational symmetry spontaneously [11]
and causes a doubled period of lattice. A broad but disper-
sive structure extends above g, = 7 /2 with minimum-energy
excitations around g, = 27 /3. This structure indicates mul-
tispinon excitation, and thus, we consider it a manifestation
of fractionalized excitation with strong quantum fluctuation.
In fact, the ground state of the m = 1/2 MP in the FSL
corresponds to the dimer state of the m’ = 0 MP in the AFSC,
and thus, we can interpret the broad excitation as multispinons
in the AFSC [41]. To confirm this interpretation, we calculate
the DSSF of AFSC T (g, ) in the m' = 0 MP phase [see
Fig. 1(b)]. We find similar structures in Fig. 1(b) compared
with those in Fig. 1(a): a broad excitation with minimum
energy excitations around g, = 27 /3 and an intensive peak at
qx = 1 /2. Therefore, we conclude that low-energy excitations
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FIG. 2. (a) S™(g,, w) in the m = 1/3 MP phase of the FSL. (b) ST(g,, w) in the m = 2/3 MP phase of the FSL. (¢) T"(g,, w) in the
m' = 1/3 MP phase of the AFSC. The white line shows the dispersion relation obtained by an analytical calculation assuming clusterization

(see Sec. IV).

are due to multiple quasispinon excitations, including the
intensive peak caused by the doubled period of lattice.

B. §~ (S*) excitation in the m = 1 (3) MP phase

S7(gx, w) in the m = 1/3 MP phase and S*(g,, ) in
the m = 2/3 MP phase are shown in Figs. 2(a) and 2(b),
respectively. These two spectra show a similar behavior with
a dispersive feature with zero-energy excitation at g, = 2 /3,
indicating a period with three times the original unit-cell
length in real space. This similarity is actually expected from
the fact that both the m = 1/3 and m = 2/3 MPs can be
associated with the array of quasispinons and share a common
origin [11]. Since the m = 2/3 MP corresponds to the m' =
1/3 MP, the DSSF of the ASFC T* (g, @) in the m’ = 1/3 MP
phase also shows a similar dispersive feature with zero-energy
excitation at g, = 2w /3, as shown in Fig. 2(c) [42]. Based
on the similarity, we may construct an intuitive view of spin
dynamics via full examination of 7% (g, w) in the m’ = 1/3
MP phase. We will discuss this view in Sec. IV using a
clusterization approach.
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C. §* (S7) excitation in the m = 1 (2) MP phase

Figures 3(a) and 3(b) show S* (g, ) in the m = 1/3 MP
phase and S~ (g,, w) in the m = 2/3 MP phase, respectively.
These two figures share common features: two dispersive low-
energy (w/J, < 0.3) excitations with the minimum-energy
excitation at g, = 27 /3 and high-energy broad excitations
at w/J, > 0.3. We find that T~ (g, w) in the m' = 1/3 MP
phase shown in Fig. 3(c) exhibits spectral distributions similar
to those in Figs. 3(a) and 3(b). To understand the origin of
the spectra, we will introduce a clusterization approach for
T~ (g, w)in Sec. I'V.

IV. DISCUSSION

Our purpose in this section is to give an intuitive physical
view of elementary excitations in the m = 1/3 and 2/3 MP
phases using an analytical approach. The following discussion
is based on spontaneous translational symmetry breaking in
the MP phases, where the magnetic unit cell is larger than
the original unit cell. In such a case, quantum entangle-
ment between the magnetic unit cells is expected to be sup-
pressed because of the enlargement of the unit cell. Therefore,

()
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2n/3 i

FIG. 3. (a) S*(q., w) in the m = 1/3 MP phase of the FSL. (b) S™(q., w) in the m = 1/3 MP phase of the FSL. (¢) T~ (g., @) in the
m’ = 1/3 MP phase of the AFSC. Each plot is split into upper and lower panels to make the distribution of the spectrum visible. In (c), the
pink line shows the dispersion of the 8~ excitation obtained by an analytical calculation assuming clusterization (see Sec. IV). The blue and

