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Density functional theory of magnetic dipolar interactions
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We propose a way to include magnetic dipole-dipole interactions in density functional theory calculations. To
this end, we derive an approximation to the exchange-correlation energy functional associated with the spin-spin
correction to the Coulomb force in the Breit-Pauli Hamiltonian. The local spin-density approximation is shown
to be identically zero. First order nonlocal corrections are evaluated analytically within linear response to a
noncollinear external magnetic field. The functional obtained is based on the exact-exchange energy of the
magnetic electron gas with dipolar interactions and is estimated to be relevant at interatomic distances, or in the
low electron density limit, where it amounts to one quarter of the magnetostatic energy. We expect our functional
to improve over the current description of ground-state properties of inhomogeneous magnetic structures at the
nanoscale and dipolar spin systems.
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I. INTRODUCTION

The need for higher density data storage and practical
schemes to implement quantum information processing [1–4]
has led, in the last decades, to thriving research on non-
conventional magnetic systems [5]. These include ultracold
dipolar gases in optical lattices [6,7], low-dimensional or frus-
trated magnets [8], nanostructured magnetic materials [9], and
molecular magnets [10]. All these systems show a complex
magnetic behavior at the atomic scale, which results from the
delicate interplay between Heisenberg exchange interactions
and (tunable) spin-orbit coupling and dipolar interactions.
In particular, new effects from the last, due to their long-
range and anisotropic nature, are attracting great interest.
While the picture of magnetic dipole-dipole interactions as a
small classical perturbation might be enough to understand
traditional magnetism, it seems to be no longer sufficient for
the description of spin systems with strong magnetic moments
and length scales approaching the nanometer range.

Currently, the most common and feasible approach to
describe the magnetic behavior of a given material is the
micromagnetic approach [11], which ignores the atomic struc-
ture of matter, neglects quantum effects, and uses classical
physics in a continuum description of the system. Essentially,
the atomic magnetic moments are assumed to vary slowly
within a mesoscopic volume of the sample, so to define a
mesoscopic average magnetization M(r). The magnetic Gibbs
energy, which is the sum of four major contributions, i.e.,
exchange, magnetocrystalline anisotropy, Zeeman and dipolar
energy, is formulated in terms of the continuous magnetization
vector field and minimized to determine static magnetization
structures. Specifically, the dipolar energy is derived from
simplified magnetostatic Maxwell’s equations and computed
in terms of effective magnetic volume charges ρ(r) = −∇ ·
M(r) and effective magnetic surface charges σ (r) = M(r) · n

as

Emagstat = μ0

2

∫
V

ρ(r)U (r)d3r + μ0

2

∫
S
σ (r)U (r)dS. (1)

Here, the magnetic scalar potential U (r) is the solution of the
Poisson’s equation �U (r) = −ρ(r), i.e., has the general form

U (r) = 1

4π

∫
V

ρ(r′)
|r − r′|d3r′ + 1

4π

∫
S

σ (r′)
|r − r′|dS′. (2)

As is clear from Eqs. (1) and (2), the magnetostatic energy
arises from inhomogeneities of the average magnetization
M(r) on a mesoscopic scale. Micromagnetic simulations have
proven to be generally a very reliable tool for investigating
the properties of ferromagnetic nanostructures. However, due
to the rapid advances in the synthesis of nanostructured ma-
terials, the continuum assumption behind these algorithms
might be unjustified. E.g., highly inhomogeneous magnetic
structures, laser-induced magnetization dynamics, and sam-
ple sizes approaching the atomic scale are a few cases that
challenge the limits of micromagnetic theory and demand
extensions to the standard approach.

On the other hand, the calculation of atomic proper-
ties and interactions at the quantum mechanical level is
the realm of ab initio methods, such as density functional
theory [12–14]. Density functional calculations of magnetic
systems are mostly based on (nonrelativistic) spin-density
functional theory (SDFT) [15]. Within SDFT, the dominant
source of magnetic coupling is exchange, which originates
from the Pauli exclusion principle and favors spin alignment
(ferromagnetism). By minimizing the total energy functional,
single-particle Kohn-Sham (KS) equations [16] are derived
and solved self-consistently to determine the values of the
charge density and the magnetization density. The applica-
bility of the method depends crucially on physically sound
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and numerically feasible approximations to the exchange-
correlation (xc) part of the energy functional, which includes
all quantum and many-body effects. The rotational invari-
ance with respect to the spin quantization axis is broken by
relativistic corrections to the Hamiltonian, i.e., dipole-dipole
interaction and spin-orbit coupling. Both are of the same order
(1/c2) in the weakly relativistic expansion of the full La-
grangian of quantum electrodynamics [17]. Spin-orbit effects,
which are responsible for magnetocrystalline anisotropy, are
often taken into account in practice by using nonrelativis-
tic SDFT functionals together with Dirac- or Pauli-type KS
equations. However, magnetic dipole-dipole interactions are
currently not included in the formalism. SDFT calculations
in the local spin-density approximation (LSDA) and beyond,
have proven over the years to yield reliable results for large
classes of magnetic materials, with collinear and noncollinear
spin alignment. Nevertheless, based on the recent experimen-
tal advances, we propose in this paper a density functional
treatment of the dipolar interaction as a pairwise interaction,
with associated quantum effects.