yellow lines show the dispersion relations of y~ and §~, respectively.
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effective interactions between the enlarged unit cells can be
approximated to a semiclassical one (see Appendix B). If the
interactions are totally classical, the ground state is given by
the direct product of local quantum states, which are obtained
by exact diagonalization of the local Hamiltonian in the
enlarged unit cell. Such a local quantum state contributing to
the ground state should be one of low-lying states in the local
Hamiltonian. Otherwise, the intercell interactions will become
larger than intracell interaction, contradicting the localized
nature of spins in the magnetic unit cell. Even in the case of
semiclassical interactions where the ground state becomes a
superposition of the direct product of local states, the local
states contributing to the ground state should be low-lying
states. Based on this reasoning, we restrict the Hilbert space
of the enlarged unit cell to several low-lying states obtained
by exact diagonalization of the local Hamiltonian. Moreover,
the interactions between the enlarged unit cells are projected
onto the restricted Hilbert space. We call this approach
a clusterization based on spontaneously broken symmetry
(CBSBS).

In the following, we apply the CBSBS to the m' = 1/3
MP phase in the AFSC because magnetic excitations in the
m = 1/3 and 2/3 MP phases of the FSL are qualitatively
similar to the T excitations in the m’ = 1/3 MP phase of
the AFSC (see Sec. III). The magnetic unit cell is enlarged to
three times longer than the original one due to spontaneous
translational symmetry breaking. Therefore, we use the fol-
lowing Hamiltonian instead of Eq. (9):

H =H. + 1V, (15)
with
Ji .
Ho=3 2. D)
i=1,2(mod 3)
J . , .
+5 > Dyi)-H ZT (16)
i=1(mod 3) J
y =2 > Dy + 2 > D). (7
c 2 1 ) 2 )

i=0(mod 3) i=0,2(mod 3)

where the nth-neighbor two-spin (dimer) interaction is repre-
sented by D, (i) = T,'T,;, + T, T, + T7T7, . H. (V) cor-
responds to the intracluster (intercluster) Hamiltonian denoted
by the red (blue) lines in Fig. 4(a). We introduce the coupling
strength A to control the intercluster interactions. We note that

Eq. (15) with A = 1 is equivalent to Eq. (9).

A. Eigenstates of the magnetic unit cell

Since the Hamiltonian (16) does not include the interaction
between the clusters, we can diagonalize it in each cluster. The
resulting eigenstates |x*) (x = «, B, y, and 8) are shown in
Table I, with

1 I+
Ci= |=|1+ 1+ : (18)

SANCE Y VAR
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FIG. 4. (a) Clusterization based on spontaneously broken sym-
metry (CBSBS) of the AFSC. The numbers denote the quasispin
site. The solid (dotted) lines correspond to J; (J») interactions. Red
and blue lines are used to distinguish the intracluster Hamiltonian
‘H.. and intercluster Hamiltonian V,, respectively. (b) Energy levels
of local states |x*) in effective magnetic fields H' in the case of
Jo/Ji = 0.65. The lowest-energy state encounters level crossing at
H' =0 and H/, denoted by the green circles.

The eigenenergy €,+ is given by

1(2] +J3) 3H’ 5J il (19)
€ar = 3 —Ii1, € = —= —_—,
+ 3 1 2 :Fz yE g 2+ 3

/

Eﬁi:l(_Jl+2J2_\/33J2+2J1J2+J2):F£ (20)
8 ! 2T

/

1 ; S H
etgt:§(—11+2J2+\/33J1 +21112+12):F7 1)

|xT) and |x ™) correspond to a Kramers doublet due to the
time-reversal symmetry when H' = 0. With the application
of magnetic field, every Kramers doublet splits off, and
degeneracy lifts [see Fig. 4(b)]. If interactions between the
magnetic unit cells are completely classical and weaker than
‘H.., the ground state under the classical limit of intercluster
interactions is given by the direct product of 8% for J,/J; =
0.65, as expected from Fig. 4(b). We note that the product
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TABLE 1. Eigenstates |x*) (x = «, B, ¥, and §) of H..

Configuration

lo™) [t11)

1B*) HC- M) = Co It + 5Co 111
ly™) =) = 111D

167) HC ) +Co M) + 5Ca M)
187 HC- 1ML = CL ) + 5C L)
ly™) — 0t = 4t

167) FC LD + ) + 5C L)
la™) 4D

state describes the m’ = 1/3 MP phase. In the following, we
use this ground state as an approximated m’ = 1/3 MP state,
ie., |1/3) =), |8");, where [ denotes the cluster number.

In order to obtain dispersion relations of 7+ excitations, we
use a semiclassical approximation of intercluster interactions
in subsequent sections, where low-lying states in the cluster
are taken into account in addition to the ground state.

B. T excitation

To understand the T excitation in the m' = 1/3 MP
phase of the AFSC, we consider the fully spin polar-
ized |at) state as a low-lying state in the cluster be-
cause Tt increases magnetization from the ground state
[1/3). There are, of course, higher-order processes, includ-
ing other excited states, e.g., a mixed state of two |at)
and one |B7) in three magnetic unit cells, but such pro-
cesses can be ignored because only two states, |at) and
|BT), contribute to low-energy excitations around the crit-
ical field H = (3J; —J» + \/33112 +2J1J> +J3)/8, where
la™) and |B*) are degenerate [see Fig. 4(b)]. There-
fore, we use the projection to these two states, Q, =
[T, Qo™ (™l + 187); (BT1;). In the projected Hamiltonian,
there is the constraint that |a™), (@™|, + [87), (BT], = 1.
The operators tlT = la™), (BT, w = |B81), («T];, and n; =
le™); (@], correspond to hard-core bosonic creation, anni-
hilation, and number operators, respectively. Thus, by using
these operators with A = 1, the projected Hamiltonian H'} =
Q. H 9, except for the constant term, is given by

'HZ_ =t Z(tlT'EH_] +H.c)+V Zn/nl_H +un an,
1 l 1

(22)
with
t=1C (. -2v20Cy), (23)
V = LJC + h(C? - CT), (24)
W= €gr — €qr — $(1C2 4+ HCH). (25)

If we define the Fourier transform of the one-particle excited
Sstate as

Ky =" o), Q) 187, (26)
! I'(#l)

this state is an eigenstate of the projected Hamiltonian H'
with dispersion energy

€y = 2t cos K + const. Q7

This eigenstate represents the one-particle (hard-core boson)
excited state obtained by the creation and annihilation opera-
tors, 7 and 7.

Analyzing the T excitation in the m’ = 1/3 MP phase of
the AFSC, we use the relation K = 3¢, because the periodic-
ity of the AFSC is three times longer than that of the projected
model (22). The white line in Fig. 2(c) exhibits the disper-
sion relation € including the constant energy in Eq. (27).
The result reproduces well the dispersion relation of peak
structure in the DSSF of the AFSC. This hard-core bosonic
excitation is a collective mode of three-spin clusters (trimer),
and thus, we call it a trimeron in this paper. Furthermore, as
explained in Sec. Il B, T* (g, w) in the m' = 1/3 MP phase
is qualitatively equivalent to S~ (g, w) in the m = 1/3 MP
phase and S*(g,, w) in the m = 2/3 MP phase of the FSL.
We thus conclude that the origin of these DSSFs of the FSL
is the trimeron, that is, one-particle excitation of the hard-core
boson based on three-spin clusters.

C. T~ excitation

The T~ excitation in the m" = 1/3 MP phase of the AFSC
is more difficult to understand than the 7" excitation because
we have to take several states into account as low-lying states
of the cluster. However, our purpose in this section is to give
an intuitive physical picture to explain the DSSF in Fig. 3(c).
Hence, quantitative reproduction is not necessary. Here, we
discuss the excitation through the CBSBS similar to the T
excitation. We consider three excited states, |87), |y ™), and
|67), as low-lying excited states of the cluster. If interactions
between clusters do not exist, the DSSF shows local excita-
tions corresponding to |87), |y ™), and |6 ), which induce
three flat bands. By adding the interactions as perturbation,
the three bands become dispersive, indicating three modes
of hard-core bosonic one-particle excitation (three trimerons)
[see Fig. 5(a)]. When the energy scale of interactions is larger
than energy gaps between three excited states, theses modes
are hybridized and split off.