We start with the weakly relativistic Hamiltonian

Ĥ = T̂ +
∫

d3r{n̂(r)vext (r) + μBm̂(r) · Bext (r)}

+ e2

2

∫
d3r

∫
d3r′ n̂(r)n̂(r′)

|r − r′| + ĤSS, (3)

which includes, beyond the usual Hamiltonian of spin-density
functional theory, the mutual 1/c2 interaction ĤSS between
the spin magnetic moments of the electrons [18]. This term
has the form [17,19]:

ĤSS = −2πμ2
B

∫
d3r

∫
d3r′ m̂i(r)δ⊥

i j (r − r′)m̂ j (r′),

(4a)

δ⊥
i j (r − r′) = 2

3
δi jδ(r − r′) + di j (r − r′), (4b)

representing the interaction −μ2
B

2

∫
d3r m̂(r) · B̂(r) of the

magnetization density m̂(r) with the magnetic induction
B̂i(r) = 4π

∫
d3r′δ⊥

i j (r − r′)m̂ j (r′) generated by the magne-
tization distribution within the sample. Here, the magneti-
zation density operator is defined as m̂(r) = ψ̂†(r)σψ̂ (r),
where ψ̂ (r), ψ̂†(r) are the usual Pauli spinor field operators
and σ is the vector of Pauli matrices. δ⊥ denotes the transverse
delta function [20,21], μB = eh̄/(2mec) is the Bohr magneton.
Repeated indices are assumed to be summed over. As one
can see, Eq. (4a) is the sum of two contributions. The first
contribution, coming from the first term of Eq. (4b),

ĤSC = −4πμ2
B

3

∫
d3r m̂(r) · m̂(r), (5)

is a contact interaction, which depends on the magnetization
density at the same point. This is the counterpart of the Fermi
contact interaction between an electron and a nucleus. The
second contribution, coming from the second term of Eq. (4b),

Ĥdip = −2πμ2
B

∫
d3r

∫
d3r′ m̂i(r)di j (r − r′)m̂ j (r′), (6)

represents the dipolar interaction between two spin densities.
Here, the tensor di j is defined as follows

di j (r − r′) ≡ − 1

4π
∇i∇′

j

1

|r − r′| + 1

3
δi jδ(r − r′)

= 1

4πR3
(3R̄iR̄ j − δi j ), (7)

where R = r − r′ is the relative position of the electrons, and
R̄ denotes the unit vector along R. The expression for di j

is understood to be regularized at R = 0 [19,21]. Physically,
Eq. (6) together with Eq. (7) describe the interaction between
the magnetization density at r and the dipolar field created by
the magnetization distribution at all the other points r′ �= r.
Nevertheless, the contact term δi j in Eq. (7) is included to
ensure that the diagonal elements of di j satisfy the Laplace
equation �(1/|r − r′|) = −4πδ(r − r′) for the scalar poten-
tial generated by the magnetic charge density in the system.
The dipolar tensor, as defined by Eq. (7), is both traceless and
symmetric.

The present paper is organized as follows: In Sec. II A we
point out the equivalence between the magnetostatic energy
contribution implemented in the micromagnetic approach and
the classical Hartree term of SDFT for the dipolar interaction.
The SDFT framework then naturally leads to the inclusion
of a dipolar xc functional to account for quantum effects. In
Sec. II B we address the adequacy of a LSDA for the dipolar
xc energy. In Sec. II C we derive a nonlocal and noncollinear
exchange energy functional as leading order quantum correc-
tion to the magnetostatic energy. In Sec. III we briefly consider
the density functional treatment of the spin contact interaction
of Eq. (4b).

II. DIPOLE-DIPOLE INTERACTION FUNCTIONAL

A. Hartree energy functional

The Hartree term for the magnetic dipole-dipole interaction
has been derived by Jansen [22] in a broader analysis of
magnetic anisotropy contributions within the framework of
density functional theory. The dipolar energy in the Hartree
approximation is obtained by simply replacing the magne-
tization density operator m̂(r) in Eqs. (6) and (7) by the
expectation value m(r):

Edip
H [m] = − μ2

B

2

∫
d3r

∫
d3r′

× 3
(
m(r) · R̄

)(
m(r′) · R̄

) − m(r) · m(r′)
R3

. (8)

The Hartree method, in which the dipolar interaction is
taken into account by a mean field type of approximation,
is qualitatively equivalent to the micromagnetic approach.
[Formally, this can be seen by rewriting Eq. (1) as Emagstat =
−μ0

2

∫
d3r

∫
d3r′ M(r) · N(r − r′) · M(r′), where the demag-

netizing tensor for a ferromagnetic body of arbitrary shape
is given by N(r − r′) = − 1

4π
∇∇′(1/|r − r′|).] Differences

in the dipolar energy calculated from Eq. (8) and from the
micromagnetic formula (1) are due to deviations of the ac-
tual atomic distribution m(r) from its average M(r) over a
mesoscopic cell of atomic volumes. We emphasize that, so
far, only this mean field contribution to the dipolar energy
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FIG. 1. Diagrammatic expansion of the exchange-correlation en-
ergy of the homogeneous electron gas with dipolar spin-spin interac-
tions, up to second order. (a) Exchange energy diagram. (b),(d) Direct
and (c),(e) exchange diagrams contributing in second order to the
correlation energy. Dashed lines indicate dipolar interactions; wiggly
lines indicate Coulomb interactions.

has been implemented in actual calculations of magnetic
structures. However, the Hartree treatment of a pairwise inter-
action is usually a crude approximation (see, e.g., the case of
the Coulomb interaction), as it completely neglects quantum
many-body effects and is affected by a self-interaction error.
In the next sections we discuss how to derive an improved
estimate of the real dipolar energy by adding, as a natural step
of the SDFT formalism, an approximate exchange-correlation
term.