Figure 5 shows the A dependence of 77 (q, ) in the
effective model (15) for the m’ = 1/3 MP phase of AFSC.
Note that Fig. 5(c) (the case of A =1) is the same as
Fig. 3(c). In Fig. 5 we also plots dispersion relations
of three modes, |87), |y~), and |67), which is obtained
from the projected Hamiltonian H” = Q_H'Q_, with Q_ =
[T, (B*) (B¥ 1+ X, g5 1x ) {x 1) but neglecting hy-
bridization among the three modes for simplicity. From
Fig. 5(c), we can easily imagine that, if we introduce the hy-
bridization effect, the 8~ and y ~ modes would be repulsively
separated more around g = 27 /3 and the y ~-originated mode
would construct the lowest-energy excitations around g =
2m /3 that are seen in 7~ (q, w). This speculation based on
hybridized trimerons will explain the change in spectral dis-
tribution from A = 1 to A = 0.5, where the splitting of spectral
weight around g = 27 /3 disappears with decreasing A be-
cause of the reduction of intercluster interactions controlling
the hybridization of trimerons.
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FIG. 5. T~ (g, w) in the effective model (15) for the m" = 1/3 MP phase of the AFSC with various coupling ratios: (a) A = 0.1, (b) A = 0.5,
and (c) » = 1.0. The dispersion relations in pink, blue, and yellow indicate the 87, y ~, and 6~ modes, respectively, in the projected Hamiltonian

H” without hybridization among these modes.

Based on these considerations in this section and Sec. IV B,
we conclude that S*(gy, w) in the m = 1/3 MP phase and
S7(gx, w) in the m = 2 /3 MP phase of the FSL originate from
the hybridized trimerons.

V. SUMMARY

In this paper, we have studied magnetic excitations in the
MP phases of the FSL, where the three types of antiferro-
magnetic interactions, Ji, J, and J, are taken into account
as the leg nearest-neighbor, leg second-neighbor, and rung
nearest-neighbor couplings of a two-leg ladder, respectively.
This model exhibits three MPs at fractionalized finite mag-
netization m = M /M, = 1/3, 1/2, and 2/3 with respect to
saturation magnetization Mg,. These MPs emerge robustly in
the strong-rung limit. Moreover, this condition allows us to
map the model Hamiltonian into another quasispin model, the
AFSC, by ignoring high-energy states in a rung. To obtain
the intuitive physical picture of spin dynamics through the
mapping to the AFSC, we have focused on the strong-rung
range.

We first obtained magnetic excitations of the FSL by
calculating DSSFs using the DDMRG method. We have found
that magnetic excitations in the MP phase are commensurate
to the enlarged unit cell of the MP ground state. For the sake
of comparison, we have also calculated DSSFs in the AFSC
of quasispins and have confirmed that the AFSC reproduces
low-energy excitations of the FSL qualitatively. The m =
1/3, 1/2, and 2/3 MP states in the FSL correspond to the
m' = —1/3, 0, and 1/3 MP states in the AFSC, respectively.
The zero-magnetization ground state of the AFSC is well
known as the dimerized state, so that elementary excitations
are regarded as bound spinons. Therefore, we conclude that
low-energy magnetic excitations of the FSL correspond to
bound quasispinons based on the singlet and 4 triplet states
of the rung.

To clarify the ST (§™) excitation in the m = 2/3 (1/3) MP
state, we have additionally analyzed spin dynamics through
the CBSBS in the AFSC. In the CBSBS, one cluster cor-
responds to an enlarged unit cell after spontaneously break-
ing translational symmetry, and intercluster interactions are
treated as perturbative effects compared with the intracluster

interaction. We have found a quasiparticle mode that is a hard-
core bosonic excitation in the m = 1/3 MP state of the AFSC,
which we call a trimeron because it is a collective mode of
spin trimers. This trimeron picture is common to the ST (S7)
excitation in the m = 2/3 (1/3) MP state of the FSL. On the
other hand, the S~ (S) excitation in the m = 2/3 (1/3) MP
state is not well described as a single trimeron mode. We have
thus examined the intracluster interaction dependence of the
DSSE. The obtained result indicates that intermode coupling
enhanced by the intercluster interactions is crucial even for
low-energy excitation. Actually, we have confirmed that two
low-lying modes are hybridized in the excitation spectra with
increasing the intercluster interactions, which are regarded as
a hybridized trimerons. Consequently, we conclude that the
S~ (S1) excitation in the m = 2/3 (1/3) MP state corresponds
to the hybridized trimerons of quasi-spins.