B. LSDA

The approximation to the exchange (x) energy functional
most widely used in SDFT is the local spin-density approxi-
mation [15]. In LSDA, the x energy of a nonuniform magnetic
system is approximated at each point by the x energy of
the homogeneous electron gas (HEG) with the same spin
density as the local density. Choosing a coordinate system
with the z axis along the direction of the local spin, the
x energy density of the spin polarized nonrelativistic HEG
with dipolar interactions [see diagram (a) of Fig. 1] can be
evaluated as

edip
x (r) = μ2

B

2

∫
d3r′ραβ (R)σ i

ναdi j (R)σ j
βμρμν (−R), (9)

where ραβ (R) = ∫
d3k ψ

†
kσ

(rα)ψkσ (r′β ) is the one-body den-
sity matrix with spin orbitals ψkσ (rα) = 1/

√
V eik·rδσα . Since

the HEG is spherically symmetric, the density matrix depends
only on the modulus of the distance, i.e., ρ(R) = ρ(R). It
is then easy to show that Eq. (9) gives a null contribution,
as one essentially integrates a spherical harmonic with l = 2
and m = 0 over all angles. We thereby conclude that for
the HEG, regardless of the spin polarization, the leading
relativistic correction to the energy due to the dipole-dipole
interaction vanishes. We point out that this is a general
property of the interaction, and the obtained result is not
affected by employing Dirac spinors for the electron field
operators.

(a) (b) (c)

FIG. 2. First order Feynman diagrams for the spin density re-
sponse function with magnetic dipole-dipole interaction (dashed
line). The gray dots represent the external magnetic fields.

Nevertheless, the correlation energy of the dipolar HEG
turns out to be finite. In second order it arises entirely from
diagram (b) of Fig. 1, which readily translates into the Møller-
Plesset (MP2) correlation energy per electron

E (MP2)dip
c = − e4h̄2k4

F

2m3
ec4π2

43 − 46 ln 2

525
. (10)

For the same reason discussed above, in fact, diagram (c)
vanishes, and it can be proven, in general, that all the diagrams
involving one single dipole interaction line [thus including
also diagrams (d) and (e) of Fig. 1], do not contribute to the
energy.

C. Nonlocal exchange energy functional

We proceed to derive nonlocal corrections to the LSDA
for the dipolar x energy functional. Corrections to the stan-
dard LSDA in SDFT are systematically constructed from the
weakly inhomogeneous electron gas via the gradient expan-
sion and the linear response. Here, we follow the second strat-
egy, which allows one to account for small variations of m(r)
at any r. We thus consider the (spin-unpolarized) dipolar HEG
subject to a weak external magnetic field δV j

q (r) ∝ eiq·rσ j ,
which perturbs the magnetization density from the average
value m j to m j + δm j (r). The wave vector q is assumed
to be arbitrary, so that the approach is fully noncollinear.
By expanding the dipolar x energy to second order in the
deviation from the homogeneous limit, we have [14,23–25]

Edip
x [m] = μ2

B

2

∫
d3q

(2π )3
Ki j

x (q)δmi(q)δm j (−q), (11)

where δmi(q) is the induced magnetization density variation
(to be obtained from an actual calculation), and the x kernel is
given by

Ki j
x (q) ≡ ∂2Edip

x

∂mi(q)∂m j (−q)
= gkl (q)

χ ik
0 (q)χ jl

0 (q)
. (12)

Here, Ki j
x is expressed in terms of the Lindhard response

function of the HEG χ ik
0 = ∂mi/∂Vk and the linear response

contribution to the dipolar x energy functional gkl (q) ≡
∂2Edip

x /∂V k
q ∂V l

−q. The latter is represented diagrammatically
in Fig. 2. Here, the vertex correction diagram (a) corresponds
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to the analytic expression

glk (q, 0) = 2π

β2

∑
n,m

∫
d3k

(2π )3

∫
d3k′

(2π )3
v

i j
k−k′σ

i
αδG0

δε (k, iεn)σ l
εηG0

ηγ (|k + q|, iεn)σ j
γ βG0

βζ (|k′ + q|, iε′
m)σ k

ζθG0
θα (k′, iε′

m), (13)

where v
i j
k = (δi j − 3k̄ik̄ j )/3 is the Fourier transform [19] of the dipolar tensor of Eq. (7), and G0

αβ (k, iωn) = δαβ/(iωn − εk ) is
the unperturbed Matsubara Green’s function for the paramagnetic electron gas. Summing over the spin indices in Eq. (13) gives

Tr{σ iσ lσ jσ k} = 4δilδ jk . (14)

From Eq. (14), since the HEG is isotropic, we observe that Eq. (13) can be written in the following form

gi j (q, 0) = f (q)(δi j − 3q̄iq̄ j ), (15)

where f (q) denotes a function of the modulus of q only, and the angular dependence of g on the indices of q is through the
traceless and symmetric interaction tensor v

i j
k−k′ . By assuming q in the direction of the z axis, i.e., q = qz̄, we evaluate the

function f (q) = −gzz(qz̄)/2 (note that one also has gxx = gyy = −1/2 gzz). Summing over the Matsubara frequencies gives

f (q) = 8π

3

∫
d3k

(2π )3

(
nk − nk+q

εk − εk+q

) ∫
d3k′

(2π )3

(
nk′ − nk′+q

εk′ − εk′+q

)
P2(cos θk−k′ ), (16)

where nk is the Fermi distribution function and P2(cos θk ) = 1/2(3 cos2 θk − 1) is the Legendre polynomial of second order with
cos θk = k̄ · z̄. The main result of this paper is the exact evaluation of Eq. (16) in terms of one quadrature. We notice that by
means of the transformations k(′ ) → ±k(′ ) − q/2, it is possible to recast the ∼ cos2 θk−k′ term of Eq. (16) in the form

I (q) = m2
e

8π5h̄4q2

∫
d3k

∫
d3k′ nk−q/2nk′−q/2

(k · q)(k′ · q)

{[
q · (k + k′)

|k + k′|
]2

+
[

q · (k − k′)
|k − k′|

]2
}

, (17)

which looks structurally similar to the response function of the electron gas with Coulomb interaction [26,27]. In evaluating
Eq. (17) we generalize the analytic derivation presented in Ref. [27] (see Appendix A for details). The additional term in
Eq. (16) simply amounts to the square of the Lindhard function χ0, so that Eq. (16) reads as f (q) = I (q) − π

3 χ2
0 (q). In the zero

temperature limit we obtain for f (q) the following expression:

f (q) = m2
ek2

F

16π3h̄4q2

{
2

45q
(7q5 − 15q4 + 30q3 − 20q2 − 144) ln |a| + 2

45q
(7q5 + 15q4 + 30q3 + 20q2 + 144) ln b

+ 4

45
q2(7q2 + 60) ln

2

q
+ 16

45
(11q2 − 18) − 2

3
q

[
(2b)3 ln b

(
ln b + ln

2

q

)
− (2a)3 ln |a|

(
ln |a| + ln

2

q

)]

+ 8
∫ b

−a
dzz ln |z|[(a + z)(b − z)W1(z) − (b + z)(z − a)W2(z)] − 4

3

(
q + ab ln

∣∣∣b

a

∣∣∣)2}
, (18)

where W1(z) = ln | z+a
z−b | and W2(z) = ln | z−a

z+b |, with a = 1 − q/2 and b = 1 + q/2 in units of the Fermi vector kF .
The remaining self-energy diagrams (b) and (c) of Fig. 2 give a null contribution to the dipolar x energy (as it can be easily

checked by evaluating the trace over the spin indices). The physical explanation for this result is that diagram (a), including two
triplet Green’s functions, correspond to the Fock (x) energy diagram for a magnetic HEG, whereas both diagrams (b) and (c)
contain one singlet Green’s function [28].

For completeness we show here the expansions of f (q) at small and large q:

f (q) =
⎧⎨
⎩

m2
e k2

F

1080π3 h̄4

[ (127+60 log 2−60 log q)q2

5 − 97q4

70 − 53q6

392 + . . .
]
, q → 0

16m2
e k2

F

675π3 h̄4

(
25
q4 + 11

q6 + . . .
)
, q → ∞.

(19)

From Eq. (19) we observe that the second derivative of the
functional has a logarithmic divergence in the low wave-
vector limit q = 0. This nonanalyticity implies the nonexis-
tence of standard semilocal gradient approximations and can
be traced back to the nonlocal character of the interaction.

In Fig. 3 we show the function f (q) and the x kernel Kzz
x (q)

computed from Eq. (12) at rs = 1. At large q, Kzz
x (q) tends to

a constant value. In this limit the dipolar x energy amounts
to one quarter of the magnetostatic energy. In Figs. 3(b)–3(d)
we compare the Fourier transform of Kzz

x (q) (see Appendix C)

to the interaction between classical magnetic dipoles, 4πdzz,
for different values of the charge density. In the short-distance
limit (R → 0) both Kzz

x (R) and the classical dipole interaction
increase as 1/R3 [Fig. 3(b)]. At distances of few atomic units
the x kernel decays, faster at higher charge density, while
developing an oscillatory behavior [Fig. 3(c)]. The oscilla-
tions are readily seen in the ratio between Kzz

x (R) and 4πdzz

[Fig. 3(d)], with a period that depends strongly on the value
of the density. At high density (rs = 1) the oscillations are
fast, with a period of few atomic units, whereas at low density
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Exchange

FIG. 3. Real and reciprocal space behavior of the dipolar exchange kernel. q and R are taken along the z axis; q is measured in units of
the Fermi vector kF , R is given in atomic units (Bohr). (a) Dipolar exchange kernel Kzz

x (q) (black line) and energy functional f (q) (dashed
line) at rs = 1. (b) Short-distance Kzz

x (R) at rs = 1 (short-dashed line) compared to the Hartree (magnetostatic) contribution (green line).
(c) Mid-distance Kzz

x (R) at rs = 1 (short-dashed line), 3 (long-dashed line), 5 (dot-dashed line), and 10 (red line) compared to the Hartree
(magnetostatic) contribution (green line). (d) Ratio between dipolar exchange and Hartree at rs = 1 (dashed line) and rs = 10 (red line).