Our results will be useful for understanding the low-energy
physics in not only FSL materials such as BiCu,POg [13-16]
and Li;CuyO(SOy4), [17-20] but also weakly coupled spin
dimer compounds [43-45], where magnetic excitations orig-
inating from the identified quasiparticle can be clarified by
inelastic neutron scattering experiments in a magnetic field.
In such materials, we have clarified that spin dynamics is
also important for understanding the spin or heat trans-
port [27-29], including their application to spintronics [9,10].
Furthermore, the CBSBS is also useful for the analyses of
low-energy excitations in MPs of various spin systems. We
expect that new quasiparticle N-merons will be discovered as
elementary excitations in the MPs, where the enlarged unit
cell includes N original cells after spontaneous breaking of
translational symmetry.
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FIG. 6. (a) Magnetization curves normalized by saturation mag-
netization, m = M(H)/My,, for the 48-rung FSL with J;/J, =
0.2, J,/Ji = 0.65. (b) Field width AH as a function of magnetiza-
tion m. The number of kept states in the DMRG is up to 500, and the
truncation error is less than 10~°.

carried out on the Supercomputer Center at Institute for Solid
State Physics, University of Tokyo and the supercomputers at
JAEA.

APPENDIX A: MAGNETIZATION CURVE

The DDMRG method usually requires numerous cal-
culation resources compared with the DMRG method for
the ground state. As a consequence, the system size for the
DDMRG is smaller than that for the DMRG. In this paper, the
system size of the FSL is set to be 48 rungs for the DDMRG,
in contrast to the system with 72 rungs [11] and 144 rungs [12]
for the DMRG. Small system size prevents us from three clear
MPs, but we have managed to find them with an appropriate
parameter set by calculating the magnetization curve in the
48-rung FSL with the DMRG method.

Figure 6(a) shows magnetization curves with J;/J; = 0.2
and J,/J; = 0.65 in the 48-rung FSL. Here, by using the
Heaviside step function 6(H), the magnetization curve is

1/2
m1 | - A- . i . -A- . A- . A- N
l\]/\
[ 0
\4
m2”””””””””””””
-1/2

1 12 24 36 48
I
FIG. 7. Real-space expectation value of the z component of
quasispin 7;° in the m’ = 1/3 MP phase. The red dashed lines
denote m; = (B*|T|B*) = (BHITS|B*) and my = (B*|T;|B™). The
BT state is the ground state in the one-cluster (three quasispins)
Hamiltonian (see Table I).

given by
Msu(71
M(H)= " MO(H — Hy_1;)0(Hyy1 —H), (Al
M=1

and the magnetic field where the ground states with two dif-
ferent magnetizations M and M + 1 are degenerate is obtained
by Hy m+1 = Eyy1 — Ey, with the ground state energies Eyy
and Ej; 4 calculated by the DMRG method. To confirm the
presence of three MPs, we check the field width AH(M) =
Ey+1 — Ey at magnetization M [see Fig. 6(b)]. If the ground
state with M is gapless with respect to the ST excitation, the
field width converges to zero in the thermodynamical limit. In
Fig. 6(b), we can see three jumps at m = 1/3, 1/2, and 2/3,
indicating the presence of three MPs. Therefore, we use this
parameter set to calculate the DSSFs in this paper.

APPENDIX B: MAGNETIC STRUCTURE IN THE m’ = %
MP PHASE OF THE ASFC

In Sec. IV, we use the CBSBS to explain the DSSFs in
the m’ = 1/3 MP phase. Although large energy gaps with
m = 1/3 and 2/3 are confirmed even in the 48-rung FSL, it
is unclear whether the spin configuration shows symmetry
breaking with a three times larger unit cell in the 48-site
AFSC. To confirm the enlarged magnetic unit cell in the
ASFC, we calculate the expectation value of the z component
of quasispin 7 in the m’ = 1/3 MP phase as shown in
Fig. 7. The period is found to be three times longer than the
original unit cell. Moreover, the expectation values are ap-
proximately equivalent to m; = (B1|T{|8T) = (BTIT{1BT)
and my = (BT|T;|BT), which are estimated in the ground
state in the one-cluster (three quasispins) Hamiltonian. This
result also supports the CBSBS approach.
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