(rs = 10) they lie in the long period range and eventually
disappear in the limit rs → ∞. The oscillation amplitude (of
the ratio) decreases slowly with R and, for realistic values of
rs, remains sizable (≈ 5%) even at large interatomic distances.
We expect that in conventional magnets, with mostly simple
magnetic patterns and domain wall geometries, these oscil-
latory corrections to the magnetostatic energy will average
to zero, especially in the high density limit. However, in
more complex magnetic configurations, such as layered and
frustrated systems [8,29,30], the oscillatory x energy may sum
up leading to sizable and measurable effects.

III. SPIN-SPIN CONTACT FUNCTIONAL

As mentioned in Sec. I, in addition to the dipolar term,
the magnetic interaction between two electrons includes also
a spin-spin contact term [Eq. (5)]. This contact interaction
has the same form of the Coulomb exchange interaction but
is rescaled by the smaller factor μ2

B. The associated Hartree
functional is easily obtained as

ESC
H = −4πμ2

B

3

∫
d3r m2(r), (20)

while the LSDA for the x energy is given by

ESC
x = 2πμ2

B

∫
d3r

[
n2(r) − 1

3
m2(r)

]
, (21)

where n is the total electron density.

IV. CONCLUSIONS

We have proposed a density functional treatment of the
dipolar interaction between electronic spin magnetic mo-
ments. Within this approach, the dipolar Hartree term is
given by the classical magnetostatic energy, currently imple-
mented in magnetic structure codes. In addition, we have
derived quantum corrections by evaluating analytically the

exact x energy (Fock term) for the magnetic electron gas with
spin-spin interactions. The dipolar x energy thereby obtained
amounts to one quarter of the magnetostatic energy at short
interaction distance, or in the limit of low electronic density.
At long range, the dipolar x kernel displays an oscillatory
behavior, while decaying in amplitude slightly faster than the
classical contribution [see Fig. 3(d)]. This quantum correction
is expected to have negligible effects in most conventional
magnetic materials, where it likely averages to zero. However,
it might become significant in complex magnetic structures,
especially in specific geometries where lattice and dipole
x oscillations are commensurate, or in the presence of a
delicate magnetic balance, like in frustrated systems. Further
progress in the functional approximation might be achieved
by carrying out the Levy constrained search [31,32] for the
exact functional

F [n, m]

= min
�→n,m

〈
�|T̂ + e2

2

∫
d3r

∫
d3r′ n̂(r)n̂(r′)

|r − r′| + ĤSS|�
〉
,

(22)

via a stochastic minimization [33] over the many-body wave
functions � that are eigenstates of the total (spin+orbital) an-
gular momentum Ĵ2. Upcoming work comprises implement-
ing and testing the new functional against experimental data.
Applications include the study of crystalline layered magnets
and magnetic atoms on surfaces, as well as the dynamics of
domain walls and skyrmions. Of particular interest is also the
application of our functional to the physics of dipolar quantum
gases, where it might serve as an exchange partner for the
“strictly correlated particles” functional of Ref. [34].
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APPENDIX A: EVALUATION OF I(q)

For convenience we evaluate Eq. (17) in cylindrical coordinates with the polar axis along q, where all the wave vectors are
measured in units of kF . The integrations over the azimuthal and radial coordinates of k and k′ are readily carried through
obtaining

I (q) = m2
ek2

F

16π3h̄4q2

3∑
i=0

Ji, (A1)

where

J0 = − 2
∫∫ b

−a

dz dz′

z z′ [(z2 + z′2)(λ + λ′)(2 ln 2 + 1) + z4 + 6z2z′2 + z′4], (A2)

J1 = 2
∫∫ b

−a

dz dz′

z z′ [α2
√

R(z, z′) + β2|β|], (A3)

J2 = 4
∫∫ b

−a

dz dz′

z z′ λ[α2 ln |2
√

R(z, z′) + λ′ − λ + α2| + β2 ln |2|β| + λ′ − λ + β2|], (A4)

J3 = −4
∫∫ b

−a

dz dz′

z z′ λ[β2 ln |β2| + α2 ln |α2|]. (A5)

We adopt the same notation as in Ref. [27]. Here, a = 1 − q/2, b = 1 + q/2, α = z + z′, β = z − z′, and λ(′ ) = (a + z(′ ) )(b −
z(′ ) ). The function R is defined as R(z, z′) = C0(z)z′2 + B0(z)z′ + A0(z), where A0 = z2, B0 = (2 + 2qz − q2)z, and C0 = 1 +
2qz. Evaluating J0 is straightforward and the resulting expression is

J0 = −(2 + ln 2)8q2 − 2q

[
q2 ln 2 − 4

3
(4 + 5 ln 2)

]
ln

∣∣∣a

b

∣∣∣. (A6)

J1 can be rewritten in the following form

J1 = 4
∫∫ b

−a
dzdz′

(
α

z′
√

R(z, z′) + β

z′ |β|
)

= 4
∫ b

−a
dz

(
J̄A

1 (z) + J̄B
1 (z)

)
, (A7)

where J̄A
1 (z) and J̄B

1 (z) are evaluated to be [27]

J̄A
1 (z) = 1 + 1

4
q2 + 5

2
qz +

(
2 − ln

∣∣∣∣1 − 4

q2

∣∣∣∣
)

z2 + B0

4C0
(2z + q) + 1

4C3/2
0

z2[8 − q4 + 4qz(6 − q2) + 12q2z2]Y (z),

J̄B
1 (z) = 2qz − 1 − q2

4
− z2(3 − 2 ln |z| + ln |ab|),

with Y (z) = ln |
√

C0+1√
C0−1

|. The remaining integration in Eq. (A7) can also be carried through obtaining

J1 = − 1

q2
− 1

9
+ 44

3
q2 + 4

(
4

3
+ q2

)
ln

q

2
+ 1

3
[(q − 2)3 ln b − (q + 2)3 ln |a|] + 1

2q3
(q2 − 1)2 ln

∣∣∣∣q + 1

q − 1

∣∣∣∣
+ 3

4q3
η5 − 1

2q
η3 −

(
5

2q3
− 3

2q
+ q

4

)
η1 −

(
3

2q
− 2

q3
− q

2

)
η−1 +

(
1

2q
− 1

4q3
− q

4

)
η−3, (A8)

where ηn = q
∫ b
−a dzCn/2

0 Y (z). The explicit expressions for η±1,−3 are given in Ref. [27], for η3,5 in Appendix B.
Next, we evaluate J23 = J2 + J3. This term is conveniently rewritten as

J23 = 4
∫∫ b

−a
dzdz′ λ

z z′
(
α2 + β2

)
ln |4λ| − 4

∫ b

−a
dz

λ

z
[N̄1(z) + N̄2(z)], (A9)

where N̄1(z) and N̄2(z) are defined as follows:

N̄1(z) =
∫ b

−a
dz′ α

2

z′ ln |α2 + λ′ − λ − 2
√

R(z, z′)|, (A10)

N̄2(z) =
∫ z

−a
dz′ β

2

z′ ln |2β(z − b)| +
∫ b

z
dz′ β

2

z′ ln |2β(z + a)|. (A11)

Equations (A10) and (A11) can be integrated by parts obtaining

N̄1(z) =
∫ b

−a

dz′

α

(
z2 ln |z′| + 1

2
z′2 + 2zz′

)(
qz√

R(z, z′)
− 1

)
+

(
z2 ln

∣∣∣∣b

a

∣∣∣∣ + q + 4z

)
ln |2λ| (A12)

N̄2(z) =
(

z2 ln

∣∣∣∣b

a

∣∣∣∣ + q − 4z

)
ln |2λ| +

(
3

2
z2 − ln |z|z2

)
W1(z) +

∫ b

−a
dz′

(
z2 ln |z′| + 1

2
z′2 − 2zz′

)
1

β
, (A13)
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where we have used the notation W1(z) = ln | z+a
z−b |. Subsequent substitution of Eqs. (A12) and (A13) in Eq. (A9) gives

J23 = 4q

[
q +

(
ab + 2

3

)
ln

∣∣∣∣b

a

∣∣∣∣
]

(2 ln 2 + 1) − 8

3
q ln

∣∣∣∣b

a

∣∣∣∣ + 6
∫ b

−a
dzλzW2(z) − 4(q�1 + 2�2 + q�3 − �4). (A14)

Here, we have defined W2(z) = ln | z−a
z+b |,

�1 =
∫ b

−a
dzλ

∫ b

−a
dz′

(
1

2
z′2 + 2zz′

)
1

α
√

R(z, z′)
, (A15)

�2 =
∫ b

−a
dzλz

∫ b

−a
dz′ z′

αβ
ln |z′|, (A16)

�3 =
∫ b

−a
dzλ

∫ b

−a
dz′z2 ln |z′| 1

α
√

R(z, z′)
, (A17)

�4 =
∫ b

−a
dzλzW1(z) ln |z|. (A18)

By writing �1 as

�1 = 1

2

∫ b

−a
dzλ

∫ b

−a
dz′ 1√

R(z, z′)

[
z′ + 3z

(
1 − z

α

)]
, (A19)

and performing the integrations over z′ ∫ b

−a
dz′ z′

√
R(z, z′)

= 1

C0
(2z + q) − B0

C3/2
0

Y (z), (A20)

∫ b

−a
dz′ 1√

R(z, z′)
= 2√

C0
Y (z), (A21)∫ b

−a
dz′ 1

α
√

R(z, z′)
= − 1

qz
W2(z), (A22)

we get

�1 = 1

2

∫ b

−a
dz

λ√
C0

[
2z + q√

C0
+

(
6z − B0

C0

)
Y (z)

]
+ 3

2q

∫ b

−a
dzλzW2(z). (A23)

The last term in Eq. (A23) cancels with the same contribution of opposite sign in Eq. (A14). The remaining integrals can be
carried out as follows

1

2

∫ b

−a
dzλ

2z + q

C0
= 1

24q4

[
−6q + 16q3 + 6q5 − 3(q2 − 1)3 ln

∣∣∣∣q + 1

q − 1

∣∣∣∣
]
, (A24)

−1

2

∫ b

−a
dzλ

Y (z)

C3/2
0

[B0 − 6zC0] = − 5

16q4
η5 +

(
9

16q2
+ 1

q4

)
η3 −

(
3

16
− 1

16q2
+ 9

8q4

)
η1

−
(

q2

16
− 3

8
+ 13

16q2
− 1

2q4

)
η−1 +

(
3

16q2
− 1

16q4
− 3

16
+ q2

16

)
η−3. (A25)

We then write Eq. (A16) as

�2
z ↔ z′= −

∫ b

−a
dzz ln |z|

∫ b

−a
dz′ λ

′z′

αβ
(A26)

= −
∫ b

−a
dzz ln |z|

[
(b + z)(a − z)

∫ b

−a
dz′ z′

αβ
+ (q + z)

∫ b

−a
dz′ z

′

β
−

∫ b

−a
dz′ z

′2

β

]
, (A27)

where each of the integrations in z′ can be performed∫ b

−a
dz′ z′

αβ
= 1

2
(W1(z) + W2(z)), (A28)∫ b

−a
dz′ z

′

β
= −2 + zW1(z), (A29)∫ b

−a
dz′ z

′2

β
= 1

2
[a(a − 2z) − b(b + 2z)] + z2W1(z). (A30)
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Substituting Eqs. (A28)–(A30) in Eq. (A27), and carrying through the elementary integrations over z, we obtain the following
result for �2 in terms of one quadrature

�2 = −1

2

∫ b

−a
dzz[λW1(z) − (b + z)(z − a)W2(z)] ln |z| − 1

2
q(q + a2 ln |a| − b2 ln |b|). (A31)

We follow the same procedure for �3 given in Eq. (A17)

�3
z ↔ z′=

∫ b

−a
dz ln |z|

∫ b

−a
dz′ λ′z′2

α
√

R(z, z′)

=
∫ b

−a
dz ln |z|

[
(b + z)(a − z)

∫ b

−a
dz′ z′2

α
√

R(z, z′)
+ (q + z)

∫ b

−a
dz′ z′2

√
R(z, z′)

−
∫ b

−a
dz′ z′3

√
R(z, z′)

]
. (A32)

Here, we have ∫ b

−a
dz′ z′2

α
√

R(z, z′)
= 1

C0
(2z + q) − 1

C3/2
0

(B0 + 2zC0)Y (z) − z

q
W2(z), (A33)

∫ b

−a
dz′ z′2

√
R(z, z′)

=
(

b

2C0
− 3B0

4C2
0

)√
R(z, b) +

(
a

2C0
+ 3B0

4C2
0

)√
R(z,−a) + 2√

C0

(
3B2

0

8C2
0

− A0

2C0

)
Y (z), (A34)∫ b

−a
dz′ z′3

√
R(z, z′)

=
(

b2

3C0
− 5B0b

12C2
0

+ 5B2
0

8C3
0

− 2A0

3C2
0

)√
R(z, b) −

(
a2

3C0
+ 5B0a

12C2
0

+ 5B2
0

8C3
0

− 2A0

3C2
0

)√
R(z,−a)

−
(

5B3
0

16C3
0

− 3A0B0

4C2
0

)
2√
C0

Y (z). (A35)

Substituting Eqs. (A33)–(A35) in Eq. (A32), we obtain with some algebra

�3 = �̄1 + �̄2 + �̄3, (A36)

where

�̄1 = −1

q

∫ b

−a
dz z ln |z|(b + z)(a − z)W2(z), (A37)

�̄2 =
∫ b

−a
dz

[
− 19

32q3
C2

0 +
(

139

96q3
− 9

32q

)
C0 − 15

16q3
+ 25

16q
− 5

32
q +

(
1

16q3
− 3

4q
+ 17

32
q + q3

32

)
C−1

0

+
(

− 1

16q
− 13

96q3
+ 5q

32
+ q3

24

)
C−2

0 +
(

5

32q3
− 15

32q
+ 15

32
q − 5

32
q3

)
C−3

0

]
ln |z|, (A38)

�̄3 =
∫ b

−a
dz C−7/2

0

[(
−4 + 2q2 − q4

4

)
z +

(
−16q + 11

2
q3 − q5

4

)
z2 +

(
8 − 20q2 + 11

2
q4 − q6

8

)
z3

+
(

36q + 2q3 + 5

4
q5

)
z4 +

(
60q2 + 25

2
q4

)
z5 + 35q3z6

]
ln |z|Y (z). (A39)

Evaluating �̄2 is elementary. Moreover, it can be shown [27] that �̄3 is equivalent to

�̄3 = 1

8q

3∑
n=−3

γn
1

2n + 1

[
(1 + q)2n+1 ln b ln

∣∣∣∣2b

q

∣∣∣∣ − q̃2n+1 ln |a| ln

∣∣∣∣ q̃ + 1

q̃ − 1

∣∣∣∣ + �n

]
, (A40)

where

γ3 = 35

8q3
, γ2 = − 45

4q3
+ 25

8q
, γ1 = 69

8q3
− 117

8q
+ 5

8
q, γ0 = − 3

2q3
+ 29

4q
+ 3q − q3

8
,

γ−1 = − 3

8q3
+ 11

4q
− 7

4
q − q3

8
, γ−2 = 3

4q3
− 3

8q
− 3q3

8
, γ−3 = − 5

8q3
+ 15

8q
− 15

8
q + 5q3

8
.

Here, q̃ = |1 − q| and the explicit expressions for �0,±1 are given in Ref. [27], while for �±2,±3 in Appendix B.

APPENDIX B

η3 = 1
5 [4q(2 + q2) − 2q(5 + 10q2 + q4) ln q − 2(1 − 2q + 4q2 − 3q3 + q4)a ln |2a| + 2(1 + 2q + 4q2 + 3q3 + q4)b ln 2b],

(B1)
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η5 = 1

7

[
4q

(
3 + 13

3
q2 + q4

)
− 2q(7 + 35q2 + 21q4 + q6) ln q − 2(1 − 3q + 9q2 − 13q3 + 11q4 − 5q5 + q6)a ln |2a|

+ 2(1 + 3q + 9q2 + 13q3 + 11q4 + 5q5 + q6)b ln 2b

]
, (B2)

η−5 = 1

3

[
4q

(q2 − 1)2
+ 2 ln

∣∣∣∣q + 1

q − 1

∣∣∣∣ −
(

1 + 1

(1 + q)3

)
ln 2b +

(
1 + 1

(1 − q)3

)
ln |2a| + 2q(q2 + 3)

(q2 − 1)3
ln q

]
. (B3)

�−3 = h0(q) − 2q

[∫ b

−a
dz

(
C−3

0 + C−2
0 + C−1

0

)
ln |z|

]
+ 2(η−3 + η−5), (B4)

where h0(q) is given in Ref. [27],

�−2 = h0(q) − 2q

[∫ b

−a
dz

(
C−2

0 + C−1
0

)
ln |z|

]
+ 2η−3, (B5)

�2 = h0(q) − 1

30
[q(416 + 108q2) + q(240 + 120q2) ln 2 − q(60 + 300q + 80q2 + 75q3 + 12q4) ln q

+ (2b)(92 − 16q + 38q2 + 21q3 + 12q4) ln 2b − (q̃ + 1)(137 − 77q̃ + 47q̃2 − 27q̃3 + 12q̃4) ln |q̃ + 1|
+ (q̃ − 1)(137 + 77q̃ + 47q̃2 + 27q̃3 + 12q̃4) ln |q̃ − 1|], (B6)

�3 = h0(q) + 1

210

[
− q

(
4472 + 9028

3
q2 + 520q4

)
− q(2520 + 3640q2 + 840q4) ln 2 + q(420 + 4410q + 1260q2

+ 3675q3 + 924q4 + 490q5 + 60q6) ln q − 2b(704 − 142q + 386q2 + 437q3 + 464q4 + 230q5 + 60q6) ln 2b

+ (q̃ + 1)(1089 − 669q̃ + 459q̃2 − 319q̃3 + 214q̃4 − 130q̃5 + 60q̃6) ln |q̃ + 1| − (q̃ − 1)(1089 + 669q̃

+ 459q̃2 + 319q̃3 + 214q̃4 + 130q̃5 + 60q̃6) ln |q̃ − 1|. (B7)

APPENDIX C: FOURIER TRANSFORM OF Ki j
x (q)

The real-space representation of Eq. (11) is given by

Edip
x [m] = μ2

B

2

∫
d3r d3r′Ki j

x (R)δmi(r)δm j (r′), (C1)

where

Ki j
x (R) = gkl (R)

χ ik
0 (R)χ jl

0 (R)
. (C2)

Here, gkl (R) is evaluated as follows. We write the Fourier transform of gkl (q) in spherical coordinates as:

gkl (R) = 1

(2π )3

∫ ∞

−∞
gkl (q)eiq·Rd3q = 1

(2π )3

∫ ∞

0
dq

∫ 2π

0
dφ

∫ π
2

− π
2

dθ f (q)2P2(cos θ )eiq·Rq2 sin θ. (C3)

Then, by expressing the exponential as a Rayleigh expansion, and using the addition theorem for spherical harmonics Ylm(θ, φ),
we obtain:

gkl (R) = 2

(2π )2

∫ 2π

0

∫ π
2

− π
2

∞∑
l=0

l∑
m=−l

Y20(θ, φ)Ylm(θ, φ) sin θdφdθ

∫ ∞

0
f (q)il jl (qR)q2dq 2P2(cos θR ) (C4)

= − 2

(2π )2

∫ ∞

0
f (q) j2(qR)q2dq 2P2(cos θR ) = f (R)2P2(cos θR ), (C5)

where jl (qR) are the spherical Bessel functions and the function f (R) is defined by the last equality.
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